A Heuristic for the Feedback Arc Set Problem

Peter Eades
Department of Computer Science
The University of Newcastle
NSW 2308
Australia
eades@cs.newcastle.edu.au

Xuemin Lin
Department of Computer Science
The University of Western Australia
Nedlands, WA 6907
Australia
Ixue@cs.uwa.oz.au

ABSTRACT

Suppose that G = (V, A) is a simple directed graph where n =Vl and m =14l . A feed-
back arc set is a set of arcs whose reversal makes G acyclic. The feedback arc set prob-
lem is to find a feedback arc set with the minimum cardinality. Generally, this problem is
NP-hard even for a cubic directed graph. In this paper, we present a new heuristic to pro-
duce a feedback arc set with a small size. This new heuristic produces a feedback arc set

whose size is at most 7 for a cubic directed graph. This improves on all previous results.

1. Introduction

The feedback arc set (FAS) problem has been extensively investigated for the last
few decades [BS90, dv&3, ELS89, ELS93 J70, R88, S71, S80]. Recently, we have inves-
tigated this problem because it relates to our current research on one important aspect in
information visualization - drawing a directed graph clearly [EL89]. The relationship
between the feedback arc set problem and the problem of clearly drawing a directed
graph may be found in [EL39, L92].

Since the FAS problem is NP-hard [K72], it is unlikely that we can solve this prob-
lem in polynomial time. A number of heuristics have been published. Some achieve the
optimal solutions for special classes of graphs (such as "reducible flow graphs" and "pla-
nar graphs” [R88]), while the others are measured by performance bounds. The most
recent two heuristics for solving the FAS problem may be found in [BS90, ELS93].

The heuristic provided in [BS90] produces a feedback arc set whose size is at most
m m
=B
2 (A(G)“2
Here, m is the number of arcs, n is the number of vertices, and A(G) denotes the maxi-
mum number of arcs incident to a vertex. This heuristic requires O(mn) execution time.

5m
) for a general directed graph and at most 5 for a cubic directed graph.

A simple heuristic presented in [ELS93], aimed at sparse directed graphs (which fre-
quently arise in graph drawing), outputs a feedback arc set whose size is at most
m/2 — nf6 and has execution time O(m). Over directed graphs satisfying m€0(n), this
performance bound is at least as good as that of [BS90]. Also, this bound is in fact better
than that of [BS90] over directed graphs with m€0O(n) and A(G) not bounded by a con-
stant.

Australasian Journal of Combinatorics 12(1995), pp.15-25

L HILS papel, we PICSCHL 4 new NEunislic Algoriinm-rAsil wilch refines the aigo-
rithm in [EL.S93] in order to potentially reduce the size of the feedback arc set produced.
In [L92], it has been proven that Algorithm-FASH produces a feedback arc set whose size
is at most m/2 — nf6 for a general directed graphi. The detailed proof of the above general
bound for Algorithm-FASH may be found in {L.92]. Here we prove a new result given by
Algorithm-FASH on cubic directed graphs:

Algorithm-FASH produces a feedback arc set whose size is at most mf4.

The rest of the paper is organized as follows. In Section 2, necessary preliminaries
are given. In Section 3, Algorithm-FASH is presented, while in Section 4, we prove the
performance of Algorithm-FASH for cubic directed graphs. This is followed by conclu-
sions and remarks.

2. Preliminaries
We tecall the following basic graph notation from [BM].

In a directed graph G, an arc with identical endpoints is & loop. A directed path
with identical endpoints is a directed cycle. A directed cycle with length 2 is a two-cycle.
Two vertices u and v are strongly connected if there are iwo directed paths in G, one from
u to v and the other from v to u.

A directed graph is strongly connected if each pair of vertices is strongly connected.
A subgraph G~ of (5 is a strongly connected component of G if:

* (7 is strongly connected, and

» for each pair of vertices « and v, where ¥ is in G” and v is not in G, « and v are not
strongly connected.

For each vertex v in G, dg(u) denotes its total degree, that is, the number of the arcs
incident to u, dg(u) denotes the indegree of u, that is, the number of arcs into u, and
di(u) to denote the outdegree of u, that is, the number of arcs out from u. If the corre-
sponding graph is clear from context, then d;(u), dz(u) and di(G) are tespectively
abbreviated to d(u), d”(u) and d*(u).

A directed graph is cubic if for each vertex u, d(u) = 3. A vertex in a directed graph
is a source if its indegree is zero, a sink if its outdegree is zero.

An ordered list of the vertices of a directed graph G is a vertex sequence of G. If
S(G) = (v, vy, -+, v,) is a vertex sequence of a directed graph G. the an arc (v;, v;) is
leftward (rightward) with respect to s(G) if j < i (j > i).

In the rest of the paper, n and m denote the cardinalities of the vertex set and the arc
set respectively.

3. Algorithm-FASH

Algorithm-FASH, which is presented in this section, computes a vertex sequence
8(G) for a directed graph G; and then the set of leftward arcs will be output as the feed-
back arc set. It is clear that there is a vertex sequence such that the leftward arc set with
respect to this sequence is a feedback arc set with the minimum cardinality.

16

3.1. Motivation

Algorithm-FASH, like the algorithm in [ELS93], essentially consists of the follow-
ing four steps:

Step 1: Iteratively remove sinks (if any) to prepend to a vertex sequence s,; and if the
remaining graph is empty then go to Step 4 else go to Step 2.

Step 2: Tteratively remove sources (if any) to append to a vertex sequence $; and if the
remaining graph is empty then go to Step 4 else go to Step 3.

Step 3: Choose a vertex u, such that the difference between the number of rightward arcs
and the number of leftward arcs is the largest, and remove u to append to sy; if the
remaining graph is empty then goto Step 4 else goto Step 1.

Step 4: A vertex sequence s is formed by concatenating s; with s5; and the leftward arc
set for the vertex sequence s is reported as a feedback arc set.

Note that Step 1 and Step 2 do not produce any feedback arcs. In case there is more
than one candidate at Step 3, the algorithm in [ELS93] nondeterministically chooses one.
This may speed up the execution, but potentially degrade the performance. Thus, Step 3
is the key. In Algorithm-FASH, we add some additionally greedy criteria for a choice of
a vertex at Step 3. Further, some manipulations of a directed graph will be added to allow
Step 3 to be more effective.

To further consider the structure of a directed graph, we should first decompose the
graph into strongly connected components. A standard O(m) time procedure may be
found in [Sed, pp. 481-483]. This procedure, called by DSC(G), returns the sequence
(G,, Gy, -, Gi) of the strongly connected components of a directed graph G, with the
property that there are no leftward arcs between these components (that is, no arcs from
G;to G, fori < j). Thus, we need only find the feedback arc sets for each of these com-
ponents.

To describe the techniques to increase the greediness of Step 3, some further con-
cepts are needed.

In a strongly connected directed graph G, a directed path (uy, Uy, - - -, ;) is conden-
sible if k23, ds(u;) 23, dg(u;) 23, and for 2<i < k-1, di(w;) = dg(u;) =1. Here
for 2< i< k~1, u; is a middle vertex of the directed path, while ¥; and u, are respec-
tively called the start vertex and the end vertex of the directed path.

A directed graph G is fully condensed if it is strongly connected and there are no
condensible directed paths in G. The condensation of strongly connected directed graph
G = (V, A) is formed by collapsing the condensible paths to single arcs; more precisely
the condensation is the directed graph G, = (V,, A,.) such that

e V. is the largest subset of V such that V, contains no middle vertices of a condensible
directed path of G; and

e A, ={e: e€A or e from a start vertex of a condensible directed path in G to the end
vertex of the directed path}.

It is clear that the condensation of a strongly connected graph is fully condensed. Algo-
rithm-FASH uses a function CON(G) to produce the condensation G, of a strongly con-
nected directed graph G such that when Algorithm-FASH removes a vertex u from G, u
is chosen from G,.. By a depth first search technique, CON(G) can be implemented in

17

Next we investigate the introduction of an additional criterion at Step 3 on fully con-
densed directed graphs. We begin with an example. For the graph illustrated in Fig. 1, an
implementation of the above four steps first nondeterministically chooses either vertex 1
or vertex 2. If vertex 1 is chosen first, then 2 feedback arcs will be produced. On the
other hand, if vertex 2 is chosen first, then only 1 feedback arc will be produced.

2 1
-)
Or=
3 4
Fig 1

Consider the arc (3,2): after removing it, vertex 3 becomes a sink. But the removal
of any arc incident to 1 would not produce any sink. We would like to force Step 3 to
choose vertex 2 in this situation. In general, we would like to choose a vertex v so that
the remaining graph after v is deleted contains a vertex u which is "unbalanced”, that is,
the difference between the indegree and the outdegree of u is high. Thus for a strongly
connected directed graph G = (V, A) and a vertex set UCV (a candidate set at Step 3),
Algorithm-FASH applies a procedure CHS(G,) which returns a vertex v in I/ such that
there is an arc (u, v)€ A with

de W) — di W) =1 = max {d;(b) — di(b) ~ 1: (b,a)EA, a€l).

Intuitively, we hope that Step 3, as implemented with CHS, produces some extremely
"unbalanced" vertices. This will potentially guarantee that the next iteration may produce
a small number of feedback arcs. For instance, for the graph in Fig. 1, Step 3 will choose

vertex 2 through implementing CHS. Clearly, CHS(G,U) can be implemented in O(m)
time.

Algorithm-FASH also applies another linear time procedure TAKEMAX(G,U).
This takes a directed graph G as the input and outputs the set U of the vertices which
have the maximum value of the difference between outdegree and indegree. To describe
Algorithm-FASH clearly, a combination OBTAIN(G) of TAKEMAX and CHS is pre-
sented as follows:

OBTAIN(G: graphs): vertex
If G has only one vertex v
then
return v

else
TAKEMAX(G,U);
return CHS(G,U)

18

3.2. The Description of Algorithm-FASH
Suppose that G is not empty. Then Algorithm-FASH is described as follows:

Algorithm-FASH (G: directed graph) : vertex sequence
FASHL. s < @;

FASH2. (G, Gy, -, Gy) <DSC(G);

FASH3. Return the concatenation of SCFASH(G,) , SCFASH(G,) , ..., SCFASH(G,)

Algorithm-SCFASH (G : strongly connected graph) : vertex sequence
SCFASHL. s ¢ @;

SCFASH2. G, « CON(G);

SCFASH3. v - OBTAIN(G);

SCFASH4. Return the sequence formed by prepending v to FASH(G - v)

We report the leftward arcs for s as the resulting feedback arcs.

The Theorem below follows since all of DSC, CON, CHS, and TAKEMAX use lin-
ear time.

Theorem 1: Algorithm-FASH executes in O(mn) time, where 7 is the number of the ver-
tices and m is the number of arcs of a graph. 0

3.3. Performance Guarantee for Cubic Directed Graphs

In this section, we prove a performance guarantee of Algorithm-FASH restricted to
cubic directed graphs.

Theorem 2: Suppose that G = (V, A) is a cubic directed graph with no two-cycles and no
m

loops. Then Algorithm-FASH produces at most n feedback arcs, where m is the number

of the arcs of G.

S5m
Note that the bound in Theorem 2 is an improvement on the bound 8 (that is,

approximately 0.278m) in [BS90]. The scope of Theorem 2 includes the case where
there are some multiple arcs in G, see Fig 2, for example. To prove Theorem 2, we first
prove the following Lemma.

Lemma 3: Suppose that G is a strongly connected directed graph with no two-cycles and
no loops, and the total degree of each vertex in G is not greater than 3. Further suppose
that there is at least one vertex in G such that its total degree in G is 3; and G, is the con-
densation of G. Then there is an arc (1, v) in G, such that dg (1) =2 and dg (v)=2.

Proof: Note that G, is fully condensed; and in the strongly connected directed graph G,
there is no vertex whose total degree is greater than 3, and no sinks or sources. It follows

19

that U 15 CUDIC. WE ais0 sNoula note tnat ¢ nas no loops.

The above facts immediately imply that there are at least two vertices a and b in G,
such that dg (@) =2 and dgr(b) = 2. Since G, is strongly connected, there is a directed
path (uy, uy, -+, uy) with @ = u; and b =u,. If k =2, that is, (a, &) is an arc of G, then
the Lemma holds.

Otherwise k 2 3. Suppose that the Lemma does not hold in this case. Since G, is
cubic and dg (u;) =2, by our assumption that the Lemma does not hold, we have that
dg (uy) = 2. Following the path with this argument, we find that dg (4;)=2. Thus,
dg (b) + dg (b) =2+ 2 =4, contradicting the fact that G, is cubic. Hence the Lemma
holds. I

For a cubic directed graph G, procedure OBTAIN(G,) always returns vertices of
indegree 1 in G.. These vertices may have outdegree 2 (in the case where the G, at that
time has at least one vertex of total degree 3) or outdegree 1 (in the case where all ver-
tices of G at that time have total degree 2). In counting the number of leftward arcs pro-
duced by Algorithm-FASH we are particularly interested in the following two subsets V!
and V? of the vertex set of G-

3.1) V! consists of the vertices which are returned by OBTAIN(G,) at line
(SCFASH3) and have outdegree 1 in the value of G, at that time; and

(3.2) V? consists of the vertices which are returned by OBTAIN(G,) at line
(SCFASH3) and have outdegree 2 in the value of G, at that time.

If a directed graph G is as illustrated in Fig 2 then Algorithm-FASH produces 2
feedback arcs, while there are 9 arcs in G. Thus for this graph, Theorem 2 holds. The
proof of Theorem 2 explicitly excludes this case.

e

\—_’//
Fig 2

Next we prove Lemma 4, which is the key for the proof of Theorem 2.

Lemma 4: Suppose that G = (V, A) is a cubic directed graph with no loops and no two-
cycles, and that the underlying graph of G is connected; and that G is not the graph in Fig
2. Further suppose that V' and V? are defined as in (3.1) and (3.2). Then for each u€V?2
and each v€V', there are respectively two sets V7 and A2, and two sets V! and A!, such
that

(1) V2cV,V)cV, A’CA, and AlCA, and

20

(2) WH=2,1A21=5,V!i> 3 and |A}l 2 3, and

(3) ViVl =@ and AZNAL = @, and

(4) for each pair {u, 1"} of distinct vertices in V2, V2NV] = @ and ALNAL = @, and
(5) for each pair {v, v’} of distinct vertices in V', VinV,. = @ and A,NA} = D.

(For example in Fig 6, Vi= {4}, Vi={(1}, Vg‘ ={1,3}, V}I={2,46},
AT =1{(1,2),(1,5),(3,1).(5,3),(4,3)}, and Ay =1[(2,6),(6,4),(4,2)})

Proof: Suppose that w is returned by OBTAIN(G,). Let G, be the value of the graph G,
one step before the choice of w by OBTAIN(G,), that is, at line (SCFASHZ) in Algo-
rithm-FASH. Note that (G, is strongly connected.

Say weV'!. Then no vertices in G,, have total degree 3, thus G, must be a directed
cycle.

First for each vEV!, we construct V| and Al explicitly as follows. We choose the
vertex set of G, (a directed cycle) as V', and the arc set of G, as Al Since G has no two-
cycles and no loops, and G, is a subgraph of &, we have that WVih=14l23

Next we construct V2 and A2 explicitly for each u€V % as follows. From an inspec-
tion of Algorithm-FASH and Lemma 3, one may deduce that (7, has a vertex w+u such
that dg; ()" =2, and dg (w) = 2; and that there is 2 directed path P, from wto v in G,
where P, is either an arc or a condensible directed path with w as its start vertex and u
as its end vertex. We choose V72 = {u, w}. There are three cases for V, with respect to
Gy
1. there are at least 5 arcs incident to either u ot win &) or

-5

2. there are at most 4 arcs incident to either u or w in G, and P, has at least two mid-
dle vertices; or
3. there are at most 4 arcs incident to either u or w in w, and P, has at most one middle
vertex.
For case 1, let A consist of any 5 arcs incident to either u or w. For case 2, note
that G, has no loops and two-cycles, since G, is a subgraph of G. Thus G, is as illus-
trated in Fig 3, where the arc set of G, has at least 5 arcs.

Fig3

Let A, consist of any 5 arcs in the arc set of G, for case 2. Note that G, is a subgraph of
the cubic directed graph . For case 3, P, must (since there are no 2-cycles) have a
middle vertex a such that G, is induced by the triple (w, a, u), as illustrated in Fig 4.
Since G is cubic, there is an arc e, incident to a in G which is neither (w, a) nor (a, u).
Hence for case 3, let A2 consist of e, and the 4 arcs incident to either u or w.

It is clear that the properties (1) and (2) of this Theorem hold. The following facts
follow immediately from the above construction and Algorithm-FASH:

21

«—/""‘W‘-‘"— M‘_—“\
() =

w a U

7

Fig 4
Fact 1: for each vertex u€V? such that 53 is covered by case 1, the subgraph contain-
ing only the vertex w in V? (w#u) is a strongly connected component of
G, —u,; and
Fact 2: for each vertex u€V? such that V2 is covered either by case 2 or case 3, and for
each vertex z in G, such that z#u, the subgraph containing only z is a strongly
connected component of G, — u; and

Fact 3: for each vertex €V ? such that V2 is covered by case 3, G, is a strongly con-
nected component of (7, and
Fact 4. for each veV', and each z€V! such that z#v, the subgraph, containing only z,
is a strongly connected component of G, — v.

From an inspection of Algorithm-FASH and the above facts, one may deduce that proper-
ties (3) and (5) hold; and for a pair {u, 1"} of distinct vertices in V2, VW2 = @, where
one of ¥} and V72 is not covered by case 3, then A2NA2 = .

Next we verify that for every pair {u,u’} of distinct vertices in V7, if both V7 and
V2 are covered by case 3 then A2NAZ =@. To do this, we only need to verify that with
respect to the two subgraphs G, and G, which are respectively induced by the triple
(w, a,u) and triple (w’,a’,u) illustrated in Fig 4, there are two arcs e, and e, respec-
tively in A2 and AZ. such that;
v e e, ¢, ncident to a, and ¢, incident to a”; and
* e, is neither (w, @) nor (g, u); and
* e, s neither (w’,a") nor (a”,u").
From our assumption that the underlying graph of G is connected and that & is cubic and
that G is not the graph as illustrated in Fig 2, the above claim follows immediately.
Hence AZMAL = @ in the case that both V2 and V2 are in case 3.

Hence the Lemma holds. O

Next we prove Theorem 2.
Proof of Theorem 2:

Without loss of generality, we may assume that the underlying undirected graph of
G is connected. Note that for the graph illustrated in Fig 2, the Theorem holds. Thus
next we prove that if G is not covered by the case in Fig 2 then the Theorem also holds.

Suppose that V> and V' are defined as in (3.2) and (3.1). Let IV'l=n, and
V2 =n,. From Algorithm-FASH, it follows that the temoval of a vertex (see line
(SCFASH?2) in Algorithm-FASH) which is either in V? or in V! from the value of G at
that time causes one leftward arc. Note that Algorithm-FASH produces leftward arcs due
only to the removal of the vertices in either VZ or V', Thus Algorithm-FASH produces at

22

most r feedback arcs (leftward arcs) where
(33) r=n;+n,.

By Lemma 4, we have that 2n, + 35, < n and 5n, +3n; < m. Then we can rewrite
these inequalities as:

3.4y 2n,+3n,+x=n,and
(3.5 Sny+3n +y=m,

7
where x 20 and y = 0. From (3.3), (3.4) and (3.5), it follows immediately that r < _2%1
To further reduce the bound, we next prove that x +2y 2 n,.
Note that for all u€V', the directed graph (V., AL) is a directed cycle (see the proof
of Lemma 4); this cycle is obtained by DSC(G), at the line (FASH2), as a strong con-

nected component in the value of GG at that time. We partition V! into two sets V| and
V), defined by:

(1) Foreach u€V1‘, !Vj! 24, and

(2) Foreachu€Vy, IVi=3.

We may immediately verify that for each u€VJ), the cycle (V)}, A}) is obtained from G by
either

(a) The deletion of an edge e,, which is incident to a vertex in V), not in A% for any
yeV?, and not in Al for any veV' and v#u. (In the worst case, e, may join two
directed cycles.)

or

(b) The deletion of a vertex, which is not in V2 for any v€V?, and not in V! for any
veV! and v#u. (See the case illustrated by Fig 4; vertex a is an example.)

Hence, x + 2y 2 IVl = n;. This can be rewritten as

n,+z—x
(36) y=—

2)
for some z 2 0
2
Since is cubic, n = —gz Replacing y in (3.3) by (3.6), and solving (3.4) and (3.5)
for n; and n,, we have that

n~m+z 3x nd
S
_m 3z 5x
712 16 8
Thus
m z 3x m 3z 5x
oo e e = e —
6 8 4 12 16 &
_m Z X
T4 16 8
Hencergln—
T

This completes the proof of Theorem 2. O

23

4HE DOUHG UL LHCOICIL £ 101 ALgOHUIN AL 1S T1gAL, SINCC 10T INC Zrapn in r'ig o,
in the worst case the algorithm returns 3 feedback arcs out of a total of 12 arcs.

%4/

/o

Fig 5
We can also show a lower bound for any algorithm on cubic directed graphs.
Lemma 5 For each n divisible by 6, there is a simple cubic directed graph (with no loops

2m
or two-cycles) for which every feedback arc set has at least -5 ares.

Proof: Note that if a directed graph G is & copies of the directed graph illustrated in Fig 6
then G has 6k vertices and 9k arcs and at least 2k feedback arcs. Thus the Lemma holds.
]

N
/ N\
3 \Q4

Fig 6

4. Conclusions and Remarks

In Section 3, we describe a new and simple heuristic with a good performance
bound for cubic graphs and O(mn) execution time. This bound is better than the bound in
[BSS0], while the execution time is the same. For a general simple directed graph, we
can only show the performance bound m/2 — n/6 [L92]. This is at least as good as that of
[BS90] over sparse directed graphs. In future, we would like to find a precise estimate for
the performance bound of Algorithm-FASH on dense directed graphs, since the estima-
tion employed in [L92] is quite loose.

Further remarks on the complexity of approximating the feedback arc set can be
found in [BS90].

24

References

[BM] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan,
1976.

[BS90] B. Berger & P. W. Shor, "Approximation algorithms for the maximum acyclic
subgraph problem", Proc. First ACM - SIAM Symposium on Discrete Algorithms
(1990) 236-243.

[dV83] W. F. de 1a Vega, "On the maximum cardinality of a consistent set of arcs in a 1an-
dom tournament", J. Combin. Theory, Series B 35 (1933) 328-332.

[EL89] P. Eades & X. Lin, "How to Draw a Directed Graph". Proc. 1989 IEEE Workshop
in Visual Languages, IEEE Computer Society Press pp. 13-17, 1985.

[ELS89] P. Fades, X. Lin & W. F. Smyth, "Heuristics for the feedback arc set problem",
Technical Report No. 1, Curtin University of Technology, School of Computing Sci-
ence (1989),

[ELS93] P. Eades, X. Lin & W. F. Smyth, "A fast and effective heuristic for the feedback
arc set problem", Information Processing Letters, (1993) 319-323.

[EM65] P. Frdos & J. W. Moon, "On sets of consistent arcs in tournaments", Canadian
Mathematical Bulletin (1965) 269-271.

[J70] H. A. Jung, "On subgraphs without cycles in tournaments", Combinatorial Theory
& Its Application 1T, North-Holland (1970) 675-677.

[K72] R. M. Karp, "Reducibility among combinatorial problems, Complexity of Compu-
tation, Plenum Press (1972) 85-103.

{1.92] ¥. Lin, "Analysis of Algorithms for Drawing Graphs”, Ph.D thesis, University of
Queensland, Department of Computer Science (1992).

[R88] V. Ramachandran, "Finding a Minimum Feedback Arc Set in Reducible Flow
Graphs", Journal of Algorithms 9, 299-313, 1988.

[Sed] R. Sedgewick, Algorithms, Second Edition, Addison-Wesley Publishing Company,
1988.

[S61] P. Slater, "Inconsistencies in a schedule of paired comparisons", Biometrika 48
(1961) 303-312.

[S71] J. Spencer, "Optimal ranking of tournaments", Networks 1 (1971) 135-138.

[S80] J. Spencer, "Optimally ranking unrankable tournaments", Period. Math. Hungar.
11-2 (1980) 131-144.

(Received 11/2/94)

25

