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ABSTRACT. Previously the authors characterized the 3-connected graphs with
a Hamilton path containing only two contractible edges. In this paper we extend
this result by showing that if a 3-connected graph has a diameter containing only
two contractible edges, then that diameter is a Hamilton path.

INTRODUCTION AND TERMINOLOGY

All graphs in this paper are finite, undirected and simple.

Let G be a 3-connected graph. An edge e = zy in G is said to be contractible
if the graph obtained from G by contracting e is also 3-connected. Otherwise, e is
said to be noncontractible. For G % K, and e = zy € E(G), one easily sees that
e is noncontractible if and only if there exists s € V(G) such that S = {z,y,s} is
a 3-cutset of G; in that case we say that e and S are associates of each other. We
use E.(G) to denote the set of all contractible edges of G and Ey,(G) for the set of
all noncontractible edges. For H a subgraph of G we set E.(H) = E.(G) N E(H)
and E,(H) = E,(G) N E(H). We also let G[H] denote the subgraph induced by
V(H). If no confusion can arise, we will often use H for any of V/(H), E(H) or the
subgraph H. For z € V(G), N(z) will denote the set of neighbours of z in G.

A consequence of a result in Dean, Hemminger and Toft [DHT87] is that every
diameter of a 3-connected graph G contains at least two contractible edges of G. In
[ACHO93] the authors characterized the 3-connected graphs with a Hamilton path
containing only two contractible edges; we denote this class by Hy. Now let D,
denote the class of 3-connected graphs G that have a diameter containing only two
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contractible edges of G. In this paper we show that such a diameter is in fact a
Hamilton path. That is, our goal is to prove the following.

Theorem. Dz = Hs.

We refer the reader to [ACH93] for other background information. Since we
will refer to several results from that paper it seems desirable to keep the numbering
of them unchanged. Therefore, we will use letters or names to refer to some of the
remaining results. As was done there we hereafter let G denote a graph in Do
and let P = (21,22, +,Zn) denocte a fixed diameter in G that contains only two
contractible edges of G. Of course, N(z1), N(z,) C V(P) since P is a diameter.
And, by way of contradiction, we will assume throughout that P is not a Hamilton
path. Now it is known [AHO93] that if G has a longest cycle that contains at most
three contractible edges of G, then G is hamiltonian. Thus, we also assume hereafter
that z; is not adjacent to z, in G. And since we know from computer checks that
the theorem is true for n < 10, we will avoid messy small cases by assuming that
n > 10. We will refer to z; as the left end of P and using this order, we let ey and
er denote the two contractible edges in P where ey, is to the left of er. We use the
notation [z;, z;] for 1 <4 < j <n to denote the path (z;, Tiy1, -+, z;).

We will refer to a 3-cut S = {z;, 41, v} associated with f = z;z,41 € E,(P)
simply as a cut; it is called a bad cut if v ¢ V(P) and a good cut if v € V(P).
An edge f € E,(P) is called a bad edge if it has no good cut associated with it.
Of course, a consequence of our theorem here is that there are no bad cuts or bad
edges! Never mind; a cut & separates P into either two or three segments (any one
of which can be empty— but no more than one according to the following lemma)
which we denote by Lg, Mg and Rg where Lg(Rg) is to the left (right) of S while
Mg is between the edge f and the vertex v when v € V(P) and is not adjacent to
fin P.

A result, so basic to all that we do that we will seldom refer to it again as such,
is Lemma 1 of [DHTS87].

Lemma DHT. If S is a cut associated with f = z,2,11 € E,(P), then every
component of G — S intersects P.

For N € {Ls, Mg, Rs} and nonempty, the component of G — S that con-
tains N might contain one (but not two by Lemma DHT) of the other members of
{Ls, Ms, Rs}; but if it contains neither, then we say that S isolates N. Moreover,
if Mg is isolated by S, we call § a natural cut. If Mg is not isolated by S, then we
call S an unnatural cut; it is unnatural to the right (left) if Rg(Lg) is isolated by S
(see Figure 1). Thus bad cuts and cuts consisting of three consecutive vertices of



P are unnatural both to the left and to the right.

The cut S = {x;, X1, X¢} is natural in the above graph while it is
left-unnatural in the graph below (the jumper from x; to X; indicates
the components in each case).

Figure 1

Using the above terminology, Lemma 2 of [DHO89] is as follows.

Lemma 1 [DHO89]. If S is a natural cut, then Ms contains an endvertex of
at least one of ef, or ep.

This lemma is used to locate contractible edges in P so often that we often use
it implicitly. In that connection, we note that all cuts associated with z;z, and
Zn-1Zn are natural ones.

As suggested by the notation Lg, Mg and Rg, one would expect, in the case of
a good cut, that G — S commonly has three components. We now show that is not
the case here, whether S is a natural cut or not.

Lemma 2. If S is a cut, then G — S has only two components.

Proof. The claim is immediate by Lemma DHT if S is a bad cut. So let
S = {x;,ziy1,2s} with z, € V(P). Obviously we may assume that 2 < ¢ < n — 2,
that i +3 < s < n — 1 and, by way of contradiction, that Lg, Ms and Rg are
each isolated by S. Therefore, by Lemma 1, at least one of Lg or Rg fails to
contain an endvertex of a contractible edge of G. Since the two cases are similar



we only consider one. So assume that ey, is to the right of z;41. Thus we have a
cut T = {z1,z2, %} with z, € V(P). We consider the possible values of £. First
note that ¢t ¢ [3,4+ 1]; for if ¢ € [3,4 4 1], Mr contains an endvertex of ey, or eg by
Lemma 1. Thus, since z; must be adjacent to vertices in the component containing
Rg, we must have t > s+ 1. But this contradicts that Ls and Rg are isolated by
S since z; must be adjacent to vertices in Rr. ]

Natural cuts are generally better behaved than unnatural cuts and many of the
results for cuts from [AH93] carry over to them, almost verbatim, as in [ACH93].
The minor differences from [ACH93] are in the proofs; if z € § and C is a component
of G — S, then there is an edge from z to C. In the previous case, when P was a
Hamilton path, this was an edge to a vertex in P. Now it just gives us a P-jumper
(or more simply, a jumper since they will always refer to P) from z to a vertex
y € C N P; that is, an zy-path that is openly disjoint from P. We will use the
notation P; ; for a jumper between distinct vertices z;,z; € P. Likewise, if S is an
unnatural cut to the left, for example, then there is a jumper from Mg to Rs but
none to Lg. On the other hand, if S = {z;, i1, v} is a bad cut, then there are
jumpers from Lg to Rg, but they must all go through v. Since we will need to refer
to the part of these paths from v to P we will call them semi-jumpers.

Oue of the useful results about cuts concerns “crossed natural cuts”, except now
natural cuts can cross in four different ways; to the inside, to the outside, to the right
side, and to the left side. So let S = {z;,z;41,2s} and T = {z;,z 41,2} be natural
cuts with ¢ 4+ 1 < j. Then S and T are crossed to the inside if 1 +1 <t <s < j;
they are crossed to the outside if t < i and j+ 1 < s; they are crossed to the right
if 7 +1 < s < t; and they are crossed to the leftif s <t < i

Lemma 3 [Crossed Natural Cuts]. Let S = {z;,zi41,2,} and T =
{zj,z;+1, %} be crossed natural cuts with i -1 < j. Then
(1) 8 = {x4,Tit1,7:} Is a natural cut if Mg # 0,
(2) T" = {z;,Tj+1,Zs} is a natural cut if My # 0, and
(3) if § # i + 1, then =5 and z; are consecutive in P (in the case of being crossed
to the outside, this means that t = 1 and s = n).

Proof. Suppose that S and T are crossed to the inside and let zx € Mg
that is, i + 1 < k < t. Now there can be no jumpers from zp to any vertices in
[1,2;-1] U [@s41, 5] since S is a natural cut; but neither can there be any jumpers
from x, to vertices in [z¢41,2s) € My since T is a natural cut. Thus M is isolated
by S’ as claimed in (1). (2) is a symmetric version of (1) and by the same type of
argument we see in (3) that {zs,z:} is a 2-cut if t +1 < 5. The proof of (1) and (2)
for the other type cuts is equally straightforward. For them however, j =i+ 1 is



possible, and in that case {z, 2} no longer needs be a 2-cut; for example if S and
T are crossed to the right with j =i+ 1 and s+ 1 < ¢, we can still have a jumper

from Tit1 to Tg41- | |

A similar, and equally useful, result for good cuts is the following.

Lemma 4. If S = {z;, 741,25} and T = {z;,%;41,2:} are good cuts with
i+1<j, j+1<sandj+1<t, then we don't have both that Rs is isolated by

S and that Rr is isolated by T.

Proof. By way of contradiction, suppose that they are. Then we have a
jumper from z; to [Zs11,%n] and another from zji1 to [Te1,2n]. But the first
jumper forces t > s + 1, while the second forces s > ¢ + 1. E

Of course there is a symmetric version of this lemma involving Lg and L.
Our first “new” lemma is a similar “crossing” result for bad cuts.

Lemma ACH. If S = {z;,z;41,%s} is a good cut and f = z;z;4, is a bad
edge with i +1 < j < s, then Rg is not isolated by S.

Proof. Suppose that Rg is isolated by S and let B = {z;,z;41,v} be a bad
cut associated with f. So we have a jumper @ from z; to zq € [Zs41,Zn). If
i+ 1 < j, then we must also have a jumper from z;41 to [Ts4+1,Zn]. But these two
jumpers must go through v since B is a bad cut, which contradicts that P was a
diameter (and (z1Z2-+ T;-- V- Tiy1 -+ Tn) is longer than P). So we must have
j =1i+1> 2; the latter since N(z1) C V(P). But then, all paths in G[Lp U {v}]
from 2; to v must pass through z;; or such a path united with the portion of @
from v to z4 contradicts that Rg is isolated by S. Thus {Zi, i1, i} is a cut
and so f is not a bad edge. B

Now suppose that z,z2 € E,(P) and that S = {z1,2;,2s} is an associated
good cut (clearly, 1z, cannot be a bad edge). Then ey is to the left of z; by
Lemma 1. Moreover, we can pick z so that ep is to the right of zs. This is obvious
if ep = Tp_1&, SO assume that z, 12, € E,(P) and let T = {zn_1, Tn, ¢} be an
associated cut. Thus, by Lemma 3, we can take s < t and so, by Lemma 1, z; is
between ey, and er. Furthermore, since P is a diameter, all neighbours of z; lie on
P, so there is an edge 1z, with 2, € Rg, that is, with p > s. In the following
lemma, we will divide into cases depending on whether there is such an z, to the
left of eg or not. In either case, we find that there is only one such z,.

Lemma 5. Let § = {z1,22,25} be a cut. Then there is a unique p > s with
z12, € E(G). Moreover, if eg € [zp, Zn], then N(z1) = {z2,23,7,}, er = z3z4



and N(z3) = {z1,72,z4} (that is, s = 4); otherwise N(z1) = {z3,73,Tn-1}.

Proof. Suppose first that eg € [z,, z,] for some p > s with 2,2, € E(G). So
we have 4 < s < p < n. Thus there are no bad edges in [z, z,—1]. Note that there
is a jumper Q from {z,z2} to z, € Rg with ¢ > s and q # p; otherwise {z;,z,}.
is a 2-cut separating z; from z,.

Let ef = TpTps1. Since eg is to the right of z,, there are cuts A and B
associated with zp_1zn and zp.1Zh42,respectively. And, as noted above, A is a
good cut, say A = {Th-1,Zh,Ze} (note that A = S is possible). And we claim that
we can choose B to be a good cut as well. For suppose that B = {zp41,Zhys, v}
is a cut with v € V(G) — V(P). Thus, as noted above, p = s+1=h+2 and Q
must be (z2,v,q) since it goes from Lp to Rp and since P is a diameter. Now v
is not in the component containing Mg because of the edge vz, and so there are no
edges from v to Myg; consequently, {Zp41,ZTht2, T2} is a good cut associated with
Thi1Zhee. So as claimed, we can assume that B = {Z41,Thy2,2s} is a good cut
associated with Tp41Zh+2.

The remainder of the proof of this lemma now proceeds just as that of Lemma
5 in [ACH93]. [

Theorem 6. The pair ¢y, eg is one of the following:
(1) z122, Tp—-1Tp, OT
(2) 122, Tn-3Tn_2 OF T3T4, Tn-1Tpn, OT

(3) 2324, Tp-3Tn—2.

Proof. Suppose that we don’t have (1). Thus, by symmetry, we assume that
1172 € E(P) and let S = {z1,z3, s} be an associated cut. Consequently, there is
an edge z17, with s < p and, by Lemma 1, with ey, to the left of z,. Ifer = zp_12p,
then p < n since z1z, € F(G) and so (2) holds by Lemma 5.

So suppose that Tn-1Zn- € E,(P) as well and let T = {z,_1,Z,,z;:} be an
associated cut. Thus, as with .S, we have an edge z,z, with ¢ < ¢t and with eg to
the right of z;. So by Lemma 5, dg(z;) = dg(z,) = 3. Using symmetry and Lemma
5, we can assume that we have one of the following two situations: (a) z, and z,
are both between ey, and eg or (b) ez and eg are both in [z, z,]. We are done in
case (a), since then ey, and eg are as in (3) by Lemma 5.

And case (b) does not occur. This is because of the edges z1zp-1 and 2,2,
(the latter is given by Lemma 5) and the assumption that P is a diameter but not a
Hamilton path. For suppose that vzy is an edge with v € V(@) ~ V(P) and z4, € P.
So ks 1,n and, if 1 < k < n—1, then the path (v, zk, Tkt1,**» Tn-2, Tn, Tn-1, L1,
Tg,:++,Zg—1) contradicts that P is a diameter. Likewise, the path (v, Zn—1, Tn, Tn-2,
Tp-3,-+,Z1) shows that k #n — 1. [



We can now extend Lemma 5.

Corollary 7. dg(z1) = dg(z,) = 3 and 123, Tn—2Zs € E(G).

Proof. By Lemma 5 and symmetry we only need to consider the case with
er = z175. Thus, by Theorem 6, ep is either T, -3Tn-2 OF Zn_1Zn.

By way of contradiction, assume that there exist 4, j with z;,z; € N (z1) and
with 4 < i < j < n — 1. Again by Theorem 6 we have that ep is to the right of
z; (since i = n — 2 implies that &, _;z, is contractible). And since there can be
no bad edges in [z, z;], we let S = {22,73,2,} and T = {x3,24,2:} be good cuts
associated with z9x5 and 7374, respectively. So s # 1 and hence, by Lemma 1, s > 1
since ep is to the right of z;. Thus s > j with Rg isolated by S unless s = j and S
is natural. But, by Theorem 6, the latter forces eg = Tpn-3%n-2 and s = n—2. But
then, since n > 10, S’ = {z2,23,zo—3} is a natural cut, in contradiction to Lemma
1. Hence S isolates Rs and so we have a jumper from z» to z, with z,, € Rg.
Because of that jumper t # 1 and so, as with s, we have ¢ > j. But by Lemma
3, Ry cannot be isolated by T so we must have ¢ = 4, ¢{ = j and, by Lemma 1,
€R = Tn-3Tn-2 € [Ti,z;]. But now, by the symmetric version of Lemma 5, we
have j =n — 1. Thus s = n — 1 since s > j and Rg is isolated by S. This is a
contradiction since z,-2Z, € E(G) by Lemma 5. B

Corollary 8. Let z;,z4,2j,2, € V(P) with disjoint jumpers F; , from z; to

z, and P, ; from z, to xz;, respectively.

() Ifi<u<uv <y, if 2,741 is a good edge and if v > u + 2, then [zy, 2,
contains a contractible edge of G.

(2)Ifi < u < j < v, if T,Tys1 is a good edge and if j > u + 2, then [zy,z;]
contains a contractible edge of G.

Proof. We only prove (1) since (2) follows in a like manner.. So assume that
v > u+ 3 and that [z,,z,] contains no contractible edges. By assumption we
have a good cut, call it @, associated with x,zy,+1. And there are no bad cuts
associated with z,..1Z,49 since an associated vertex would have to be on each of
the two disjoint jumpers in the hypothesis. Thus we have cuts @ = {Zy, Tu+1,Tq}
and S = {Ty41,Tyur2,Ts}. We must have s € [1,4] U [j, n] and since the two cases
are similar, we only consider the one with s € [1,i]. Thus Lg is isolated by S
because of the jumper P, ;. Since Lg is isolated by S, we have jumpers from
both zy41 and Zyu42 to Lg; say Pyi1, and Py, Tespectively. Note that we
can take w # z unless Lg = {z1}. Thus, if 2,1z, € E,(P) with associated cut
B = {Tn-1,Tn, T}, then we must have b > u + 2 by Lemma 4 for B and S. But
then v = n — 1 is not possible by Lemma, 1, so we have b > v and e is to the right



of Z,. er € {Tn-3Tn—2,Tn-1Zn}. Again by Theorem 6, Of course we get the same
conclusion if ep = Tn_1Zn. _

Now consider the possible values of g. By Lemma 4 for @ and S, we must
have ¢ > i because of the jumper P;,. Ifi < ¢ <u~— 1, then @ is a natural cut
because of the jumper P,z ,. Hence [z;,1,] contains the contractible edge e, so
er = z3x4 and s < ¢ < 3. But by Lemma 5, # 3 and s # 2 because of the edge
z1z3. And s # 1 since Lg is a component of G—8S. Sowedon't havei <g<u-1
either. Therefore, because of the jumpers P42 . and P; ., we must have ¢ > v with
Rg a component of G — @ and with jumpers from z, and @441 to Rg. Thus, by
Lemma ACH, we can take the cut associated with z,12Z4+3 to be a good one, say
T ={Zyi, Tut3: Tt}

But now, because of these jumpers and Lemma 4 for S and T', we cannot have
t < u. And we can’t have u < t < v by Lemma 1 since in that case T would be a
natural cut because of the jumper P; ,. Moreover, we can’t have ¢t > j by Lemma 4
for Q and T. Thus v < t < j. But such a t doesn’t give a cut! That completes the

proof of (1). [ ]

PROOF OF THE THEOREM

Suppose that G is a 3-connected graph containing a longest path with precisely
two contractible edges and consider a qualifying diameter P = (z1,Z2," - , T ) with
n > 10. We shall show that P is a hamiltonian path in G.

Assume that P is not a hamiltonian path and let z; be the first vertex from
the left that has a neighbour not in P; that is, N(zs) € V(P) if h < 4, while we
have a vertex v ¢ P with z;v € E(G). And since G is 3-connected, we have three
openly disjoint semi-jumpers from v to P which, by the choice of 7, we can take to
be P;, Pj and Py to z;,T; and zy, respectively, with the edge z;v as F; and with
2 <i+1<j<k—1 (the inequalities since P is a diameter). Thus, k > 7 + 4 and,
by the choice of 4, all jumpers with one endvertex in [£1, ;1] must be edges. We
also pick such v and k so that k — i is as large as possible, and after that choice we
choose j as small as possible.

Now by Lemma 5 (dg(z3) = 3 if e, = z3z4) and Theorem 6, e, is to the left
of z; and, by symmetry, ep is to the right of zx; that is, all edges in (@1, 2] are
noncontractible. Moreover, we claim that, because of the choice of i, all edges in
[x1,T:42) are good edges. For let B = {Tp, Tht1, w} be any bad cut. Then we must
have a semi-jumper from w to Lg. Thus we immediately have that all edges in
[21,2:41) are good edges. And if A = i + 1, then all semi-jumpers from w to Lp
must go to x;; thus {mi,mi+1,xi+2} is a good cut.

So let S = {zi+1,Ti+2,Ts} be a good cut. Thus, by Lemma 1, we have that S
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is an unnatural cut with s € [z1, ;] U [zk, Zn].

We first assume that s > k. If S isolates Rg, then there is a jumper from z;4;
to Rg, which contradicts Corollary 8 since k > i + 4. Hence, S is unnatural to the
left, and so s = k and j = i + 2. But there must be a jumper P’ from z,41 € S
to T, € Ms U Rg and, by Corollary 8, the only possibility is Z, = Tit3. But then
(z1,-, 24,0, Pj — Tig2, Tit1, P’ s 3;.3,--,Zy) is a longer path than P.

If s < %, then S isolates Lg. So we have edges T;41Zw and ;4 oz, with 2,2, €
Ls. Moreover, T,, # z1 or we have a longer path than P. So s > 1 and we can
take w # z; otherwise, Ls — {Zy = 2.} is contained in a component of G —
{2, s} I w, z < i—2, then, by Corollary 8, [Zmaz{w,z}> Ti+1] contains er. Hence
er = T3T4, Ty = T2 and T, = z;. But now, since z;z3 € E(G) in that case,
(’U,:L'i,.’lli,.l,"',$3,$1,$2,$i+1,li+2,"*,IL'n) is a longer path than P. But w,z <
i—2ifs <t

So we can assume that mazr{w,z} = ¢ — 1 and that s = i, that is, that
S = {z;,Tit1,Tir2} is a cut. Because of this cut we can now show that we have
a structure on [z;, )] that resembles what was called a “span” in [ACH93]. Now
from Corollary 8, the cut S, and our choice of 7, there are no jumpers from [z, zi-1]
to [zi13, Tn). Likewise , by our choice of k, there are no jumpers from [Tk+1,Tn] tO
[z1, T3] except possibly an edge z;z,, with u > k. But the latter forces k=j7+2
which in turn forces a squaring jumper over z; (or {z;,z;} is a 2-cut) resulting
in a longer path using that jumper and P; U P;. So there is no such edge. Next
we note that, because we chose j as small as possible, there are no semi-jumpers
from P; — {z;} to [zit1,7;-1]. Thus, by Corollary 8, there can be no semi-jumpers
from a vertex in Py — {v,zx} to [Zit1, Tj—3); nor one to {z;.z,z;-1} or we have a
longer path. Thus all jumpers that we now consider must be openly disjoint from
P;UP;j U Pg. So what is to prevent [z;.1, Tp] from being contained in a component
of G — {z;,z;}? By the preceding it can only be a squaring jumper from z;_; to
Tj41 or a jumper from zy to {z;-2,2;-1}. Thus, for j > i +4, the only jumpers on
[Ti+1,T;-1] are the squaring jumpers Py 442, ¢ +1 < j — 3; and each must be there
or {z;,Tg41} is a 2-cut.

Because of these squaring jumpers, we have, for j > ¢ + 3, a path @ from
Tiyz to Tipq with V(Q) = V([zsp1,z5-1]): if § = i+ 3, it is (Tiyo, Tig1); if
j o= i+4, it is (Tiy2, Pit2ita — Tita Tits, Pigsipr — Tep); if j = i+ 5,
it is (Tive, Pi2itd — Titd, Tits, Piysiss — Tigs, Pigsip1 — Tiy1), and so
on, depending on whether j — ¢ is odd or even. We also let Pr denote the path
(xi+1,xi,v, PJ = Lj, Tj+iy" ", :L‘n).

The coup de grace will come shortly by combining these paths with another
path produced by using the “leap frog technique” which is based on the following
lemma. We remind the reader that all jumpers into vertices to the left of z; are in
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fact edges by our choice of i. However, we continue to refer to them as jumpers,
since it saves us from specifying each time that they are not edges of P.

Lemma [Leap Frog]. If P, is a jumper with z; between e and z, with
t < i—1 and with no jumper from z, further to the left than z, then there is a

jumper Piy1, with u <.

Proof. Let Z = {z;,Z:+1,2,} be a cut associated with z;z¢;. Since Z is a
minimal cut the only problem situation is clearly when the only choice for Z is as
an unnatural cut to the right with z > ¢t + 1, and hence with a jumper @ from z,
to Rz. And since {z;,Z;41, Ze+2} is not a cut, there is a jumper Q3 from z, € Lz
toxy € Mz U {z,} with b >t +2 . But applying Corollary 8 to @, and @, forces
b = r, which contradicts our choice of ¢. [ ]

So suppose that we have a jumper Y’ from y € {Z;+1,Zi+2} to z; with ¢ <i—1.
Now using the Leap Frog Lemma, we will produce a path P on V([z1,zi—1]) U {y}
from y to x;_1. This will be achieved by producing two disjoint paths Y and W to
z; from y and z;_1, respectively. Since this is done by an iterative procedure, we
will let ¥ and W denote the paths at each stage. So initially we take ¥ = Y and
W = {z;—1}. Now, assuming that e, is to the left of z;, “leaping over” z; to z,
with u < t by a jumper that the Leap Frog Lemma assures us exists. If ey is to
the left of z,, then we extend Y in a like manner, that is, by “running down” P to
Tyq1 and “leaping over” z,. We continue this procedure until our current jumper
goes to the left of ey ; say for example, that it extends Y by going from zp11 to z,.
If ef = x;Ty, then a = 1 and we complete W by adding [z1, zp] to it. If ef, = z3zy4,
then by Lemma 5, z, € {z1,2z2}; if a = 1 complete W as before and, if a = 2,
complete W by adding (zp, Tp—1, -+, 23, Z1) to it while completing ¥ by adding the
edge z1x4 to it.

We are now ready te put things together.

First suppose that j = 7 + 2. So we have a jumper from ;1 to =, with ¢ < 4.
Ift =1~ 1, then (z1,22, " +,%s—1, Ti+1) followed by Pg is a longer path than P. If
t <i—1, then Py connected to Pg by the edge z;-1z; is a longer path than P.

So we try j > ¢ + 3. This time we use a jumper from z;49 to z; with ¢t <. If
t =14 — 1, then (z1, 22, -+, Ti-1, Zit2) followed by @, which in turn is followed by
Pr, gives a longer path than P. If t < 7 — 1, then we use Py, followed by @, which
in turn, is followed by Pg to get a longer path than P.

Thus, if we let A = z1, then, by the leap frog technique, we have completed the
proof of the Theorem by producing a path W from z;_; to A followed by a path ¥’
to z;4+5. This completes the proof. §

REMARK. The Leap Frog Lemma obviously applies in the more general
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setting of Hy and so, starting at one end of P and applying the above technique,
we see that all members of Hy are in fact hamiltonian. In this context, we have
examples to show that Hy # D for & > 6, but we don’t know what happens for
k=3,4and 5.

[ACHY3]

[AHO3]

[AHOY3]

[DHOS8Y]

[DHTS7]
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