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Abstract

Let G be a 2(k + 1)-connected graph of order n. It is proved that if
uwv ¢ E(G) implies that max{d(u),d(v)} > % + 2k then G contains k + 1
pairwise disjoint Hamiltonian cycles when 6(G) > 4k + 3.

1. Introduction
All graphs we consider are finite and simple. We use standard terminology and

notation from Bondy and Murty [2] except as indicated. Let G = (V(G), E(G)) be
a graph with vertex set V(G) and edge set E(G). For a subset U of V(G), G[U] is
the subgraph of G induced by U. For two disjoint subsets (resp. subgraphs) S, T of
V(G) (resp. G), put

E(S,T)={ste E(G)|s€ S,teT},

E(S,T) = {st ¢ E(G)|s € S,t € T},

Np(S) = {t € T'|t is adjacent to some vertex in S},

Nr(S) = {t € T|t is not adjacent to any vertex in S},

ar(8) = INK(S)],  dr(S) = |Ne(S)]; ]
when S = {s}, we write dr(s) and dr(s) for dr({s}) and dr({s}). Let P = uv---w
and () = zy---z be two vertex-disjoint paths of G. If uz and wz are the edges of
G, we denote by PQ the cycle P U QU {uz,wz} with a given orientation in the
order from z to z along the path Q. For a cycle C' with an given orientation and a
vertex v € V(C), we denote by v and v} the predecessor and successor of v on C,
respectively. Two Hamiltonian cycles are called disjoint when they share no common
edge, and similar terminology will be applied to disjoint paths.
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Let  be a real number. We denote by [z] the maximum integer less than or equal
to z.
The following theorem due to Geng-hua Fan [3] is well known.

Theorem A If a 2-connected graph G of order n satisfies the condition d(u, v) =
2 = maz{d(u),d(v)} > %, then G contains a Hamiltonian cycle.

The proof of Fan’s result was simplified by F.Tian [5]. In 1993, S.Zhou [6] proved
the following theorem by using the method essentially same as used by Tian.

Theorem B If a 4-connected graph G of order n satifies the condition d(u,v) =
2 = maz{d(u),d(v)} > % + 2, then G contains 2 Hamiltonian cycles.

On disjoint Hamiltonian cycles, H.Li [4] proved in 1989 the following interesting
result.

Theorem C Let n and k be positive integers such that n > 8k2 — 5, and let G
be a graph on n vertices with minimum degree § satisfying 2k +1 < 6§ < 2k + 2.
If dg(u) + dg(v) > n for any pair of nonadjacent vertices w and v, and if Iy, , I}
are integers satisfying 3 <y <ly.-+ <y < n, then G contains k disjoint cycles of
length Iy, lo, - - -, Iy, respectively. In particular, under these conditions G contains k
disjoint Hamiltonian cycles.

There are many results on Hamiltonian cycles, but few on disjoint Hamiltonian
cycles. Here we focus our attention on the study of disjoint Hamiltonian cycles in
graphs. As in [6], for a nonnegative integer k, a graph of order n is called a Fan
2k-type graph if d(u,v) = 2 implies maz{d(u),d(v)} > % +2k. In this paper, we call
a graph of order n an Ore 2k-type graph if wv ¢ E(G) implies maz{d(u), d(v)} >
% + 2k. We will prove the following Theorem.

Theorem 1 Let G be a 2(k + 1)-connected Ore 2k-type graph. If §(G) > 4k +3
then G contains k + 1 disjoint Hamiltonian cycles.

We surmise the condition §(G) > 4k+3 can be deleted, but this task is formidable.
So we pose the following conjecture.

Conjecture 1 For any nonnegative integer k, every 2(k + 1)-connected Ore 2k-
type graph contains k£ + 1 disjoint Hamiltonian cycles.

It is easy to see that the proof of Conjecture 1 will be a stepping stone in the
proof of the following conjecture 2 posed by S.Zhou in [6].

Conjecture 2 For any nonnegative integer k, every 2(k + 1)-connected Fan 2k-
type graph contains k -+ 1 disjoint Hamiltonian cycles.

We will prove Theorem 1 in section 2. As an application of the method established
in section 2, we will give, in section 3, an alternative proof of Conjecture 1 for k = 1.
We attempt to explain how the method established in section 2 might be useful in
proving the conjecture 1.

2. Proof of Theorem 1
In this section, all graphs we consider are 2(k + 1)-connected Ore 2k-type. The
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following Lemmas are useful in proving our main results.

Lemma 1 If G is a Ore 2k-type graph of order n, and u,v are nonadjacent
vertices of G which satisfy min{d(u),d(v)} > § + 2k, then

(1) G+ ww is also a Ore 2k-type graph, and

(2) G contains k + 1 disjoint Hamiltonian cycles if and only if G + uv contains
k + 1 disjoint Hamiltonian cycles.

Proof. Let z and y be nonadjacent vertices in G' = G+wuv. Then max{da(z),
de(y)} > max{dg(z),da(y)} > % + 2k, so (1) is valid. For (2), let Cy,Cy, - -+, Cryy
be k + 1 disjoint Hamiltonian cycles of G + uv. We will prove that G contains k + 1

B+l
disjoint Hamiltonian cycles as well. If uv ¢ U E(C;), then C1,Cy, - - -, Ciyq are the
i=1

k+1
required cycles of G; otherwise, say wv € E(C}), then G' = G — |J E(C;) contains
1=2

a Hamiltonian path Cy — wv = z1(= )z - 2o(= v). Let
M = {zi|z13; € E(G"),2 <i<n-1},

N = {zi|z;_1z, € E(G'),3 <1 < n}.

Since z; ¢ M U N, we get that |M U N| < n — 1. On the other hand, the inequality
min{d(u),d(v)} > § + 2k implies that min{de(u),de(v)} > %. Hence we get that
| M|+ |N| = de (1) + der(xn) > n, and that M N N| = |M|+ |N| - |[MUN| > 1.

Therefore there is a vertex z; € M N N, and so G' has a Hamiltonian cycle
C} = T;41%g - - - Ti_1TpTp_1 - - - Tiy1%; disjoint from the cycles Cy, -+, Cryy. Lemma
1 is proved.

Lemma 2 Let G be a complete graph of order n. Then G contains [§] disjoint
Hamiltonian paths.

Proof. Let the vertices of G be vy, v, - -+, v,. Then the [3] Hamiltonian paths
required are

V14iVp4i¥24iUpi1* * * Ujbit1Uptinj * * " V[Z]+i+2V[2]+i+1, if n is odd,

Ul4iVptiV2+iVpti=1 * * * Vjtit1Uptizj * * U242 4i41, if 1 is even
fori=1,2,---,[5], where the subscripts are all taken modulo n.

Lemma 3 Let G be a complete graph of order n. Then G contains [%5*] disjoint
Hamiltonian cycles.

Proof. Let ugp € V(G) be a vertex of G. By Lemma 2, G — {uo} contains [25*]
disjoint Hamiltonian paths. Then the Hamiltonian cycles required are obtained from
these paths by joining the vertex uy to each end of these paths.

Now we start the proof of Theorem 1.

Let G be a complete graph of at least 2k vertices, and (u1,v1),- -, (ug, vr) be
k pairs of vertices of G. By the proof of Lemma 2, we see that G has k disjoint
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Hamiltonian paths P(u;,v;),¢ = 1,2,---,k, with w; and v;, ¢ = 1,2,---,k, as their
endvertices.

Since G is 2(k + 1)-connected, G has at least 2k + 3 vertices. By Lemma 3, we
only need to consider the case that G is not complete, and let

S = {u e V(G)|d(u) > g + 2k}

Then S # 0 since G is not complete. By Lemma 1, we may assume that G[S]
is complete. By Lemma 3, we further assume that S # V(G). Let G; = (V,, E;)
(1 < ¢ < w) denote the components of G[V '\ 5], and let

By the hypothesis that G is an Ore 2k-type graph, we have
Lemma 4 w =1 and G, is complete.
Lemma 5 |Si| > 2(k+1).

Proof. Suppose to the contrary that |S;| < 2(k+1). In view of the fact that G
is 2(k + 1)-connected, we have that S = S; since otherwise S; forms an cutset of G.

Since G is not complete, there is a vertex, say s € S, which is not adjacent to
some vertex in Vi. Since s € S, we have dg(s) > § + 2k, and then

S12 5 +2k+1-(Vl-1) = 5 + 2k - | +2,

while |S| + |Vi| = n, we get n > 4k + 4.
On the other hand, because of |S] < 2k + 1, we get

Vi|=n—|S|>4k+4—-(2k+1) =2k+3 > |S|+2.

Since Y ds(v) = ¥ dy,(s), we get |Vilmaxdg(v) > |S|mindy, (s). It follows
veWY SES vEV] s€S

from IJ%L’ —1 < 0 and minsesdy, (s) < |V3] that
. s .
max ds(v) 2 mindy (s) + (5 — 1) min dys (s)
> mindy, (s) + (5 — DVl = mipdy, (s) + |S] — [V,
but then
2+2k> {)Iéa‘})lidg(’v) ={l-1 +%éav§ds(v)
2 Vil = 1+mindy; (s) + 15| = [V = |S| = 1 + mindv; (s)

= rrggl dg(s) > % + 2k, a contradiction. Lemma 5 is proved.
§

If (V4| > 2(k + 1), then, by Lemma 5 and since G is 2(k + 1)-connected, there
are at least 2(k + 1) independent edges between S; and Vi, and by Lemma 2, G has
k + 1 disjoint Hamiltonian cycles since both G[S] and G[V4] contain k + 1 disjoint
Hamiltonian paths respectively, and so we assume in the rest of the proof that |V;| <
2k +1. Put

I = max{dg, (s)}.
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Lemma 6 n > 4k + 20+ 2.

Proof. Let s € S be a vertex of G with dg,(s) = 1. Then dg(s) =n—1-1,
together with the inequality dg(s) > % + 2k, we get n > 4k + 21 + 2.

Denote by B; the bipartite graph (S; UV, E(S1, V1)), and by M the maximum
matching of Bj, and by U; the set of vertices of M; which are in S;. Since G is
2(k + 1)-connected and |Vi| < 2(k + 1), we have that [V4| = |U;|. By Lemma 5, we
can choose W, C 51 \ Uj such that Uy UWy| = [V UW;| = 2(k +1). By Lemma 6,
we have that |[S\Wi|=n—|ViUW | >4k +20+2-2(k+1)=2k+2l > 2k+2
since G is not complete.

Let G* be the graph obtained from G by adding all edges between V; and W)
which are not in E{V;, W1) to G such that G*[V; U W1] is complete.

We now consider the induced subgraphs G*[S'\ W;] and G*[V; UW;]. By Lemma
2, G*[S\ W] contains k+1 disjoint Hamiltonian paths Py, - - -, Pyy1; and G*[V;UW,]
contains k + 1 disjoint Hamiltonian paths @, - -, Qk+1, such that P; has endvertices
either uw;, u} € Uy, or u; € Uy, s € S\ (U UWY), or s, € S\ (U1 UW;); and to which
correspond, Q; has endvertices either v;,v] € V3, or v; € Vi, w € Wy, or w,w' € Wy,
where u;v;, ujv; € My. Let C; = PQi,i=1,-+-,k+1. Then Cy,---,Cryy are k +1
disjoint Hamiltonian cycles of G*.

To prove Theorem 1, we need to construct k+ 1 disjoint Hamiltonian cycles of G
from the disjoint Hamiltonian cycles of G*. Let E; = {vw € E(Q;)|vw € E(G)},i =

- k+1. Then |E;| <2k+1,i=1,2,---,k+1. Since 6(G) > 4k + 3, we have
that dp,(v) > 2k + dw, (v) + 2 for each v € V;. Consequently, we can choose k + 1
pairwise edge-disjoint subsets Fi, Fy, - - -, Fy1; of G such that

1) F; = {vs € E(G)\ Milv € V1,s € S\ Wi, and there is a vertex w such that
vw € E(CH\ E(G)}, i=1,2,---,k+1;

2) |le = |Ei|7i: L2, k+1;

3) Every two edges in F; have no vertex of P; in common.

4) There is at most one edge in F; connecting an endvertex u of P; and a vertex
v € V; such that if vud, is not an edge of G then ug, ¢ V4, and if vYg, is not an edge
of G then ug, & V.

Let vs € F;. When vvg, ¢ E(G), we have that v#, s§, € E(G) because v, € W1.

While vg,v € E(G), we have that v, sz, € E(G) because v, € Wi.

From the argument above, we can get k + 1 Hamiltonian cycles of G, which may
have edges in common, from the &k + 1 Hamiltonian cycles of G*.

To begin with, for every integer i(1 < ¢ < k+ 1), we first choose vs € F; such
that s is an endvertex of P if possible.

If m;c ¢ E(G) then v¢ s$. € E(G) since v, and s, are vertices of S, and the
edge vg, sé is said to be A-type. If vvg, & E(G ) then vg,sg, € E(G) since vg, and
sc, are vertices of S, and the edge v, sg, is said to be A-type.

Replacing vud;, and ss¢, by vs and vf s, or vug, and ssg, by vs and vg,sg,, we
get a Hamiltonian cycle C! of G* with at least one more edge of G than C; has.

Writing C; for C, and repeating the procedure above until all edges of F; are
included in the edges of C;, we then obtained a Hamiltonian cycle C; of G.
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It is easy to see that every A-type edge has its endvertices in S.

Using the procedure above on all cycles of G*, we get k + 1 cycles, still written
Ci1,Co, -+, Cry1, of G. All A-type edges have their endvertices in S. Clearly, if an
edge is a common edge of a number of cycles, then the edge must be A-type, and so
the endvertices of it are in S.

Denote by m(Ci, - -, Cks1) the number of cycles having the edge e in common.
Put

m(Clv Tt Ck-}-l) = Z ma,x{me(Cl, Y Ck+l) - 17 0}
ecE(GQ)

If m(Cy, -+, Cks1) = 0, then Oy, - - -, Ci41 are the required Hamiltonian cycles of
G. Suppose m{Cy,-+-,Cry1) > 0.

Let uv € E(C;) be an edge belonging to two or more Hamiltonian cycles of G.
Since both u and v are vertices of S, they have degree in G at least n — [ — 1. Let

k
G'=G- Lle E(C;) + E(C;) \ {uv}. Then, by Lemma 6, we get
=1

| dG,(u)+dG,(v)zz(n—z—l—zk)22(g+2k+l+1~1—-1—2k)=n.

By the same method as that of proving Lemma 1(2), we conclude that G’ has a
Hamiltonian cycle C}. It follows that m(Ch,---,Cl,- -+, Cry1) = m(Ch, -+, Cry1) —1.

Writing C} for Cj, and repeating this procedure until m(Ch, -+, Cry1) = 0, we
get k + 1 disjoint Hamiltonian cycles of G. Theorem 1 is proved.

3. Proof of Conjecture 1 for k=1

A proof of conjecture 1 for k¥ = 1 is contained in reference [6]. Here we use
the method posed in section 2 to simplify that proof. For explicitness, we rewrite
Conjecture 1 for k = 1 as the following Theorem.

Theorem 2 Let G be a 4-connected graph. If uv ¢ F(G) = max{d(u),d(v)} >
% -+ 2, then G contains two disjoint Hamiltonian cycles.

Proof Let U;, Vi, W) and S; be defined as in section 2. That k¥ = 1 implies
Uy uWy| = [ViUW,| =4, and so 0 < |E(V1,W:)| < 2. We just consider the
case |E(Vy,W,)| = 2 since the other cases are simpler. Clearly, |Vi| > 2. Let
V1Wi, VaWy € E(‘/l, Wl) Then vy 75 Vg.

If wy # we, then C; = PyQy where Q)1 = vjwwyv, is a Hamiltonian cycle of G*,
but not of G, and Cy = Py where Qs = wyvv1w, is a Hamiltonian cycle of G. By
Lemma 7, we can construct a Hamiltonian cycle of G from the cycle C; of G*. Let
s € Pi\ {u1},t € Py \ {uz} be two vertices adjacent to v; and vy, respectively. By
Lemma 7, {s,t} % {u1, us}, say s # ug. If t lies in P(s, uy), we substitute v;s, wisg,
for ssa, viwy, and vat, wote, for ttg, , vaws to get a Hamiltonian cycle in G — E(Cy).
If ¢ lies in P(uy, sa), we substitute v, s, vat, wate, and wisg, for viwi, vaws, ssg, and
ttg, to get a Hamiltonian cycle in G — E(Ch). ;

Consegently, we assume that wy = wes = w. Then Vi = {vj,vs,v3}. Let
viw,vw € E(Vi,W1). Let Q1 = vivswvy and Qy = wsvovyw. Then C; = PQy
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and Cy = P,Q, are two disjoint Hamiltonian cycles of G*. Let s € P, be a neighbour
of v.

If s # us,then we can get two disjoint Hamiltonian cycles of G in the same way
as above.

If s = ug, then C) = Cy + {wvs, v1us} — {usvs, wv;} is a Hamiltonian cycle of G.
Let C} = C; — {vaw}. By Lemma 7, there is a vertex t € S\ (U; U W}), such that
tvy € E(G) or tvg € E(Q).

If tv, € E(G), substituting ugw, uzvs for wvs, and uf uz for uj uguy, and vat, wig,
for wv,, ttg, (if t = ug then t;, should be taken as uy), we get a Hamiltonian cycle
C! with the only one edge uju; which may be a common edge of Cf and Cj. If
uiu; € E(CY), the two disjoint Hamiltonian cycles of G are obtained. Otherwise,
by Lemma 6, we have

de-pcy(uf) + da-p(oy) (uz)
= 2n—1-2-1) 22(g+2k+l+1—l—2—1)
= n+4k—-—42>n.

By the method used to prove Lemma 1 (2), we can show that G — E(C}) contains
a Hamiltonian cycle, and so GG contains two disjoint Hamiltonian cycles.

If tvy & E(Q), then tvs € E{(G), and vou; € E(G) or vaus € E(G) (say vqu; €
E(G)). Substituting vstw for vaw, and tg tg, for tz ttE , and uyvs, uyw (if uy =t
then uy should be taken as t5, ) for vow and wyuy, we get a Hamiltonian cycle CY
with only the one edge tg,t5, which may be a common edge of Cy and Cj. Note
that t5,,t5, € S. It follows from the discussion above that G' contains two disjoint
Hamiltonian cycles of G. The proof of Theorem 2 is completed.
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