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Abstract Let U, g, k and A be positive integers with u :::: k. A (k, A)-grOUp 

divisible covering design ((k, A)-GDCD) with type gU is a A-cover of pairs 

by k-tuples of a gu-set X with u holes of size g, which are disjoint and 

spanning. The covering number, C(k, A; gil), is the minimum number of 

blocks in a (k, A)-GDCD of type gUo In this paper, the detennination ofllie 

fimction C(3, A; gil) begun by [6] is completed. 

1. Introduction 

Let u, g, k and A be positive integers with U 2 k.. 

Roughly speaking, a (k, A)-group divisible covering design ((k, A)-GDCD) with 

type gU is a A-cover of pairs by k-tuples of a gu-set X with u holes of size g, which are 

disjoint and spanning. More formally, a (k, A)-GDCD of type gil is defined to be a triple 

(X, G, B) which satisfies the following properties: 

(1) G is a partition of a set X (of points) into subsets called groups or holes, 

(2) B is a set of k-subsets of X (called blocks) such that a group and a block 

contain at most one common point, 

(3) every pair of points from distinct groups occurs in at least A blocks. 

The group-type (or type) of the GDCD is the mu1tiset T = { IGI: G E G }, and it 

will be denoted by an "exponential" notation: a type 1i2f 3k ... denotes i occurrences of 1, r 

occurrences of 2, etc. 
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F or any pair e = {x, y} of points in X, let m( e) be the number of blocks in B that 

cintain e. The excess of the GDCD is the multigraph spanned by all pairs e of points from 

distinct groups \vith multiplicity m( e) - Iv. 

The concept of a c~vering design with holes has played an important role in the 

discussion of various covering problems. As a general covering problem, the main problem 

here is to determine the values of the covering number C(k, A; gU), that is, the minimum 

number of blocks in a (k, Iv)-GDCD of type gU. Let 

L(k, Iv; gU) = r gu / k r Ivg(u - 1) / (k - 1) II 
where r x l denotes the least integer not less than X. It is evident that 

C(k, Iv; gU) ~ L(k, Iv; gU) (1.1) 

The lower bound (1.1) for C(k, Iv; gU) is not always best possible. In particular, we 

have the following result, which is a modification of [2, Lemma 7.2]. 

Theorem 1.1 Suppose that A(u-l)g == 0 (mod k-l) and lvu(u-l)g2 == 1 (mod k). Then C(k, 

Iv; gU) 2 L(k, A; gU) + 1. 

Theorem 1.1 and the bound (1.1) together imply that 

(1.2) 

where B(k, A; gU) is defined by B(k, A; gU) = L(k, Iv; gU) + 1 if A(u-l)g 0 (mod k -1) and 

Ivu(u -1 )g2 == 1 (mod k), and B(k, A; gU) = L(k, Iv; gU) otherwise. 

In view of (1.2), a (k, Iv)-GDCD of type gU with B(k, A; gU) blocks is said to be 

minimal. Upper bounds on C(k, A; gU) are generally given by construction of a minimal k­

GDCD of type gU. 

The first author [6] has proved that C(3, 1; gU) = B(3, 1; gU) for all positive integers 

g and u 2 3 with the possible exception of the pairs (g, u) E {(7, 8), (11, 14)}. In this 

paper, we will remove these two exceptional pairs and show that C(3, A; gU) = B(3, Iv; gU) 

for all positive integers g, A 2 2 and u 2 3. Thus the determination of the function C(3, Iv; 

gU) is completed. 
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We use as our standard design theory reference Beth, Jungnickei and Lenz [1]. 

Following Hanani [2] we denote by B(K, Iv; v) a pairwise balanced design (PBD) of order 

v with block sizes from K and index Iv. By (K, Iv)-GDD we mean a group divisible design 

(GDD) with block sizes from K and index Iv. As usual, we use 'exponential' notation to 

describe the type of a GDD. We simply write k for K whenever K = {k}. Using this 

notation, a PBD B(k, Iv; v) is a balanced incomplete block design (BIBD) with parameters 

v, k and Iv. The notation B(K u {w"'}, 1; v) stands for a PBD of order v and index unity 

having blocks of sizes from K, except for one block of size w when w Il K. If w E K, then 

B(K u {w"'}, 1; v) is a PBD of order v and index unity having blocks of sizes from K 

containing at least one block of size w. A similar terminology applies to GDDs. 

If we remove one or more subdesigns from a GDD, we obtain a holey GDD 

(HGDD). In the seque~ we write (k, Iv)-HGDD for a structure (X, {Vi h~t, G, B) where 

X is a gu-set (of points), G = {Gb G2, ... , Gu } is a partition of X into u groups of g points 

each, {Y b Y 2, ... , Yt } is a partition of X into t holes, each hole Yi (1 :::; i s t) is a set of uhi 

points such that IYi n Gjl = ~ for 1 s j s U, and B is a collection of k-subsets of X (called 

blocks) such that no block contains two distinct points of any group or any hole, but any 

other pairset of points of X is contained in exactly Iv blocks of B. The pair (u, T) is referred 

to as the type of the design where T is the multiset {~: 1 :::; i :::; t}and will be denoted by an 

"exponential" notation. In the case of one hole, say Y, the HGDD (X, {V}, G, B) is called 

an incomplete group divisible design (IGDD). We denote it (k, Iv)-IGDD and write (g, h)U 

for its type where IG n YI = h for any G E G. Note that if Y 0, then the IGDD is a 

GDD. 

For all practical purpose, we record the follovving existence results. 

Theorem 1.2 [2] The necessary and sufficient condition fo~ the existence of a (3, Iv )-GDD 

of type gU are 

(l)u23; 

(2) Iv(u-l)g == 0 (mod 2); and 
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(3) A.u(u-l)g2 == ° (mod 6). 

Theorem 1.3 [4] The necessary and sufficient conditions for the existence of a (3, 11.)-

IGDD of type (g, h)U are 

(l)gz2h; 

(2) A.g(u-l) == ° (mod 2); 

(3) A.(g - h)(u - 1) == ° (mod 2); and 

(4) A.u(u - 1)(g2 - h2) == ° (mod 6). 

Theorem 1.4 [3] Let u and t be positive integers not less than 3. The necessary and 

sufficient conditions for the existence of a 3-HGDD of type (u, h~ are 

(1) A.(u -1)(t -1)h == ° (mod 2); and 

(2) A.uht(u -1)(t -1)h == ° (mod 6). 

Theorem 1.5 [5] There exists a B({3, 5*}, 1; v) for any positive integerv== 5 (mod 6). 

It is worth mentioning that the notion of a GDCD is a natural generalization of 

standard packing designs and group divisible designs. A (u, k, A.) covering design is (k, 11.)­

GDCD with type 1 u. \Vhen a (k, A. )-GDD exists, it is actually a minimal (k, A. )-GDCD.· 

2. The determinati~n for C(3, 1; 78) and C(3, 1; 1114) 

In this section, we deal with the two outstanding cases mentioned in Section 1. This 

completes the determination of the function C(3, 1; gU). 

Lemma 2.1 There exists a minimal (3, 1 )-GDCD of type 78 . 

Proof In this case, B(3, 1; 74) = L(3, 1; 74) = 467. Let the point set be X = Z56 and the 

group set be {{j, j+8, j+ 16, j+24, j+32, j+40, j+48}: j = 0, 1, ... , 7}. Then the required 

blocks are 

{a, 1, 6} (mod 56) 

{a, 2, 23} (mod 56) 

{a, 12, 39} (mod 56) 

{a, 14, 36} (mod 56) 

{a, 27, 55} 
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{a, 3, 7} (mod 56) 

{a, 11, 26} (mod 56) 

{a, 13, 38} (mod 56) 



{j, j+9, j+46} 

{j, j+28, j+46} 

{j, j+9, j+37} 

(j = 9, 10, "" 55) 

(j = 0, 1, "., 8) 

(j = 0, 1, ,." 8) 

{j+9, j+ 18, j+46} (j = 0, 1, .,., 8) 

The excess of this GDCD consists of the following 29 pairs: 

{j, .1+37} {j+9, .1+ I8} {j+28, .1+46} {O, 55} {O,27} 

wherej = 0,1, ,." 8. 0 

Lemma 2.2 There exists a minimal (3, I)-GDCD of type 1114. 

Proof In this case, B(3, 1; 1114) = L(3, 1; .11 14) = 154x24. Let the point set be X = Z154 

and the group set be {ti, .1+14, .1+28, .1+42, .'" .1+ 140}: j 0, 1, ".,/3}, Let Ho be the 

subgroup of order 77 in Z154' Then the blocks of required design are given below. 

{O, 11, 24} (mod 154) 

{O, 18, 67} (mod 154) 

{O, 22, 63} (mod 154) 

{O, 12, 44} (mod 154) 

{O, 20, 65} (mod 154) 

{O, 23, 62} (mod 154) 

{O, 15, 34} (mod 154) 

{O, 21, 64} (mod 154) 

{O, 25, 60} (mod 154) 

{O, 26, 59} (mod 154) {O, 27, 58} (mod 154) . {O, 29, 69} (mod 154) 

{O, 36, 74} (mod 154) {O, 51, I24} (mod 154) 
{O, 75, 76} (translated by Ho) {O, 2, 50} (translated by Flo) 
{I, 54, 58} (translated by Flo) {O, 6, 61} (translated by Flo) 
{O, 10, 47} (translated by Flo) {O, 8, 54} (translated by Flo) 
{O, 16, 68} (translated by Flo) 
{O, 66, 137} (translated by Flo) 
{1, 67, 76} (translated by Flo) 
{I, 17, 78} (translated by Flo) 
{I, 38, 55} (translated by Flo) 
{O, 57, 107} (translated by Flo) 
{I, 56, I09} (translated by Flo) 

{O, 5, 77} (translated by Flo) 
{I, 4, 11} (translated by Flo) 
{O, 1, 72} (translated by Flo) 
{I, 3, 8} (translated by Flo) 
{O, 3, 9} (translated by Flo) 
{1, 5, 53} (translated by Flo) 
{I, 9, 77} (translated by Flo) 

The excess of this GDCD consists of the following 77 pairs: 

ti, j+77} (j = 0, 1, ... , 76). 0 

As an immediate consequence of (1.2) and the above lemmas, we obtain the 

following. 

Corollary 2.3 If(g, u) E {(7, 8), (11, 14)}, then C(3, 1; gU) = B(3, 1; gU). 
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Combining the results in [6] and Corollary 2.3 gives the following theorem. 

Theorem 2.4 Let g and u ?: 3 be positive integers. Then C(3, 1; gU) = B(3, 1; gU) where 

B(3, 1; gU) r gu /3 r g(u - 1) /2ll. 

3. Covering numbers for 2 ::;; i.. ::;; 5 

In this section, we determine completely the covering number C(3, i..; gU) for 2 ::;; i.. 

::;; 5. We shall prove that the lower bound (1.2) on the function C(3, i..; gU) is achieved for 

all positive integer g, u?: 3 and 2 ::;; i..::;; 5. More specifically, we show the following. 

Theorem 3.1 Let g, i.. and u be positive integers satisf)ing u ?: 3 and 2 ::;; i.. ::;; 5. Then 

C(3, i..; gU) = B(3, i..; gU), in which B(3, i..; gU) = r gu /3 r i..g(u - 1) / 2ll + 1 whenever 

(1) i.. = 2, g == 1 or 2 (mod 3) and u == 2 (mod 3); 

(2) i.. 5, g == 2 or 4 (mod 6) and u == 2 (mod 3); 

(3) i.. 5, g lor 5 (mod 6) and u== 5 (mod 6), 

and B(3, i..; gU) r gu / 3 r i..g(u - 1) / 2ll otherwise. 

As already mentioned earlier, in order to prove Theorem 3.1 we need only to 

construct a minimal GDCD for each state de values of g, u and i... Note that the result for g 

= 1 in Theorem 3.1 has been proved by Hanam [2]. So, we may also assume that g ?: 2 

below. 

We now present our constructions for the required (3, i.. )-GDCDs, which split 

into four lemmas depending on the values of i... 

Lemma 3.2 For all integers g ?: 2 and u ?: 3, C(3, 2; gU) = B(3, 2; gU). 

Proof For the case where g == 1, 2 (mod 3) and u == 0, 1 (mod 3) or g == 0 (mod 3) and u ?: 

3, the results follows from Theorem 1.2 where the GDCD is exact. 

For the remaining case where g == 1, 2 (mod 3) and u 2 (mod 3), first note that 

B(3, 2; gU) = r gu / 3 rZg(u - 1) / ill + 1. The construction then is as follows. 

Start with a B({3, 5*}, 1; 2u+ 1) which exists by Theorem 1.5. Delete one point not 

belonging to the block of size 5 to create a ({3, 5*},I)-GDD of type 2U • Replace the 
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distinguished block by a minimal (3, 2)-GDCD of type 15 and take !\vo copies of all blocks 

of size 3 from the GDD. This gives a minimal (3, 2)-GDCD of type 2U whose excess 

consists of four pairs. Now we take a (3, 2)-IGDD of type (g, 2)U from Theorem 1.3 and 

fill in its hole by the above minimal (3, 2)-GDCD of type 2U to obtain the required minimal 

(3, 2)-GDCD of type gUo 0 

Lemma 3.3 For all integers g 2 2 and u 23, C(3, 3; gU) = B(3, 3; gU). 

Proof Theorem 1.2 takes care of the case where g == 0 (mod 2) and U 23 or g == 1 (mod 2) 

and u == 1 (mod 2). 

For the case where g == 1 (mod 2) and u == 0 (mod 6), note that a (3, 3)-HGDD of 

type (ll, Ig ) exists by Theorem 1.4. Replacing each of holes in a (3, 3)-HGDD of type (ll, 

Ig) by a copy of a minimal (3, 3)-GDCD of type 1 U produces the result. 

For the case where g == 1 (mod 2) and u == 4 (mod 6), a minimal (3, 3)-GDCD of 

t}-pe gU is obtained by taking a minimal (3, l)-GDCD and a (3, 2)-GDD"With type gUo 

n remains to treat the case where g == 1 (mod 2) and u == 2 (mod 6). We distinguish 

the constructions into three cases according the values of g (mod 6). 

Case 1 g == 1 (mod 6) 

In this case, the excess of a minimal (3, 3)-GDCD of type gU consists of (gu / 2) + 

2 pairs and the construction is as follows. 

(1) Take a minimal (3, 1)-GDCD of type gU from Theorem 2.4. According to the 

construction of the design, we can know that its excess contains (gu /2) + 1 pairs. We may 

also assume that !\vo disjoint pairs {b, c} and {d, e} are contained in the excess. 

(2) Take a minimal (3, 2)-GDCD of type gU constructed in Lemma 3.2, which 

contains a sub-GDCD of type 15. Assume that the sub-GDCD is based on {a, b, c, d, e}. 

Replace the sub-GDCD by the following 7 blocks: 

(a, b, e} {a, c, d} {a, c, e} {a, b, d} {b, d, e} {b, c, e} {c, d, e} 

It is readily checked that the above!\vo steps yield a minimal (3, 3)-GDCD of type gUo 

Case 2 g == 3 (mod 6) 
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In this case, a minimal (3, 3)-GDCD of type gU is obtained by taking a minimal (3, 

1)-GDCD and a (3, 2)-GDD with type gU. 

Case 3 g== 5 (mod 6) 

In this case, the procedure is the same as the above Case 1. 0 

Lemma 3.4 For all integers g 2 2 and U 2 3, C(3, 4; gU) = B(3, 4; gU). 

Proof The case where g == 1, 2 (mod 3) and u == 0, 1 (mod 3) or g == ° (mod 3) and u 2 3, 

are covered by Theorem 1.2 where the GDCD is exact. 

For the case where g == 1, 2 (mod 3) and u == 2 (mod 3), the construction is similar 

to that of Lemma 3.2, with a minor modification. A minimal (3, 4)-GDCD of type 2u is 

formed by taking four copies of all blocks of size 3 from a ({3, 5*},I)-GDD of type 2u 

and then replacing the distinguished block by a minimal (3, 4)-GDCD of type 15. Then we 

take a (3, 4)-IGDD of type (g, 2)U from Theorem 1.3 and fill in its hole by the above 

minimal (3, 4)-GDCD of type 2U to obtain the required minimal (3, 4)-GDCD of type gU. 

This completes the proof. 0 

Lemma 3.5 For all integers g 2 2 and u 2 3, C(3, 5; gU) = B(3, 5; gU). 

Proof If one of the fonowing congruences is satisfied: 

(1) g == 1, 5 (mod 6) and u == 1, 3 (mod 6); 

(2) g == 2, 4 (mod 6) and u == 0, 1 (mod 3); 

(3) g == 3 (mod 6) and u == 1 (mod 2); 

(4) g == ° (mod 6) andu 2 3, 

the results fonows from Theorem 1.2 \lv-here the GDCD is exact. 

For the case where g == 1, 5 (mod 6) and u == ° or 4 (mod 6), the required minimal 

(3, 5)-GDCD of type gU is given by taking a minimal (3, 1 )-GDCD and a (3, 4 )-GDD \vith 

the same type gU. 

For the case where g == 1 (mod 6) and u 2 (mod 6), it was shown in Theorem 1.4 

that a (3, 5)-HGDD of type (u, I~ exists. Filling in each hole of such HGDD by a 

minimal (3, 5)-GDCD of type IU produces the desired GDCD. 
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For the case where g == 5 (mod 6) and u == 2 (mod 6), the required minimal (3, 5)­

GDCD of type gU is given by taking a minimal (3, 1)-GDCD and a minimal (3, 4)-GDCD 

V\-ith the same type gU. 

For the case where g == 1, 5 (mod 6) and u == 5 (mod 6), or g == 2, 4 (mod 6) and u 

== 2 (mod 3), B(3, 2; gU) = r gu / 3 r 2g(u - 1) / 2ll +1. The required minimal (3, 5)­

GDCD of type gU is given by taking a minimal (3, 2)-GDCD and a (3, 3)-GDD with the 

same type gUo 

Finally, for the case where g == 3 (mod 6) and u 0 (mod 2), the required minimal 

(3, 5)-GDCD of type gU is obtained by taking a minimal (3, 1 )-GDCD and a (3, 4 )-GDD 

with the same type gUo 0 

4. Conclusion 

As a consequence of Theorems 2.4 and 3.1, we have 

Theorem 4.1 Let g, A and u be positive integers satisfYing u ~ 3. Then C(3, A; gU) = B(3, 

A; gU), in which B(3, A; gU) = r gu / 3 r Ag(U - 1) / 2ll +1 when one of the following 

congruences is satisfied: 

(1) A == 2 (mod 6), g == 1 or 2 (mod 3) and u == 2 (mod 3); 

(2) A == 5 (mod 6), g == 2 or 4 (mod 6) and u == 2 (mod 3); 

(3) A 5 (mod 6), g == lor 5 (mod 6) and u 5 (mod 6), 

and B(3, A; gU) rgu / 3 I/\.g(u - 1) / 2ll otherwise. 

Proof The result for A::; 5 was established in Theorems 2.4 and 3.1. For A 2 6, let A = 6m 

+ A'. In this case, a minimal (3, A )-GDCD of type gU is obtained by taking a minimal (3, 

A')-GDCD of type gU and m times a (3, 6)-GDD of type gU (for the existence of this see 

Theorem 1.2). The conclusion then follows from (1.2). 0 

69 



References 

[1] T. Beth, D. Jungnickel and H. Lenz, "Design Theory", Bibliographisches Institut, 

Zurich, 1985. 

[2] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 

(1975), 255 - 369. 

[3] R. Wei, Group divisible designs with equal-sized holes, Ars Combin. 35 (1993), 315 -

323. 

[4] D. Wu and R Wei, A note on IGDDs, J. of Suzhou Umv. 8 (1992), 142-145. 

[5] R.M.WilSon, Some partition of all triples into Steiner triple systems, Hypergraph 

seminar, Lecture Notes in Math. 411 (1974), 267 - 277, Springer-Verlag. 

[6] J. Yin, On group divisible covering designs, submitted. 

(Received 15/3/96) 

70 


