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ABSTRACT

In this paper, we show how the basis reduction algorithm of Kreher and
Radziszowski [4] can be used to construct large sets of disjoint designs
with specified automorphisms. Iu particular, we construct a (3,4,23;4)-
large set which gives rise to an infinite family of large sets of 4-designs
via a result of Teirlinck [6].

1 Introduction

Let & be a finite set of v elements called points. We denote by (’Z) the set of all
k-element subsets of X. A t-design, or more specifically, a t-(v, k, A) design, is a
pair (X, B) such that B € (’;), and every member of (’f) is contained in precisely
A members of B. The members of B are called blocks.

The divisibility conditions )\(’t'::) =0 (mod (’:::)) for 0 < 1 < t, provide
necessary conditions for the existence of a {-(v,k, ) design. For any given t, k,
and v, we denote by A*(¢, k,v) the minimum positive A that satisfies the divisibility
conditions. When there is no confusion, we simply write A* for A*(¢, k,v).

A (&, k,v; A)-partition is a partition of (:) into t-(v, k, A;) designs (X, B;) where
MeAandi =0, N ~1 If A= {)r}, wesay that the partition is a uniform
(t,k,v; A)-partition. 1L X = {X*(t, k,v)} the partition is said to be a (¢, k,v; A")-large
set. The number of designs in a (¢,k,v; A" )-large set is N = (::i)/)\*

The motivation behind this work is the example of a (2,3,9;1)-large set with the
property that each of the seven pairwise disjoint designs in the large set admits the
permutation a = (0, 8)(6,2,4,3,7,5) as an automorphismn, and that the permutation
o= (1,2,3,4,5,6,7) cyclically permutes these seven designs. Thus this large set is
given by the 2-(9,3,1) design { 024, 136, 857, 018, 235, 467, 037, 268, 415, 056, 127,
348 } and its 7 images under o.

2 Using Basis Reduction

Through out this paper let X = {0,{,...,v — 1} and let G be a subgroup of the
symmetric group Sym(X). We wish to construct a large set with G as an auto-
worphism of each of ifs members. The subgroup G acts on the subsets of X in
a natural way. If S € X and g € G, then 59 = {29 : ¢ € S}. The orbit of S
is S¢ = {57 : g € G}. Let Ay(G), Ay(G), As(G), ... An,(G) and T'4(G), T'y(G),
I's(G), .. . Tn,(G) be complete lists of all orbits of t-element and k-element subsets of
X under G respectively. For any fixed orbit representative T" of A;(G), the number
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of members K € I';(G) such that T C K is denoted by Au(G)[4,5]. This number,
Au(G)i, 7], is independent of the choice of T In [3] the following observation is
made.

A t-(v,k,A) design (X, B) exists with G as an automorphism group if and only if
there is a (U, 1)-vector U satisfying the matriz equation

Aa(GYT = A, (1)
where J = [1,1,1,...,1]T.

Of the several methods for solving equation (1), the approach taken by Kreher
and Radziszowski [4] has been particularly successful. It is described below.

Let A = {a4,...,a,,} be a set of integer valued n-dimensional vectors. The
lattice generated by A is the sel of all integer linear combinations of a4, ..., a.,, and
is denoted by L(A). We say that a;,...,a, is a basis for £(A4). The following
observation is crucial in the approach of Kreher and Radziszowski.

Awe(G)U = d - \J for some integer d if and only of [UT,0,.. .,O]T’ 18 in the

A ; , . 1 0
lattice L(M) generated by the columns M of the matriz [ An(G) —AJ ] .

Since the complement of a t-design is a t-design, we may assume, without loss
of generality, that U2 < Ni(G)/2. It follows that the length of [U70,0,...,0]"
is considerably shorter than the lengths of other vectors in L(M). Kreher and
Radziszowski developed a basis reduction algorithm that finds vectors in the latltice
£ whose lengths are as short as they can make them. In fact, their algorithm very
often finds a (0,1)-solution to Ay (G)U = AJ. Several thousand new t-designs have
been found with this algorithm [2]. ‘ '

We now return to the construction of large sets. Let G < H < Sym(X). The
fusion matriz, denoted Fi (G, H), is the Ny(H) by Ni(G) matrix defined by:

1 T'(G)CTy(H);

0 otherwise.

1G] = {

Now suppose we want to find a (£, k,v; A7)-large set of disjoint designs D =
{(X,B)li = 0,...,N — 1} such that each of the designs (X,B;), 0 <i < N —1,
has G < Sym(X) as an automorphism group. Suppose further that we want a
permutation o € Sym{X) to cyclically permute the designs in D. In particular ot
I <1 < |e], does not fix any blocks. Let H = (G, o) and consider an orbit I'y(H).
It is the union of some collection I';,(G),...,T;,(G) of orbits of k-element subsets
under G. We observe that ~

forany 1l <n <gq, and for all1 <1 < o| we have
. q, :

L (T¥(6))7" € 1) and
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2 W@ nre) =0

In

It follows that if we find a design (X, B) that contains exactly one orbit of k-element
subsets from each fusion class, then B? is disjoint from B. Hence, D = {(X, B“’)[] =
0,... (” ‘) JA* — 1} is a large set of disjoint designs. We call such large set a cyclic
large set with shifter o. The above discussion is summarize in the following theorem.

Theorewn 1 There exists a cyclic (¢, k,v; A*)-large set D with G as an automor-
phisin group and shifter o if there is a (0, 1)-vector U satisfyzng the matriz equalion

i o - [ )

where H = (G, 0).

The approach we take to solve equation (2) is to apply the basis reduction
algorithm of Kreher and Radziszowski as described earlier to the lattice generated
by the coluins of the matrix * '

I 0
M= Aw(G) —XJ
Fo(H,G)  —J

Using this method, we were able to construct a cyclic (3,5,13;15)-large set. This
large set consists of designs having G = (a, ) where

o = (1,1,2,3,4,5,6,7,8,9,10,11,12), and 8 = (1,8,12,5)(2,3,11,10)(4,6,9 7) as
an automorphism group. The orbit representatives for the blocks in one of the three
designs in the large set are listed below.

02345 01245 02456 02478 01248
01459 01269 02379 012610 024710

Applying the permutation
o =(1,3,9)(2,6,5)(4,12,10)(7,8,11)

twice generates the other two designs.

The requirement that the desired large set is cyclic is often too strong a condition
for us to be able to find a solution. In particular, this restriction yields a large set of
isomorphic designs. In this section, we propose two approaches for for finding large
sets when no additional requirements such as cyclic are made.

Tt is easy to see that constructing a (¢, k,v; A*)-large set of disjoint designs, each
witl ¢ as an automorphism group, is equivalent to partitioning the columns of the
matrix, Aw(G), into C’::) /A" classes, so that the row sums across the columns in
eaclh class is equal A", Our first approach works as follows. We find a (0,1)-vector U
solving equation (1) using the basis reduction algorithm of Kreher and Radziszowski.
The columns corresponding to the (0,1)-vector U are then removed from Ag(G).
This procedure is repeated until one of two things happeus :
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1. We get a partition of the columns of Aw(G) into classes corresponding to a
(t,k,v; A")-large set.

2. We get a partition of the columns of Ay (G) into classes corresponding to a
(¢, k,v; {27, A})-partition, A > A*.

Our second approach is again to use the basis reduction algorithm of Kreher
and Radziszowski to repeatedly generate a set S of many distinct (0,1)-vectors U
solving equation (1). This is achieved by randowly ordering the basis vectors at each
iteration so that each time after reducing the basis, different short vectors appear
in the basis. An independent set in S is a set of pairwise orthogonal vectors in S.
It is not hard to see that & contains a (¢, k, v; A")-large set if and only if there is an
independent set of size (:::)/z\* in §. We can choose S to be not too large so that
we can check S for a maximum independent set in reasonable time.

Using these two approaches, sometimes in combination, we were able to construct
the (3,4,23;4)-large set and a (4,6,14;15)-large set appearing in Table I and Table II.

The (3,4,23;4)-large set is of particular interest because of a recent result of
Teirlinck [6]. Teirlinck proved that (4,5,20u + 4; A*)-large sets exist for all positive
integers u that are relatively prime to 30 if there exists a (3,4,23;4)-large set. Hence
we now have the following theorem.

Theorem 2 There exist (4,5,20u + 4; A*)-large sets for all positive integers u that
are relatively prime to 30.

This family of (4,5, 20u + 4; A*)-large sets is one of the only two non-trivial infinite
families of (¢, k, v; A")-large sets known for t > 4.

3 Using t-Homogeneous Groups

For notation, definitions and theoremns on permutation groups the reader is directed
to the book by Wielandt |7| and also to the book by Biggs and White [1]. Here
we introduce some of the notation and concepts that are relevant to this paper. A
subgroup G < Sym(X) is said to be t-homogeneous if the orbit of any t-element
subset is all of the t-element subsets. In this case, it is easy to see that the orbit B¢
of any k-element subset, B C X', is a t-(v,k, A} design, where A = }G'(':) /{GB[(’:)
and Gp = {g € G : BY = B}. Thus, the the complete list D of all the orbits of
k-element subsets partition (:) into t-designs. In particular, if |Gg| = | for every
B C X, |B] = k, then D is a uniform (¢, k, v; A)-partition with A = ‘G}(’:)/(;’)

Given a subgroup action G < Sym(X), a permutation g € G having e; cycles of
length ¢; is said to have type ‘

type(g) = [T e
=1

We make the following observation.
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Table I A (3,4,23;4)-large set.

Group generators

a=z—z+1 (mod 23)
A=z 5z (mod 23)
Orbit representatives

design 1 | design 2 | design 3 | design 4 | design 5
013iz 13610134 ] 01230145
0138 (013130125 0135|0137
01210]01315] 0127 1(01318(01314
01321)01420{01310]01319]01 322

Table II: A (4,6,14;15)-large set.

Group generators

o=1(1,2,3,4,506,78,9,10,11,12,13)
B =(2,4,10)(3,7,6)(5,13,11)(8,9, 12)

Orbil representatives

design 1 design 2 design 3
1235810} 012345 123578 | 123456 | 123457 | 012356
012357 | 123567 | 012456 | 012347 0124571012358
1245671012468 | 012467 | 123568 (012348012368
012359012678 | 123458 | 012378012478 012469
123459 | 012459 | 123478 (012389 0123790123410
123479 | 124679 | 123569 | 124678 123789124689
123589 | 123489 | 012349 | 123579 (124789 (1235811
0123810{1234710| 124579 |1234810|1234511{1245910
012481010123411|124781010123511(1234711(1246711
123491011235611}71245611(1235711(0123712}0123412
01246111123451211234911,012391111235911(1235612
01245121124561210123512)0124612{1235712(1245712
123581211237912[11234712|10123513]1246712[1235613
1235713 1234912 1235813
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[Gp| # 1 for some k-element subset B C X if and only of there is a g € G with
type(g) = [1l., & such that k can be written as k = YU_, fic; with each f; < ¢,
1= ,[, o,

Thus, knowing the types of all the elements of 5 is sufficient to decide when the orbits
of k-clement subsets under G is a uniform (¢, k, v; A)-partition with A = [G!(’:)/(‘t’)
Using this observation, we preseut two examples.

31 =2

For this example, we consider the class of groups kuown as the affine special linear
groups. Let /¥ = GF(p") be the finite field of order v = p™, p a prime. Then the
afline special linear group of order v is

ASL(v) ={z — az +b:a,b € X and a is a nonzero square}.

It is an easy exercise to show that ASL(v) acting on X is 2-homogeneous, for v a
prime congruent to 3 modulo 4. Using elementary group theory, the distribution
of the types of elements in ASL(v) can easily be obtained. These are displayed in
Table [1I and the relevant theorem follows.

Table 11T
type(g)  Number
I 1
" v-—1

10 yg(d)

Theorem 3 Let v be a prime congruent to 8 modulo 4, 2 < k <wv, let X = GF(v)
and let D be a complete list of orbits of k-element subsets under ASL(v).

1. If ged(k,v) = ged(k(k — 1), (v~ 1)/2) = 1, then D is a uniform (2, k,v; (}))-

partition.
2. If ged(k(k — 1),v(v — 1)) = 2, then D s a (2, k, v; (’;))—large set.

Proof. Part (1) follows from the observation and part (2) adds only the condition
that ged(k — 1,v) = 1. The divisibility conditions then give \* = (’;) and thus the
result holds. g
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3.2 t=3

We now focus our attention on the projective special linear group PSLy(v), where
v = p" is a prime power. Recall that P.SLy(v) is the set of all 2 by 2 matrices over
GF(v) whose determinant is a nonzero square. It is also isomorphic to the hnear
fractional group G = LF(v) which is the set of all mappings

ar -+ b

T b
cx+d’

such that a,b,¢,d € GF(v) and ad — be is a nonzero square. If we define a/co = 0
and a/0 = co for all a € GF(v), a # 0, then it is easy to see that G acts transitively
on X = GF(v) U {oo}, the so-called projective line. ;From this representation of
PSLy(v), it is not difficult to establish the distribution of types of elements in G.
This distribution is given in Table IV for the case v =3 (mod 4).

Table IV
type(g) Number
17 i
1.p/® v?—1
12. 2(v—l)/2 (,UZ _ ’1})/2

12 do=D/2 g(d)(v® + v)/2
dOHE g(d)(v® — v)/2

By applying the Cauchy-Frobenius- Burnside lemma, it is easy to show that when
v =3 (mod 4), PSLy(v) acts 3-homogeneously on X, the projective line. Thus,
by Table IV and carelul examination of the divisibility conditions, we have

Theorem 4 Letv = p"+ 1 for some prime power p* =3  (mod 4), 3 < k < v and
let G be the representation of PSLy(v) acting on the projective line X .

1. If ged(k(k—1),p) = ged(k(k—1)(k—2),(v—1)/2) = ged(k,(v+1)/2) = 1, then
the orbits of k-element subsets of X under G form a uniform (B;k,v;B(g) )-
partition.

2. If in addition to the hypothesis of (1) we have

e I'or k even. ged(k—2,v—1) =2 and ged(k—1,v(v —1)/2) = ged(k, (v +
Dv(v—1)/2) =1
o Fork odd. ged((k — 1)(k — 2),v(v — 1)) = 2 and ged(k — 2,v — 1) =
ged(k, (v+ (v —1)/2) = 1
then the orbits of k-element subsets of X under G form a (3,/;:,'0;3(’;) }-large
set.
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the
v <

No

The applicability of theorems 3 and 4 in constructing large sets is indicated in
tables below, showing all large sets of 2-designs with v < 24 and 3-designs with
100 that are consbructed:

Table of 2-designs

2.(11,3,3)  2-(11,4,6)  2-(19,5,10)  2-(19,8,28)
2:(23,3,3)  2-(23,4,6)  2-(23,5,10)  2(23,6,15)
2-(23,7,21)  2-(23,8,28) 2-(23,9,36) 2-(23,10,45)

Table of 3-designs

3-(44,7,5)  3-(44,19,969)  3-(68,7,35)  3-(68,11,15)
3-(68,31,4495)  3-(80,19,969) 3-(80,23,1771)

te: Interested persons can get electronic access to lists of the assorted starter

blocks by sending electronic mail to D. L. Kreher or to C. J. Colbourn.
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