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Abstract 

Let G be a 2-connected graph with n ?: 3 vertices such that for any 
two vertices u, v at distance two in an induced subgraph K 1,3 or P4 of 
G, the inequality d(u) + d(v) ?: IN(u) U N(v) U N(w)l- s holds for all 
w E N(u) n N(v). We prove that (i) if s = 1 and IN(u) n N(v)1 ?: 2, 
then G is hamiltonian or K p,p+1 ~ G ~ Kp + K p+1; (ii) if s = 0, then G 
is either pancyclic, or bipartite graph. This generalizes two localization 
theorems known before. 

1. Introduction 

In this paper, we consider only simple finite graphs. Our notations and terminol­
ogy follow Bondy and Murty[3]. For a graph G, let V and E denote its vertex set 
and edge set, respectively. Denote by d(u, v) the distance between u and v. K 1,3 is 
a graph with 4 vertices in which 3 vertices have degree 1 and the other has degree 
3. P4 is a path with 4 vertices. Let C be a longest cycle of G with a fixed cyclic 
orientation. For x E V (C), let x+ be the successor and x- be the predecessor of x 
in the chosen direction on C. A graph G is pancyclic, if for any integer i, 3 :::; i :::; n 
G has a cycle of length i. 

The following results are known. 
In [4], Hasratian and Khachatrian proved the following theorem: 

Theorem 1. Let G be a connected graph with n ?: 3 vertices. If d(u) + d(v) ?: 
IN(u) U N(v) U N(w)1 for any triple of vertices u, v, w with d(u, v) = 2 and w E 
N ( u) n N ( v ), then G is hamiltonian. 

Recently, Theorem 1 was generalized by the following two theorems in [1] and [2]: 
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Theorem 2[2]. Let G be a connected graph with n ~ 3 vertices. If for any two 
vertices u, v with d( u, v) = 2 the following conditions hold: 

(i) d(u) + d(v) ~ IN(u) U N(v) U N(w)l- 1 for all w E N(u) n N(v), 
(ii) IN(u) n N(v)1 ~ 2, 

then G is hamiltonian or Kp,p+l ~ G ~ Kp + K p+b where n = 2p + 1,p ~ 2 and + 
is the join operation. 

Theorem 3[1]. Under the conditions of Theorem 1, G is pancyclic. 

In this paper, we obtain the following theorems. 

Theorem 4. Let G be a 2-connected graph with n ~ 3 vertices. If for any two 
vertices u, v at distance two in an induced subgraph K 1,3 or P4 of G the following 
conditions hold: 

(i) d(u) + d(v) ~ IN(u) U N(v) U N(w)l- 1 for all w E N(u) n N(v), 
(ii) IN(u) n N(v)1 ~ 2, 

then G is hamiltonian or Kp,p+l ~ G ~ Kp + K p+1' 

Theorem 5. Let G be 2-connected graph with n ~ 3 vertices. If for any two 
vertices u, v at distance two in an induced subgraph K 1,3 or P4 of G, the inequality 
d( u) + d(v) ~ IN(u) U N(v) U N(w)1 holds for any w E N(u) n N(v), then G is either 
pancyclic or G is a bipartite graph. 

Consider the graph G1 obtained from K n - 3 and {x,y,z} by adding an edge 
set {xy,yz,yu,yv,xu,zv}, where {u,v} ~ V(Kn - 3 ). Obviously, G1 satisfies the 
conditions of Theorem 4 and Theorem 5, but does not satisfy the conditions of 
Theorems 1-3, because IN(x) n N(z)1 = 1. Notice that G is 2-connected under 
the conditions of Theorems 2-3. Therefore, Theorem 4 and Theorem 5 generalize 

. Theorem 2 and Theorem 3, respectively. Also we have the following consequence: 

Corollary 1. Let G be a 2-connected graph. If G has neither K 1,3 nor P4 as induced 
subgraph, then G is pancyclic unless G is a cycle with four vertices. 

Notice that if G is Kl,3-free, then for any u, v E V with d(u, v) = 2, we have 
d(u) + d(v) ~ IN(u) U N(v) U N(w)l- 1 for any w E N(u) n N(v). Thus we have 

Corollary 2. Let G be a 2-connected, Kl,3-free graph. If for any two vertices u,v 
at distance two in an induced subgraph P4 of G, IN(u) n N(v)1 ~ 2, then G is 
hamiltonian. 

Corollary 2 generalizes a result of Shi [5]. 

Corollary 3[5]. Let G be a 2-connected, Kl,3-free graph. If for any pair of vertices 
u, v at distance two in G, IN(u) n N(v)1 ~ 2, then G is hamiltonian. 

2. The Proof of Theorem 4 

By contradiction, let G be a nonhamiltonian graph that satisfies the conditions 
of Theorem 4. Clearly, G contains a cycle, since G is 2-connected. Take C a longest 
cycle with a fixed cyclic orientation. Set R = G \ C, then R =f. 0. Since G is 2-
connected, there exists some v in R such that N ( v) n V (C) =f. 0. Choose a vertex v 
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in R such that IN(v) n V(G)I = max{IN(v') n V(G)I : v' E R}. Let N(v) n V(G) = 
{WI,' ", Wt} (t ~ 1). If t = 1, since G is 2-connected, there is a path connecting 
WI to a vertex, say y, of V (G) \ {wd with all internal vertices in R. Choose such 
a shortest path P' = WIVI ••. VkY, where Vi E R for 1 :S i ::; k. Since G is a longest 
cycle of G and t = 1, we have k ~ 2 and wi, WI, VI, V2 are in an induced subgraph P4 

of G. Thus IN(wt) n N(Vl)1 ~ 2. By the maximality of G, N(wt) n N(Vl) ~ V(G), 
so that IN( VI) n V( G) I ~ 2 > t, a contradiction. Hence t ~ 2. Since G is a longest 
cycle, it is easy to show that for any 1 ::; i < j ::; t, w[w; tf; E, wiwj tf- E. 

Let G[x, y) denote the subpath of G from x to y (in the chosen direction). For 
G[x+, y] we also write G(x, y] and similarly, G[x, y) = G[x, y-]. Now, set Gi = 
G[Wi' Wi+1), i < t and Gt = G[Wt, WI)' Suppose w[wi E E, then W;+lWi tf; E. 
Choose Ui E V(Gi ) such that for any U E V(G(Wi' Ui]), UWi E E but utwi tf- E. If 
w[wi tf- E, set Ui = w[. Let U = {Ul, U2,' . " Ut} and W = {WI, W2, .. " Wt}. Since 
G is a longest cycle, it is easy to check that for any 1 ::; i ::; t, {v, Ui} is in an induced 
sub graph K I ,3 or P4 of G with d( v, Ui) = 2 and U U {v} is an independent set of C. 
Hence IN(v) n N(Ui) I ~ 2 for all i. 

If for some i, 1 :S i :S t, N(v) n N(Ui) n V(C \ G) =I- 0, then we can get a cycle 
longer than G. Hence we may assume that for each 1 ::; i :S t, N(v) n N(Ui) n 
V(G \ G) = 0. Thus N(v) n N(Ui) ~ W for all 1 :S i ::; t. Since {V,Ui} is in an 
induced subgraph K I ,3 or P4 of G, d(v, Ui) = 2 and Wi E N(v) n N(Ui), we have 
d(v) + d(Ui) ~ IN(v) U N(Ui) U N(wi)1 - 1 by the hypothesis of Theorem 4. Thus 
for any 1 :S i :S t, IN(v) n N(Ui)1 ~ IN(v) U N(Ui) U N(Wi)l- IN(v) U N(Ui)l- 1 = 
IN(Wi) \ (N(v) U N(Ui))I- 1. 

If IGi-il =I- 2 and w[wi tf- E, we have {v, wi}UNu(Wi) ~ N(wd \ (N(v)UN(Ui)). 
If IGi-il = 2 or w[wi E E, we have {v} U NU(Wi) ~ N(Wi) \ (N(v) U N(Ui))' Hence 
we obtain 
INu(Wi)1 + 1 + qi :S IN(Wi) \ (N(v) U N(Ui))1 ::; IN(v) n N(Ui)1 + 1 :S INw(ui)1 + 1 
for any i,l :S i :S t, where qi = 1, if IGi-11 ~ 3 and w[wi tf- E; otherwise, qi = O. 
Therefore, 

E~=I(lNu(wi)1 + qi) :S E~=IINw(ui)l. (1) 
Note that both Ef=lINu(wi)! and Ef=IINw-(Ui) I represent the number of edges 

with one end in U and the other in W. From the inequality (1), we obtain that for 
all i, 1 ::; i ::; t, qi = O. 

If there exists some i, say i = s, such that IGsl ~ 3, then wtwl E E by qi = O. 
Since G is a longest cycle of G, IGll ~ 3 and wtwi E E. For the same reason, 
we can get for any i, S - 1 ~ i ~ 2, IGil ~ 3 and W4l W;+I E E, in turn. Because 
IN(v) n N(Ui)1 ~ 2, there exists some j,2 ::; j :S s such that WjUl E E. Thus 
we can get a cycle G' = WjUIUt··· wjW;'" wlwt·· . UIWIVWj and IGI' > IGI, a 
contradiction. 

Hence IGil = 2 for all i, 1 :S i :S t. Since G is a longest cycle, there is no path 
joining two vertices of UU{ v} with all internal vertices in V( C\ G). When there exists 
a vertex v' (=I- v) E V (G \ G) such that vv' E E or UiV' E E for some 1 :S i :S t, since 
C is 2-connected and IGil = 2 for all i, we can easily get a cycle which is longer than 
G, a contradiction. Thus when V (G \ G) =I- {v}, then for any v' (=I- v) E V (G \ G) 
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we have NC(vf) ~ W. Hence there exists some j such that {v,vf}UNu(wj) ~ 
N(wj) \ (N(v) U N(uj)) and {v} U NU(Wi) ~ N(Wi) \ (N(v) U N(Ui)) for any i =f j. 
Similar to the proof of inequality (1), we obtain E~=lINu(Wi)1 + 1 ::; E~=lINw(Ui)l, 
which is impossible since both Ef=l INu(Wi) I and Ef=lINw(Ui)1 represent the number 
of edges with one end in U and the other in W. Hence V (G \ C) = {v}. 

Notice that for any i with 1 ::; i ::; t we can get a cycle Cf = WiVWi+lUiH ... Wi 
such that IC'I = ICI, Ui E V(G \ Cf) and N(Ui) n V(C') f=- 0. Using the same 
arguments as before, we can derive that N( Ui) = W for any 1 ::; i ::; t. Hence 
Kp,p+l ~ G ~ K pH + Kp and n = 2p + 1. 

Therefore, the proof of Theorem 4 is complete. 

3. The Proof of Theorem 5 

Notice that for any two distinct vertices u, v with d( u, v) = 2, if IN( u) I + IN( v)1 ~ 
IN(u)UN(v)UN(w)1, where wE N(u)nN(v), then IN(u)nN(v)1 ~ IN(w)\(N(u)u 
N(v))1 ~ 2, since {u,v} ~ (N(w) \ (N(u) U N(v))). Thus by Theorem 4, G has a 
hamiltonian cycle C, since otherwise G is a supergraph of Kp,p+l and therefore does 
not satisfy the condition of Theorem 5. If G has no C3 , then choose v E V(G) such 
that d(v) = max{d(u) : u E V(G)}. When d(v) 2, then ICI = 4, that is, G is 
bipartite. When d( v) ~ 3, then v-, v, v+ are contained in an induced subgraph K1,3 
of G. Since d(v-)+d(v+) ~ IN(v-)UN(v+)UN(v)1 and N(v)n(N(v-)UN(v+)) = 0, 
we can easily get that G is bipartite. 

Therefore, in the rest of this section, we may assume that G contains at least 
one triangle. For an integer i ~ 3, we define OJ::,Ci+1 = XIX2 ... Xi+lXI to indicate a 
cycle with Xj-lXjH E E for some 1 ::; j ::; i + 1. First we claim that G has a 0 4605 , 

Let 0 3 = XIX2X3XI be a triangle in G. By contradiction, assume that there is 
no 0 4605 in G. Since G is 2- connected, we may assume that there exist u =f 
v E V(G \ C3) such that XIU E E, X3V E E. Then uv (j. E, since otherwise we 
have a C46C5 in G, a contradiction. If U, Xl, X3, v are in an induced subgraph P4 
of G, then IN(u) n N(X3)1 ~ 2 and IN(v) n N(xdl ~ 2. When there exists some 
W E V(G)\ {Xl, X2, X3, U, v} such that W E N(u)nN(X3) or W E N(v)nN(xd, then we 
can get a 0 4605 in G, contrary to the assumption. When (V(G) \ {Xl, X2, X3, U, v}) n 
N(u) n N(X3) = 0 and (V (G) \ {XI,X2,X3,U,V}) n N(v) nN(XI) = 0, then X2U E E 
and X2V E E. Thus we can also get a 046C5, contrary to the assumption. 

If U, Xl, X3, v are not contained in an induced subgraph P4 of G, then UX3 E E or 
VXl E E, say UX3 E E. For the same reason, X2V (j. E and (V(G) \ {Xl, X2, X3, U, v}) n 
N(u)nN(v) = 0. Thus X2U E E, since otherwise, u, v, X2 are contained in an induced 
subgraph K I ,3 of G and d(u)+d(v) ::; IN(u)UN(v)UN(x3)1-1, a contradiction. Since 
G is 2-connected, we may assume that there exists some W E V(G) \ {Xl, X2, X3, U, v} 
such that uw E E. By the assumption, w, U, X3, v are contained in an induced 
subgraph P4 of G and N(v) n {Xl, X2, U, w}) = 0. Since IN(u) n N(v)1 ~ 2, there 
exists some z E V(G) \ {XI,X2,X3,W} such that zu E E and zv E E. Thus we can 
get a C4605 in G, contrary to the assumption. The final contradiction shows that 
there must be a C4605 in G. 

Now, we shall prove that if G has a Oi60i+b then G has either a 0i+160i+2 or 
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a Ci+2LCH3 for any i, n - 3 2: i 2: 4. By contradiction, assume that there exists 
some i,4 S; i ::; n - 3 such that there is neither CHI LCH2 nor CH2LCi+3 in G. 
We Choose v E V (G \ CHd such that dCHl (v) = max{ dCHl (y) : y E V (G \ CHI)}' 
Let CiLCHl XIX2'" Xi+lXl and W = N(v) n V(CHd = {WI, W2,"', Wt} in order 
around CHl. Thus we may assume that for any v' E V(G \ CHd and x E V(CHI ), 
{xv', v' x+} rz E, since otherwise, we can get a Ci+l LCH2 in G, contrary to the 
assumption. Let Uj = wj for 1 ::; j ::; t and U {UI' U2,"', Ut}. We distinquish 
the following three cases: 
Case 1. t 2: 3. 
Case 1.1. For all 1 S; j S; t, wjwj E E. 

Then WtWI fI E by the assumption. Choose U E V(C(Wt, wI)) such that UWI fI E 
but for any u' E V(C(u, WI), U'WI E E. Since IN(u+) n N(v)1 ;:::: 2, there exists some 
Z E V(G \ CHd or z E W \ {w} such that Z E N(u+) n N(v). If Z E V(G \ CHr), 
then we can get a CH2LCH3 in G. If Z E W then we can get a CHI LCH2 by t 2: 3 
in G, both are contrary to the assumption. 
Case 1.2. For all 1 S; j ::; t, wjWj fI E. 

Without loss of generality, we may assume that XIX3 E E. Thus X2V fI E. 
If XIV fI E, then X2,X3 fI U. By the assumption, U U {v} is an independent 

set of G and N(uj) n N(v) ~ W for any j,l S; j ::; t. Since d(v, Uj) = 2 and 
Wj E N(uj) n N(v), we have d(v) + d(uj) 2: IN(v) n N(uj) n N(wj)l. Thus for any 
j,l ::; j S; t, 
IN(v)nN(uj)1 ;:::: IN(v)nN(uj)nN(wj)I-IN(v)UN(uj)1 = IN(wj) \ (N(v)UN(uj))I· 
Since {v} U Nu(wj) ~ N(wj) \ (N(v) U N(uj)), we obtain 
INu(wj)1 + 1 ::; IN(wj) \ (N(v) U N(uj))1 S; IN(v) n N(uj)1 = INw(uj)1 
for any j, 1 S; j ::; t. 

Therefore, 1';;=IINv (wj)1 + t ::; 1';;=lINw(uj)l, a contradiction. 
If XIV E E, that is, WI = Xl, then set W' = W \ {wt} and U' = U \ {ut}. By the 

assumption, U2W; fI E, U' U {v} is an independent set of G and N (Uj) n N (v) ~ W 
for each j,2 ::; j ::; t. For the same reason as above, we can get that for any 
j,2 ::; j S; t, IN(v) n N(uj)1 ;:::: IN(wj) \ (N(v) U N(uj))I. Since {v, wi} U NUl (W2) ~ 
N(W2) \ (N(v) U N(U2)), we obtain . 
I NUl (w2)1 + 2 ::; IN(W2) \ (N(v) U N(U2))1 S; IN(v) n N(U2)1 S; INw(U2) I 
and for any 3 ::; j S; t we have 
I NUl (wj)1 + 1 ::; IN(wj) \ (N(v) U N(uj))1 S; IN(v) n N(uj)1 S; INw(uj)l· 

Therefore, 1';;=2INu,(wj) + t ::; 2:;=2INw(Uj) I S; 2:;=2INw'(Uj) I + (t - 1), a con­
tradiction. 
Case 1.3. There exists some j, 1 S; j S; t such that wjWj fI E, denote by W'the 
set of all such vertices of W. 

Then by the preceding proof, W \ W' "# 0. By the assumption, for all W E W', 
N(v) n N(w) n V(G \ CHd = 0. When IW'I S; t - 2, then by the assumption, 
U' = {u+ : U E W'} is an independent set of G and N(u) n N(v) E W' for any 
U E U'. Using the same method as before, we can get a contradiction. When 
IW'I = t 1, say Xl = WI E W \ W', that is, X2Xi+l E E. Set U' = U \ {ut}. Then 
by the assumption, N(uj) n N(v) ~ W for any j, 2 S; j S; t. Since u2wi fI E and 
wi fI u' U N (v), using the same method as before, we can get a contradiction. 
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Case 2. t 2, that is, W = {Wl,W2} and U = {Ul,U2}. 
Ifwtwj tt E for j = lor j = 2, then IN(v)nN(uj)1 ?:: IN(wj)\(N(Uj)uN(v))1 2:: 

3 and IN(v)nN(wj)/?:: IN(Wj) \ (N(wj)uN(v))1 ?:: 3. Thus N(v)nN(uj)nV(G\ 
CHd =I- 0 and N(v)nN(wj)nV(G\Ci+d =I- 0. Since there exists some q, 1 ::; q::; i+1 
such that Xq-lXq+l E E and {Xq-l, xq+d =I- {wj, wt}, we can get a CH26CH3 in G, 
contrary to the assumption. 

Ifwtwj E E for j = 1,2, then by the assumption, for j = 1,2 N(wt)nN(v) ~ W 
and N(wj) n N(v) ~ W. Set Yj = wj for j = 1,2. Let C 1 be the subpath of CHI 
from WI to Y2 and C2 be the subpath of CHI from W2 to Yl. Without loss of generality, 
we may assume /C21 2:: ICll· By the assumption, ICll ?:: 4, that is, ICi +11 2:: 8. 
Case 2.1. ujWj E E, j = 1 or j = 2. Say j = 1. 

If yiWl E E, then we can get a CH16CH2 = W2Y2U2Ut· .. YlUlUt··· YiWlVW2 in 
G, contrary to the assumption. If YiWl tt E, choose Z E V(Cr) such that zlWl E E 
for any Zl E CHl(Wl,Z] but Z+Wl tt E. Then by the assumption, {V,Wl,Z,Z+} 
is contained in an induced P4 of G and N(v) n N(z) E W. Since d(v, z) = 2, 
W2Z E E by the hypothesis of Theorem 5. Thus we can get a Ci +16CH2 = 
WIZ- ... UlYlYl' .. U2Y2Yi ... ZW2VWl, contrary to the assumption. 
Case 2.2. ujWj tt E for j = 1,2. For the same reason, we may assume that for 
j = 1,2, yjWj tt E. 

In this subcase, for j = 1,2, {v, Wj, Uj, uj} is contained in an induced subgraph 
P4 of G. Thus by the assumption and the hypothesis of Theorem 5, we have WlU2 E 

E, W2Ul E E and similarly, YIW2 E E and WlY2 E E. Consequently, for j = 1,2, 
N(wj) \ {v, Uj} ~ N(uj) U N(v) and N(wj) \ {v, Yj} ~ N(Yj) U N(v). Also by the 
assumption, for any vertices x+, X- in V(CHl ) \ {WI, W2}, we have x+x- tt E. Since 
/CHII ::; n - 2 and G is 2-connected, there exists some Vi =I- v E V(G \ Ci+1) such 
that N(v' ) n V(CHd =I- 0. By the choice of v, dCHl (v') ::; 2. Let x E V(CHl ) such 
that xv' E E. 

If x E V(CHl ) \ W, then by the assumption and Case 2.1, x+x- tt E. Since 
dCHl (v') ::; 2 and IN(x) \ (N(v' ) U N(x+))1 ?:: 3, N(v' ) n N(x+) n V(G \ CHd =I- 0 
by the hypothesis of Theorem 5. Similarly, N(v' ) n N(x-) n V(G \ CHr) =I- 0. Thus 
we can get a CH26CH3 in G, contrary to the assumption. 

If x Wj for j = 1 or j = 2, say j = 1, then Vi E N(Ul) U N(v). When 
Ul v' E E, then we can get a Ci+16CH2 in G, contrary to the assumption. When 
v' E N(v), then by the assumption and the hypothesis of Theorem 5, dCH1(v') = 2. 
By the preceding case, we may assume W2V' E E. Thus we can get a CH26CH3 = 
WI Ul ut ... Y2U2 ... Yl W2VV' WI, contrary to the assumption. 
Case 3. t = 1. Then by the choice of v, for any v' E V (G \ CHI), dCHl (v') ::; 1. 

If there exist some v E V(G \ CHI) and some x E V(CHl ) such that xv E E 
and x+x- tt E, then by the assumption, x, x+, x-, v are in an induced subgraph 
K 1,3 of G. Thus by the hypothesis of Theorem 5, N(v) n N(x+) n V(G \ CHI) =I- 0 
and N(v) n N(x-) n V(G \ CHI) =I- 0, since t = 1. Because there exists some j, 
1 ::; j ::; i + 1 such that Xj-lXj+1 E E and {Xj-I, xj+d =I- {x-, x+}, we can get a 
CH26CH3 in G, contrary to the assumption. Thus for any v E V(G \ CHI) and 
x E N(v) n V(CHl ), x+x- E E. Without loss of generality, let Xl E N(v) n V(CHl ). 

Since G is 2-connected, there exists a path P connecting Xl and some vertex of 
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V(CHI ) \ {xd with internal vertices in V(G \ CHI). Let P be such a shortest path 
and P = XlVI' .. VkXj, where j =1= 1 and Vi E V(G \ CHI) for any i, 1 :::; i :::; k. 
Since t = 1, we have k ~ 2. If k ~ 3, then by the choice of P, {X2' Xl, VI, V2} is 
contained in an induced subgraph P4 of G. Thus by the hypothesis of Theorem 5, 
there exists some V* E V(G \ Ci +l ) \ {VI} such that V* E N(X2) n N(VI), since t = 1 
and consequently, pI = Xl VI v* X2 is a path which is shorter than P, a contradiction. 
Hence k = 2, that is IPI = 4. We may assume P = XIVIV2X2. 

By the hypothesis of Theorem 5, there exists v* E (G \ CHd \ {X2} such that 
v* E N(X3) n N( V2)' Then {X3' X2, V2, VI} is contained in an induced subgraph P4 , 

since t = 1. Since Xi+IX2 E E, we get a CH26CH3 in G, contrary to the assumption. 
Therefore Theorem 5 is true. 
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