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Abstract

Let G be a 2-connected graph with n > 3 vertices such that for any
two vertices u,v at distance two in an induced subgraph K; 3 or P; of
G, the inequality d(u) + d(v) > |[N(u) U N(v) U N(w)| — s holds for all
w € N(u) N N(v). We prove that (i) if s = 1 and |N(u) N N(v)| > 2,
then G is hamiltonian or K41 € G C K, + Kpyy; (ii) if s = 0, then G
is either pancyclic, or bipartite graph. This generalizes two localization
theorems known before.

1. Introduction

In this paper, we consider only simple finite graphs. Our notations and terminol-
ogy follow Bondy and Murty[3]. For a graph G, let V and E denote its vertex set
and edge set, respectively. Denote by d(u,v) the distance between u and v. K3 is
a graph with 4 vertices in which 3 vertices have degree 1 and the other has degree
3. Py is a path with 4 vertices. Let C be a longest cycle of G with a fixed cyclic
orientation. For z € V(C), let 2% be the successor and z~ be the predecessor of
in the chosen direction on C. A graph G is pancyclic, if for any integer i,3<i<n
G has a cycle of length 4. :

The following results are known.

In [4], Hasratian and Khachatrian proved the following theorem:

Theorem 1. Let G be a connected graph with n > 3 vertices. If d(u) + d(v) >
|N(u) U N(v) U N(w)| for any triple of vertices u,v,w with d(u,v) = 2 and w €
N{u)N N(v), then G is hamiltonian.

Recently, Theorem 1 was generalized by the following two theorems in [1] and [2]:
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Theorem 2[2]. Let G be a connected graph with n > 3 vertices. If for any two
vertices u, v with d(u,v) = 2 the following conditions hold:

(i) d(u) + d(v) > |N(v) U N(v) U N(w)| — 1 for all w € N(u) N N(v),

(i) IN(u) N N(v)| > 2,
then G is hamiltonian or K,y C G C K, + K .1, where n = 2p+1,p > 2 and +
is the join operation.

Theorem 3[1]. Under the conditions of Theorem 1, G is pancyclic.
In this paper, we obtain the following theorems.

Theorem 4. Let G be a 2-connected graph with n > 3 vertices. If for any two
vertices u,v at distance two in an induced subgraph K;3 or P; of G the following
conditions hold:

(i) d(uw) + d(v) > |IN(v) UN(v) U N(w)| = 1 for all w € N(u) N N(v),

(i) [N (u) N N(v)] > 2,
then G is hamiltonian or K,,41 C G C K, + Kp1.

Theorem 5. Let G be 2-connected graph with n > 3 vertices. If for any two
vertices u, v at distance two in an induced subgraph K3 or Py of G, the inequality
d(u)+d(v) > |N(u) UN(v)UN(w)| holds for any w € N{u) N N(v), then G is either
pancyclic or G is a bipartite graph.

Consider the graph G; obtained from K, 3 and {z,y,z} by adding an edge
set {zy,yz,yu,yv, zu, zv}, where {u,v} C V(K,_3). Obviously, G; satisfies the
conditions of Theorem 4 and Theorem 5, but does not satisfy the conditions of
Theorems 1-3, because |N(z) N N(z)| = 1. Notice that G is 2-connected under
the conditions of Theorems 2-3. Therefore, Theorem 4 and Theorem 5 generalize
. Theorem 2 and Theorem 3, respectively. Also we have the following consequence:

Corollary 1. Let G be a 2-connected graph. If G has neither K 5 nor P, as induced
subgraph, then G is pancyclic unless G is a cycle with four vertices.

Notice that if G is K s-free, then for any u,v € V with d(u,v) = 2, we have
d(u) + d(v) > |N(u) U N(v) U N(w)| — 1 for any w € N(u) N N(v). Thus we have
Corollary 2. Let G be a 2-connected, K 3-free graph. If for any two vertices u,v
at distance two in an induced subgraph Py of G, [N(u) N N(v)| > 2, then G is
hamiltonian.

Corollary 2 generalizes a result of Shi [5].

Corollary 3[5]. Let G be a 2-connected, K 3-free graph. If for any pair of vertices
u, v at distance two in G, |N(u) N N(v)| > 2, then G is hamiltonian.

2. The Proof of Theorem 4

By contradiction, let G be a nonhamiltonian graph that satisfies the conditions
of Theorem 4. Clearly, G contains a cycle, since G is 2-connected. Take C a longest
cycle with a fixed cyclic orientation. Set R = G \ C, then R # 0. Since G is 2-
connected, there exists some v in R such that N(v) N V(C) # 0. Choose a vertex v
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in R such that |[N(v) N V(C)| = max{|[N(v') NV (C)|: v' € R}. Let N(v)NV(C) =
{wy, -,w} (¢ > 1). If t = 1, since G is 2-connected, there is a path connecting
wy to a vertex, say y, of V(C) \ {w;} with all internal vertices in R. Choose such
a shortest path P’ = wyv; -+ vy, where v; € R for 1 < i < k. Since C is a longest
cycle of G and t = 1, we have k > 2 and w{, wy, v1, vs are in an induced subgraph P,
of G. Thus |[N(w) N N(v1)| > 2. By the maximality of C, N(w{) N N(v;) C V(C),
so that [NV(v;) N V(C)| > 2 > t, a contradiction. Hence ¢ > 2. Since C is a longest
cycle, it is easy to show that for any 1 <i < j <t, w;*wf ¢ E, wiw; ¢ E.

Let C[z,y) denote the subpath of C from z to y (in the chosen direction). For
Clz™*,y] we also write C(z,y] and similarly, C[z,y) = Clz,y~]. Now, set C; =
Clwi,wi1),4 < t and C; = Clw, w;). Suppose wiw; € F, then wj,,w; ¢ E.
Choose u; € V(C;) such that for any u € V(C(w;,u)),uw; € E but ujw; ¢ E. If
wiw] € E, set u; = w;t. Let U = {ug,ug,- -+, u} and W = {wy, wy, - - -, w;}. Since
C is a longest cycle, it is easy to check that for any 1 < ¢ <¢, {v, w;} is in an induced
subgraph K3 or Py of G with d(v,u;) = 2 and U U {v} is an independent set of G.
Hence |N(v) N N(u;)| > 2 for all 1.

If for some 4, 1 < i < ¢, N(v) N N(w;) N V(G \ C) # 0, then we can get a cycle
longer than C. Hence we may assume that for each 1 < ¢ < ¢, N(v) N N(u;) N
V(G\C) =0. Thus N(v) N N(u;) C W for all 1 < 4 < ¢. Since {v,u;} is in an
induced subgraph K3 or Py of G, d(v,u;) = 2 and w; € N(v) N N(u;), we have
d(v) + d(u;) = |N(v) U N(u;) U N(w;)| — 1 by the hypothesis of Theorem 4. Thus
for any 1 < i < ¢, [N(v) N N(us)| 2 [N (o) UN(us) UN(w;)| - [N(@) U N(w)] — 1 =
IN(wi) \ (N(v) UN(w))] = 1.

If |Ci—1| # 2 and w;fw; & E, we have {v, w] }UNp(w;) € N(w;)\ (N(v)UN (w;)).
If |Ci—1| = 2 or wiw; € E, we have {v} U Ny(w;) C N(w;)\ (N(v) U N(u;)). Hence
we obtain
[No(w)] + 1+ g < [N(w) \ (V) UN@))| < IN(©) N N(w)| +1 < [Ny ()| + 1
for any 1,1 <4 < t, where ¢; = 1, if |C;_;] > 3 and w;j'w; € E; otherwise, ¢; = 0.
Therefore,

Tic(INv(wi)| + i) < Ty INw ()l (1)

Note that both T |Ny(w;)] and TF | Ny (u;)| represent the number of edges
with one end in U and the other in W. From the inequality (1), we obtain that for
alli,1<i<t, ¢ =0.

If there exists some ¢, say ¢ = s, such that |C,| > 3, then witw; € E by ¢; = 0.
Since C' is a longest cycle of G, |C;] > 3 and wiw; € E. For the same reasomn,
we can get for any 4,5 —1 >4 > 2, |Cj| > 3 and wj,w;;; € E, in turn. Because
|N(v) N N(ug)| > 2, there exists some j,2 < j < s such that w;u; € E. Thus
we can get a cycle C' = wjuuf - wywf - wiw - uwivw; and |C|' > |C), a
contradiction.

Hence |C;| = 2 for all 4,1 <4 < t. Since C is a longest cycle, there is no path
joining two vertices of UU{v} with all internal vertices in V(G\C). When there exists
a vertex v'(# v) € V(G \ C) such that vv' € E or uv' € E for some 1 < i < t, since
G is 2-connected and |C;| = 2 for all 1, we can easily get a cycle which is longer than
C, a contradiction. Thus when V(G \ C) # {v}, then for any v'(# v) € V(G \ C)
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we have Nc(v') C W. Hence there exists some j such that {v,v'} U Ny(w;) C
N(w,)\ (N(s) U N(w;)) and {v} U No(ws) € Nw) \ (N(0) U N(w)) for any i # 7.
Similar to the proof of inequality (1), we obtain T!_,|Ny(w;)| +1 < St |Nw (w)],
which is impossible since both TX, | Ny (w;)| and $¥_;| Ny (u;)| represent the number
of edges with one end in U and the other in W. Hence V(G \ C) = {v}.

Notice that for any ¢ with 1 <4 <t we can get a cycle ¢! = w;vwip1uip; - -+ w;
such that |C'| = |C|, u; € V(G \ C") and N(u;) N V(C") # 0. Using the same
arguments as before, we can derive that N(u;) = W for any 1 < ¢ < t. Hence
Kypi1 CGCKp+Kpandn=2p+1.

Therefore, the proof of Theorem 4 is complete.

3. The Proof of Theorem 5

Notice that for any two distinct vertices u,v with d(u, v) = 2, if [N (u)|+|N(v)| >
|N(u)UN(v)UN (w)|, where w € N(u)NN(v), then [N (u)NN(v)| > |N(w)\ (N (u)U
N(v))| > 2, since {u,v} C (N(w) \ (N(u) UN(v))). Thus by Theorem 4, G has a
hamiltonian cycle C, since otherwise G is a supergraph of K, and therefore does
not satisfy the condition of Theorem 5. If G has no Cj, then choose v € V(G) such
that d(v) = max{d(u) : v € V(G)}. When d(v) = 2, then |C| = 4, that is, G is
bipartite. When d(v) > 3, then v~,v,v* are contained in an induced subgraph K 3
of G. Since d(v™)+d(v*) > [N(v")UN(vT)UN(v)| and N(v)N(N (v )UN(vt)) =0
we can easily get that G is bipartite.

Therefore, in the rest of this section, we may assume that G contains at least
one triangle. For an integer 1 > 3, we define C;AC;,; = 1135 - - - 75417 to indicate a
cycle with z;_12;41 € E for some 1 < j < i+ 1. First we claim that G has a C;ACs.

Let C3 = z129z32; be a triangle in G. By contradiction, assume that there is
no C4ACs in G. Since G is 2- connected, we may assume that there exist u
v € V(G \ C3) such that z;u € E,z3v € E. Then uv ¢ E, since otherwise we
have a C4ACs in G, a contradiction. If u,z1,z3,v are in an induced subgraph P;
of G, then |N(u) N N(z3)| > 2 and |[N(v) N N(z1)| > 2. When there exists some
w € V(G)\{#1, 2, z3,u, v} such that w € N(u)NN(x3) orw € N(v)NN(x;), then we
can get a C4ACs in G, contrary to the assumption. When (V(G)\{z1, 72, 73, 4, v})N
N(u)N N(zs) =0 and (V(G) \ {21, 72, 23,u,9}) N N(v) N N(z;) = 0, then zou € E
and zov € E. Thus we can also get a C;ACs, contrary to the assumption.

If u, 1, 73, v are not contained in an induced subgraph Pj of G, then uz3 € E or
v@, € E, say uzs € E. For the same reason, z,v ¢ E and (V(GQ) \ {z1, 22, 73, u,v}) N
N(u)NN(v) = 0. Thus zou € E, since otherwise, u, v, x5 are contained in an induced
subgraph K 3 of G and d(u)+d(v) < |N(u)UN(v)UN(z3)|~1, a contradiction. Since
G is 2-connected, we may assume that there exists some w € V(G)\ {z1, 73, 73,4, v}
such that uw € E. By the assumption, w,u,zs,v are contained in an induced
subgraph Py of G and N(v) N {1, 22, u,w}) = 0. Since |N(u) N N(v)| > 2, there
exists some z € V(G) \ {21, 22, z3,w} such that zu € F and zv € E. Thus we can
get a C4AC; in G, contrary to the assumption. The final contradiction shows that
there must be a C4ACs in G.

Now, we shall prove that if G has a C;AC;y1, then G has either a C; ;AC;,5 or

?
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a Cj19ACiy3 for any i,mn — 3 > i > 4. By contradiction, assume that there exists
some i,4 < 7 < n — 3 such that there is neither C;1;AC;3 nor C;12AC;, 3 in G.
We Choose v € V(G \ Cj41) such that dc,, (v) = max{dc,,,(y) : y € V(G\ Cis1)}.
Let CiACi_H = X1xg -t Tip1 T and W = N(’U) ﬂV(C¢+1) = {wl, Wa, ", wt} in order
around C;;;. Thus we may assume that for any o' € V(G \ Ci;1) and z € V{(Ciyy),
{zv',v'z*} € E, since otherwise, we can get a C;11ACiy in G, contrary to the
assumption. Let u; = wf for 1 < j<tand U = {uy,us---,u}. We distinquish
the following three cases:

Case 1. t > 3.

Case 1.1. For all 1 < j < t, wfw; € E.

Then wiw, ¢ F by the assumption. Choose u € V(C(wy, wy)) such that vw; ¢ E
but for any v’ € V(C(u,w;), v'wy € E. Since |[N{ut) N N(v)| > 2, there exists some
z€ V(G\ Ciy1) or z € W\ {w} such that z € N(u™) " N(). If z € V(G\ Cjs1),
then we can get a C;12ACiy3in G. If z € W then we can get a C;1; AC; o by t >3
in G, both are contrary to the assumption.

Case 1.2. Forall1 < j <t, w;-'wj_ ¢ E.

Without loss of generality, we may assume that z,z3 € E. Thus z,v € E.

If ;v ¢ E, then zo,z3 ¢ U. By the assumption, U U {v} is an independent
set of G and N(u;) N N(v) € W for any j,1 < j < t. Since d(v,u;) = 2 and
w; € N(uj) N N(v), we have d(v) + d(u;) > [N(v) N N(u;) N N(w;)|. Thus for any
Hl<ist,

IN@NN ()] > [NV©) AN () AN (1) =[N () UN ()] = [N (w,)\ (N@)UN ;).
Since {v} U Ny (w,) € N(w;) \ (N(v) U N(w,)), we obtain

[Ny(w;)| +1 < [N(w;) \ (N(v) UN(uy))| < [N(@) VN (uj)| = [Nw(u;)]

forany j,1<j <t

Therefore, %_; | Ny (w;)| +t < L, |Nw(u;)|, a contradiction.

If zyv € E, that is, w; = 1, then set W' = W\ {w;} and U’ = U \ {u1}. By the
assumption, ugwy & F, U'U {v} is an independent set of G and N(u;) " N(v) C W
for each 5,2 < j < t. For the same reason as above, we can get that for any
5,27 4, IN@) AN ()] > [N () \ (N(#) UN ()] Since {v, w; } U Ny () C
N{wz) \ (N(v) U N(uz)), we obtain »

[N (wa)] +2 < [N () \ (V(0) U N (u2))] < [N(v) (1 N (u2)] < [N ()]
and for any 3 < j < t we have
[Nor(w5)] +1 < [N (w;) \ (N (o) U N ()| < [N () N (w3)] < [N (w)].

Therefore, ¥ _o|Npr (w;) +t < Zh_o|Nw (u)] < Tho|Nwe(us)| + (t = 1), a con-
tradiction.

Case 1.3. There exists some 7,1 < j < t such that wfwj“ ¢ FE, denote by W’ the
set of all such vertices of W.

Then by the preceding proof, W \ W' # §. By the assumption, for all w € W/,
N@) N Nw) N V(G\ Ciy1) = 0. When |W'| < ¢ — 2, then by the assumption,
U' = {ut : v € W'} is an independent set of G and N(u) N N(v) € W’ for any
u € U'. Using the same method as before, we can get a contradiction. When
W' =t—1,say 1 =w; € W\ W', that is, 27,41 € E. Set U' = U \ {u1}. Then
by the assumption, N(u;) N N(v) C W for any 5,2 < j < t. Since usw; ¢ E and
wy ¢ U'U N(v), using the same method as before, we can get a contradiction.
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Case 2. t =2, that is, W = {wy,wn} and U = {uy,up}.

Ifwfw; & Efor j = 1orj =2, then |[N(v)NN(u;)| > [N (w;)\(N(u;)UN(v))| >
3 and [N(v) NN (wy)| > |N(w;) \ (N(w;) UN(v))| > 3. Thus N@w)NN(u;) NV(G\
Cit1) # 0 and N(v)NN(w; )NV (G\Cit1) # 0. Since there exists some ¢,1 < g <i+l
such that 2,_17441 € E and {41, 7,41} # {wy,w;}, we can get a C;45AC;,5 in G,
contrary to the assumption.

Ifwfw; € E for j = 1,2, then by the assumption, for j = 1,2 N(wH)NN@w) cw
and N(w;) N N(v) CW. Set y; = wj for j = 1,2. Let Cy be the subpath of C;y;
from w; to y; and Cj be the subpath of C;; from w;, to y;. Without loss of generality,
we may assume |Cy| > |Cy|. By the assumption, |C;| > 4, that is, |Ciy1] > 8.

Case 2.1. ufw; € E,j=1orj=2. Sayj=1.

Ify,wy € E, then we can get a Ciy1ACi2 = wayououd - - yruguf - - yy wivw, in
G, contrary to the assumption. If y;w, € E, choose z € V(C}) such that z'w;, € E
for any 2’ € Ciyi(wi, 2] but z*w; ¢ E. Then by the assumption, {v, w1, 2,2}
is contained in an induced Py of G and N(v) N N(2) € W. Since d(v,z) = 2,
wez € E by the hypothesis of Theorem 5. Thus we can get a CiniOCiyy =
WiZ" e wYiYy c o Uolals - ZwWavws, contrary to the assumption.

Case 2.2. ujfwj ¢ E for j = 1,2. For the same reason, we may assume that for
J=12y;w; ¢ E.

In this subcase, for j = 1,2, {v, w;,u;, uf} is contained in an induced subgraph
Py of G. Thus by the assumption and the hypothesis of Theorem 5, we have wyuy €
E,wyu; € E and similarly, yyw; € E and wyy, € E. Consequently, for j = 1,2,
N(w;) \ {v,u;} € N(u;) UN(v) and N(w;) \ {v,9;} C N(y;) UN(v). Also by the
assumption, for any vertices z*,z~ in V(Ciy1) \ {w1, wy}, we have z+z~ ¢ E. Since
|Ciy1] < n—2 and G is 2-connected, there exists some v/ #v € V(G\ Ciyy) such
that N(v') N V(Ciy1) # 0. By the choice of v, dg,,, (v') < 2. Let z € V(Ci41) such
that zv' € E.

If z € V(Ciy1) \ W, then by the assumption and Case 2.1, z+z~ ¢ E. Since
deyy, (v') £ 2 and [N(z) \ (N(v") UN(z1))| > 3, N(v') N NET)NV(G\Ciyy) # 0
by the hypothesis of Theorem 5. Similarly, N(v') N N(z~) N V(G \ Ci41) # 0. Thus
we can get a Ci19ACiy3 in G, contrary to the assumption.

Itz =wjforj =1orj =2 sayj =1, then v/ € N(u1) U N(v). When
u1v' € E, then we can get a Ci11C;y, in G, contrary to the assumption. When
v" € N(v), then by the assumption and the hypothesis of Theorem 5, dg,,,(v') = 2.
By the preceding case, we may assume wov' € E. Thus we can get a Ci12ACiy3 =
wy uluf' s+ Yolig - - - Y1WeV'wy, contrary to the assumption.

Case 3. t = 1. Then by the choice of v, for any v' € V(G \ Cis1), de,,, (V) < 1.

If there exist some v € V(G \ Ci41) and some z € V(C,y,) such that zv € E
and z*z~ ¢ E, then by the assumption, z,2%,z~,v are in an induced subgraph
K3 of G. Thus by the hypothesis of Theorem 5, N(v) N N(zt) N V(G \ Ciyy) # 0
and N(v) N N(z7) N V(G \ Ciy1) # 0, since t = 1. Because there exists some Js
1 < j <i+1such that z;_;2;4; € E and {zj_1,2j41} # {z7,2*}, we can get a
Ciy2ACi43 in G, contrary to the assumption. Thus for any v € V(G \ Cy41) and
z € N(w)NV(Ciy1),z*z~ € E. Without loss of generality, let z; € N@)NV(Ciyy).

Since G is 2-connected, there exists a path P connecting z; and some vertex of
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V(Ciz1) \ {z1} with internal vertices in V(G \ Ci;1). Let P be such a shortest path
and P = xyv1 - - v, where j # 1 and v; € V(G \ Ciyy) for any 4, 1 <4 < k.
Since t = 1, we have k > 2. If kK > 3, then by the choice of P, {x3, 1, v1,v2} is
contained in an induced subgraph P; of G. Thus by the hypothesis of Theorem 5,
there exists some v* € V(G \ Ci1) \ {v1} such that v* € N(z2) N N(vy), since t =1
and consequently, P' = z1v;v*zy is a path which is shorter than P, a contradiction.
Hence k = 2, that is |P| = 4. We may assume P = 2,v1%2%5.

By the hypothesis of Theorem 5, there exists v* € (G \ Cit1) \ {z2} such that
v* € N(z3) N N(vz). Then {x3,z2,vs,v1} is contained in an induced subgraph Py,
since t = 1. Since 2,173 € E, we get a C;12ACiy3 in G, contrary to the assumption.

Therefore Theorem 5 is true.
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