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Abstract Let u, g, k and A be positive integers with u > k. A (k, A)-group
divisible covering design ((k, A)-GDCD) with type g is a A-cover of pairs
by k-tuples of a gu-set X with u holes of size g, which are disjoint and
spanning. The covering number, C(k, A; g%, is the minimum number of
blocks in a (k, A)-GDCD of type g". In this paper, the determination of the
function C(3, A; g%) begun by [6] is completed.

1. Introduction

Letu, g, k and A be positive integers with u > k..

Roughly speaking, a (k, A)-group divisible covering design (k, M)-GDCD) with
type g@ is a A-cover of pairs by k-tuples of a gu-set X with u holes of size g, which are
disjoint and spanning. More formally, a (k, 4)-GDCD of type g* is defined to be a triple
(X, G, B) which satisfies the following properties:

(1) G is a partition of a set X (of points) into subsets called groups or holes,

(2) B is a set of k-subsets of X (called blocks) such that a group and a block
contain at most one common point,

(3) every pair of points from distinct groups occurs in at least A blocks.

The group-type (or type) of the GDCD is the multiset T = { G:G&e G}, and it
will be denoted by an "exponential" notation: a type 11213k, . denotes i occurrences of 1, r

occurrences of 2, etc.
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For any pair € = {x, y} of points in X, let m(e) be the number of blocks in B that
cintain e. The excess of the GDCD is the multigraph spanned by all pairs ¢ of points from
distinct groups with multiplicity m(e) A

The concept of a cévering dcsigﬁ with holes has played an important role m the
discussion of various covering problems. As a general covering problem, the main problem
here is to determine the values of the covering number C(k, A; gt), that is, the minimum
number of blocks in a (k, A)-GDCD of type g®. Let

Lk A g9 =lgu/k[Agu-1)/(&k-1)11
where [ x | denotes the least integer not less than x. It is evident that ,
Clk, A; g9 2 Lk, A; g% (L.1)

The lower bound (1.1) for C(k, X; g¥) is not always best possible. In particular, we
have the following result, which is a modification of [2, Lemma 7.2].

Theorem 1.1 Suppose that A(u-1)g = 0 (mod k-1) and Au(u-1)g2 = 1 (mod k). Then C(k,
A gD 2Lk, A gh + 1.
Theorem 1.1 and the bound (1.1) together imply that
Clk, A; g 2 Bk, A; g%) 1.2)
where B(k, ; g¥) is defined by B(k, A; g%) = L(k, A; g%y + 1 if A(u-1)g=0 (mod k -1) and
au(u -1)g? = 1 (mod k), and B(k, A; g%) = L(k, A; g%) otherwise.

In view of (1.2), a (k, A)-GDCD of type gt with B(k, A; g) blocks is said to be
minimal. Upper bounds on C(k, A; gV) are generally given by construction of a minimat k-
GDCD of type g

The first author [6] has proved that C(3, 1; g¥) = B(3, 1; g@) for all positive integers
g and u > 3 with the possible exception of the pairs (g, u) € {(7, 8), (11, 14)}. In this
paper, we will remove these two cxceptionai pairs and show that C(3, A; g¥) = B(3, A; g¥)
for all positive integers g, A > 2 and u > 3. Thus the determination of the function C(3, A;

g4) is completed.
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We use as our standard design theory refercnce Beth, Jungnickei and Lenz [1].
Following Hanani [2] we denote by B(K, A; v) a pairwise balanced design (PBD) of order
v with block sizes from K and index L. By (K, A)-GDD we mean a group divisible design
(GDD) with block sizes from K and index A. As usual, we use 'exponential' notation to
describe the type of a GDD. We simply write k for K whenever K = {k}. Using this
notation, a PBD B(k, A; V) is a balanced incomplete block design (BIBD) with parameters
v, kand A. The notation B(K v {w*}, 1; v) stands for a PBD of order v and index unity
having blocks of sizes from K, except for one block of size w when w ¢ K. f w € K, then
BX U {w*}, 1; v) is a PBD of order v and index unity having blocks of sizes from K
containing at least one block of size w. A similar terminology applies to GDDs.

If we remove one or more subdesigns from a GDD, we obtain a holey GDD
(HGDD). In the sequel, we write (k, A)-HGDD for a structure (X, {Y; }i<i<t» G, B) where

X is a gu-set (of points), G = {Gy, Gy, ..., Gy} is a partition of X into u groups of g points
each, {Y|, Y5, ..., Y;} is a partition of X into t holes, each hole Y; (1 <i<t)is aset of uhy
points such that [Y; N Gj = by for 1 <j<u, and Bis a collection of k-subsets of X (called
blocks) such that no block contains two distinct points of any group or any hole, but any
other pairset of points of X is contained in exactly A blocks of B. The pair (u, T) is referred
to as the type of the design where T is the multiset {h;: 1 <i < t}and will be denoted by an
"exponential” notation. In the case of one hole, say Y, the HGDD (X, {Y}, G, B) is called
an incomplete group divisible design (IGDD). We denote it (k, A)-IGDD and write (g, h)*
for its type where |G Y| = h for any G € G. Note that if Y = &, then the IGDD is a
GDD.
~ For all practical purpose, we record the following existence rcsuits.

Theorem 1.2 [2] The necessary and sufficient condition for the existence of a (3, A)-GDD
of type g@ are

(DHu=3;

(2) Mu-1)g = 0 (mod 2); and
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(3) ru(u-1)g? = 0 (mod 6).
Theorem 1.3 [4] The necessary and sufficient conditions for the existence of a (3, A)-
IGDD of type (g, )t are

(1) gz2h;

(2) Ag(u-1) = 0 (mod 2);

(3) Mg - h)(u - 1) = 0 (mod 2); and

(4) Au(u - 1)(g? - h2)y = 0 (mod 6).
Theorem 1.4 [3] Let u and t be positive integers not less than 3. The necessary and
sufficient conditions for the existence of a 3-HGDD of type (u, ht) are

(1) Mu -1)(t -1)h = 0 (mod 2); and

(2) Auht(u -1)(t -1)h = 0 (mod 6).
Theorem 1.5 [5] There exists a B({3, 5*}, 1; v) for any positive integer v = 5 (mod 6).

It is worth mentioning that the notion of 2 GDCD is a natural generalization of
standard packing designs and group divisible designs. A (u, k, A) covering design 1s &, A)-
GDCD with type 1% When a (k, A)-GDD exists, it is actually a minimal (k, 2)-GDCD.

2. The determination for C(3, 1; 78) and C(3, 1; 1114)

In this section, we deal with the two outstanding cases mentioned in Section 1. This
completes the determination of the function C(3, 1; g%).
Lemma 2.1 There exists a minimal (3, 1)-GDCD of type 78.
Proof In this case, B(3, 1; 74) = L(3, 1; 74) = 467. Let the point set be X = Zs¢ and the
group set be {{j, j+8, j+16, j+24, j+32, j+40, j+48}:j =0, 1, ..., 7}. Then the required
blocks are

£0,1,6} (mod56)  {0,3,7}  (mod 56)
£0,2,23} (mod56) {0, 11,26} (mod 56)
£0, 12, 39} (mod 56) {0, 13, 38} (mod 56)
{0, 14, 36} (mod 56)

{0, 27, 55}
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{, j+9, j+46} G=9, 10, ..., 55)
{j,j+28,j+463  (=0,1,..,8)
{, 9, j+37} G=0,1,..,8)

{j+9, j+18, j+46} (G=0,1, .., 8)
The excess of this GDCD consists of the following 29 pairs:
G, j4373 {+9, j+18} {j+28, j+46} {0, 55} {0, 27}
where j=0,1,..,8 O '
Lemma 2.2 There exists a minimal (3, 1)-GDCD of type 1114,
Proof In this case, B(3, 1; 1114 = L(3, 1; -1114) = 154x24. Let the point set be X = Z;s4
and the group set be {{j, j+14, j+28, j+42, ..., j+140}:j =0, 1, ...,/3}. Let Hy be the
subgroup of order 77 m Z154.Then the blocks of required design are given below.

{0, 11, 24} (mod 154) {0, 12, 44} (mod 154) {0, 15, 34} (mod 154)
{0, 18, 67} (mod 154) {0, 20, 65} (mod 154) {0, 21, 64} (mod 154)
{0, 22, 63} (mod 154) {0, 23, 62} (mod 154) {0, 25, 60} (mod 154)
{0, 26, 59} (mod 154) {0, 27, 58} (mod 154) {0, 29, 69} (mod 154)
£0, 36, 74} (mod 154) {0, 51, 124} (mod 154)

{0, 75, 76}  (translated by H)

{1, 54, 58} (translated by Hy)

{0, 10, 47} (translated by Hy)
{0, 16, 68} (translated by Hp)
{0, 66, 137} (translated by Hp)
{1, 67,76} (translated by Hy)
{1, 17, 78} (translated by Hy)
{1, 38, 55} (translated by H)
{0, 57, 107} (translated by Hy)
{1, 56, 109} (translated by Hy)

{0, 2, 50} (translated by Hy)
{0, 6, 61} (translated by Hy)
{0, 8, 54} (translated by Hp)
{0, 5, 77} (translated by Hy)
{1, 4, 11} (translated by Hy)
{0, 1, 72} (translated by Hy)
{1, 3,8} (translated by Hy)
{0, 3,9} (translated by Hy)
{1, 5, 53} (translated by Hy)
{1, 9, 77} (translated by Hp)

The excess of this GDCD consists of the following 77 pairs:

6,i+773G=0,1,..,76). O

As an immediate consequence of (1.2) and the above lemmas, we oﬁtain the
following.

Corollary 2.3 If (g, u) € {(7, 8), (11, 14)}, then C(3, 1; g*) = B(3, 1; g").

65




Combining the results in [6] and Corollary 2.3 gives the following theorcm.
~ Theorem 2.4 Let g and u > 3 be positive integers. Then C(3, 1; g¥) = B(3, 1; g*) where
B3, ;g% =lgu/3gu-1)/211

3. Covering numbers for 2 <A <5

In this section, we determine completely the covering number C(3, A; g¥) for 2 < A
< 5. We shall prove that the lower bound (1.2) on the function C(3, A; g¥) is achieved for
all positive integer g, u > 3 and 2 < A < 5. More specifically, we show the following.
Theorem 3.1 Let g, A and u be positive integers satisfying u > 3 and 2 < A < 5. Then
C@3, A; g% =B(3, A; gb), in which B3, A; g9 =[ gu/3[gu-1)/217+1 whenever

(HAr=2,g=10r2(mod 3)and u=2 (mod 3);

(2)A=5,g=2or 4 (mod 6) and u=2 (mod 3);

(B)A=5,g=10r5(mod 6)and u=5 (mod 6),
and B3, A; g9 = gu/3[Agu-1)/2] ] otherwise.

As already mentioned carlier, in order to prove Theorem 3.1 we need only to
construct a minimal GDCD for each statede values of g, u and A. Note that the result for g
=1 in Theorem 3.1 has been proved by Hanani [2]. So, we may also assume that g > 2
below. |

We now present our constructions for the required (3, A)-GDCDs, which split
into four lemmas depending on the values of A.

Lemma 3.2 For all integers g > 2 and u > 3, C(3, 2; g) = B(3, 2; gV.
Proof For the case where g=1, 2 (mod 3)andu=0, 1 (mod 3) or g=0 (mod 3) and u >
3, the results follows from Theorem 1.2 where the GDCD is exact.

For the remaining case where g = 1, 2 (mod 3) and u = 2 (mod 3), first note that
B3, 2; g% =[ gu/3 ng(u -1/ 2—| ] 41. The construction then is as follows.
Start with a B({3, 5*}, 1; 2u+1) which exists by Theorem 1.5. Delete one point not

belonging to the block of size 5 to create a ({3, 5*},1)-GDD of type 29. Replace the
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distinguished block by a minimal (3, 2)-GDCD of type 15 and take two copies of all blocks
of size 3 from the GDD. This gives a minimal (3, 2)-GDCD of type 2" whose excess
consists of four pairs. Now we take a (3, 2)-IGDD of type (g, 2)" from Theorem 1.3 and
fill in its hole by the above minimal (3, 2)-GDCD of type 2" to obtain the required minimal
(3, 2)-GDCD of type g¥. [

Lemma 3.3 For all integers g > 2 and u > 3, C(3, 3; gi) = B(3, 3; gb).

Proof Theorem 1.2 takes care of the case where g= 0 (mod 2) andu >3 or g =1 (mod 2)
and u =1 (mod 2).

For the case where g = 1 (mod 2) and u = 0 (mod 6), note that a (3, 3)-HGDD of
type (1, 18) exists by Theorem 1.4. Replacing each of holes in a (3, 3)-HGDD of type (u,
12 ) by a copy of a minimal (3, 3)-GDCD of type 19 produces the result.

For the case where g = 1 (mod 2) and u = 4 (mod 6), a minimal (3, 3)-GDCD of
type gl is obtained by taking a minimal (3, 1)-GDCD and a (3, 2)-GDD with type gt

It remains to treat the case where g = 1 (mod 2) and u= 2 (mod 6). We distinguish
the constructions into three cases according the values of g (mod 6).

Case 1 g=1 (mod 6)

In this case, the excess of a minimal (3, 3)-GDCD of type g@ consists of (gu / 2) +
2 pairs and the construction is as follows.

(1) Take a minimal (3, 1)-GDCD of type g" from Theorem 2.4. According to the
construction of the design, we can know that its excess contains (gu / 2) + 1 pairs. We may
also assume that two disjoint pairs {b, c} and {d, ¢} are contained in the excess.

(2) Take a minimal (3, 2)-GDCD of type g" constructed in Lemma 3.2, which
contains a sub-GDCD of type 15. Assume that the sub-GDCD is based oﬁ {a, b, c, d, e}.
Replace the sub-GDCD by the following 7 blocks:

(a, b, e} {a, ¢, d} {a, c, ¢} {a, b, d} {b, d, e} {b, c, e} {c, d, e}
It is readily checked that the above two steps yield a minimal (3, 3)-GDCD of type g®
Case2 g=3 (mod 6)
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In this case, 2 minimal (3, 3)-GDCD of type g is obtained by taking a minimal (3,
1)-GDCD and a (3, 2)-GDD with type g™
Case3 g=5 (mod 6)

In this case, the procedure is the same as the above Case 1. O
Lemma 3.4 For all integers g > 2 andu >3, C(3, 4; gV = B(@, 4; g).

Proof The case where g=1, 2 (mod 3) andu= 0,1 (mod 3)org=0(mod3)and ux3,
are covered by Theorem 1.2 where the GDCD is exact.

For the case where g = 1, 2 (mod 3) and u = 2 (mod 3), the construction is similar
to that of Lemma 3.2, with a minor modification. A minimal (3, 4)-GDCD of type 2" is
formed by taking four copies of all blocks of size 3 from a ({3, 5*},1)-GDD of type 2"
and then replacing the distinguished block by a minimal (3, 4)-GDCD of type 15. Then weé
take a (3, 4)-IGDD of type (g, 2)" from Theorem 1.3 and fill in its hole by the above
minimal (3, 4)-GDCD of type 2U to obtain the required minimal (3, 4)-GDCD of type g™
This completes the proof. O
Lemma 3.5 For all integers g > 2 and u 2 3, C(3, §; g%) = B(3, 5;’g“).

Proof If one of the following congruences is satisfied:

(1)g=1, 5(mod 6) and u =1, 3 (mod 6),

(2)g=2, 4 (mod 6) and u= 0, 1 (mod 3);

(3) g=3(mod 6) and u=1 (mod 2},

(4)g=0(mod6)andu=>3,
the results follows from Theorem 1.2 where the GDCD is exact.

For the case where g = 1, 5 (mod 6) and u = 0 or 4 (mod 6), the required minimal
(3, 5)-GDCD of type g" is given by taking a minimal (3, 1)-GDCD and a (3, 4)-GDD with
the same type g%

For the case where g = 1 (mod 6) and u = 2 (mod 6), it was shown in Theorem 1.4
that a (3, 5)-HGDD of type (u, 18) exists. Filling in each hole of such HGDD by a
minimal (3, 5)-GDCD of type 1" produces the desired GDCD.
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For the case where g = 5 (mod 6) and u = 2 (mod 6), the required minimal (3, 5)-
GDCD of type g! is given by taking a minimal (3, 1)-GDCD and a minimal (3, 4)-GDCD
with the same type g®. ,

For the case where g= 1, 5 (mod 6) and u= 5 (mod 6), or g= 2, 4 (mod 6) and u
=2 (mod 3), B3, 2; g% = gu/3[2gu-1)/2] 7 +1. The required minimal (3, 5)-
GDCD of type g@ is given by taking a minimal (3, 2)-GDCD and a (3, 3)-GDD with the
same type gl V

Finally, for the case where g = 3 (mod 6) and u = 0 (mod 2), the required minimal
(3, 5)-GDCD of type g" is obtained by taking a minimal (3, 1)-GDCD and a (3, 4)-GDD
with the same type g®. O

4. Conclusion

As a consequence of Theorems 2.4 and 3.1, we have
Theorem 4.1 Let g, A and u be positive integers satisfying uw > 3. Then C(3, A; g%) = B(3,
A; g, in which B(3, A; g¥) = [ gu/3 Dug(u -1)/ 217 +1 when one of the following
congruences is satisfied:

() A=2(mod6),g=1o0r2(mod3)and u=2 (mod3),

(2) A =5 (mod 6), g=2 or 4 (mod 6) and u =2 (mod 3);

(3)A=5(mod 6), g=1or 5 (mod 6) and u=5 (mod 6),
and B3, A; gt =[ gu/3[Ag(u-1)/2] | otherwise.
Proof The result for A < 5 was established in Theorems 2.4 and 3.1. For A > 6, let L = 6m
+ A'. In this case, a minimal (3, A)-GDCD of type g! is obtained by taking a minimal (3,
AN-GDCD of 'type g® and m times a (3, 6)-GDD of type gU (for the existence of this see
Theorem 1.2). The conclusion then follows from (1.2). 0O
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