New infinite classes of 1-factorizations of
complete graphs

Midori Kobayashi, Nobuaki Mutoh

School of Administration and Informatics
University of Shizuoka
Yada, Shizuoka 422-8526, Japan

Gisaku Nakamura

Tokai University
Shibuya-ku, Tokyo, 151-0063, Japan

Abstract

Some classes of 1-factorizations of complete graphs are known. They
are GKy,, AKj,, WK,, and their variations, and automorphism-free
1-factorizations. In this paper, for any positive integer ¢, we construct
new l-factorizations N;K,, which are defined for all 2n with 2n > 6t¢.
They also have some variations.

1. INTRODUCTION

Let Ky, = (Van, Ea,) be the complete graph on 2n vertices. Put m = 2n — 1. A
1-factor of Ky, is a set of n edges that partition the vertex set Va,. A 1-factorization
of Ky is a set of m 1-factors that partition the set of edges Fy,.

Some 1-factorizations of K, are known [1,2,3,4]. They have been dubbed GKj,,
WKy, and AKs,. They have some variations; G'Ky,, W/ Kon, WK, WKy,
WW'K,,, WK, (Figures 1 to 10). Among these, GKa, is the most simple and
famous 1-factorization of Ky,; it is called the patterned 1-factorization.

Moreover, it is known there exists an automorphism-free 1-factorization of Ky,
(n>5) [1]. "

These 1-factorizations are defined for every 2n except a few small 2n. On the other
hand, not for every 2n, various 1-factorizations have been constructed; for example,
cyclic 1-factorizations when 2n # 2%, geometric 1-factorizations when 2n = 2F and
affine 1-factorizations when 2n = 3% + 1 ([2], p604).

In this paper, for any positive integer ¢, we construct a new 1-factorization N,Ks,
which is defined for all 2n with 2n > 6t. And we show their variations; N/Kj,,
N{ Kon, N Kon, Ny Ko, N{V" K.
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Figure 2: G'Ky
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Figure 3: AKq,
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Figure 6: WKy,
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Figure 5: WK



Figure 7: W"Kx

Figure 9: W/ Ky Figure 10: W7 (5

260




2. PRELIMINARIES

Put r = n—1. Assume the vertices are labeled as V3, = {0} U{0,1,2,---,m—1} =
{0} U Z,. Let o be the vertex permutation o = (00)(0 1 2 --- m — 1) and put
Y = (o). Then for any edge {a,b} of Ky,, we define the length of the edge with
respect to L:

min{lb_a|am_ ib—a“} (a,b;éoo)
00 (otherwise)

) =

We note that 1 < d({a,b}) < r when a,b # 0.

A starter of Z,, is a set of edges S = {{vi,w;} € Ez, | 1 < ¢ < 7} such that the
set of vertices of S is Vap \ {00,0} and d(S) = {1,2,---,r}. If S is a starter of Z,,
§' = SU{{oo,0}} is called a starter 1-factor of Kj,, and we obtain a 1-factorization
of Ky, by rotating S’ according to o, that is, 85" = {¢'S' | 0 < i < m — 1}.

For any positive integer ¢, we will construct starters of K5, in sections 3 and 4.

3. N;K,, WHEN ¢ IS ODD

Assume t is odd > 1 and 2n > 6¢. Put s = (¢ — 1)/2 and put

(1) ‘/I’:{al)aZa'">at1a'1aa"2;""a'$}7
EI = {{aluall}’ {a27al2}7 o 'a{aha;}}a

(2) ‘/I[::{blab%“"bt’ 117 ,29"'ab;}7
B = {{bb b;+1}’ {b2: b;+2}, IR {bS-H» b;}}u{{b&!-?’bll}’ {b3+31 b,2}7 Ty {bt’ bls}}’

(3) VIII = {00707017023 e )c.ﬂc/ladZ’ ot 'adg}a
EIII = {{OO, 0}7 {Cla cll}’ {C2ycl2}, ) {Csa qu}}?

(4) VrIV = {dly d21 Y dsad’pd’w Ty d{s}?
Ew = {{dlv dll}: {d27 d,2}7 R {ds’ d;}}'

(5) When r(= n — 1) is odd, put u = (r — 3¢ +2)/2, v = (r — 3t)/2. When 7 is
even, put v = v = (r — 3t + 1)/2. And put
VV; = {619627 e ,euvellae,zy R e;}a EV1 = {{el)ell}y {6276,2}7 Tty {e‘ln e‘,u}}v

VV2 = {fl: f2a . "afvaf{’ fév : '>f1lj}a EVz = {{flsf{}){f%fé}" ‘ a{fv:fzﬁ}}

We define V3, and o as follows; )

Van = {00} UV U Vi U Vi UViy Ui UV,
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and put £ = (o) (see Figure 11).

Figure 11: NyKjss

Proposition 3.1 Assume ¢ is odd > 1 and 2n > 6¢t. Then
S;=E[UEUEUERU EV; U Ey,

is a starter 1-factor of K5, with respect to ¥ = (o).

Proof. We need only show that the lengths of the edges of S; are all different.
(1) |EI] =t. d(EI) = {1$3,5y""2t_ 1}

(2) |Er| =t. Since d({by, b, 1 }) = [Virrl = L+ ([Via| + [V | + [Viv]) /2 + s + 1 =
r—1t+ 1, we have d(E[]) = {T—t+1,7‘°‘t+2,-~-,7‘},

(3) ]Eu]l =s+1. d(E[u) = {OO, 2,4,6,---,t — 1}.
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(4) |E]vl = 8. d(E]V) = {t+1,t+3,t+5,'”,2t—-2}.
We have |Ey U Erp U Erpp U Epy| = 3t, so it doesn’t depend on 2n. (Note that
we are assuming 2n > 6t.) Only Ey, and Ey, depend on 2n.

(5) |Evi| = u and |Ey,| = v. When r is odd, d(By,) = {2¢,2t + 2,2t +4,---,r — t}
and d(Bv,) = {2t + 1,2t + 3,2t +5,---,r —t — 1}
When 7 is even, d(Ev;) = {2t,2t + 2,2t + 4,---,r —t — 1} and d(Ey,) =
{2t+1,2t+3,2t+5,---,r — t}.

Therefore d(S;) = {0, 1,2,--,7}, from which it follows that S; is a starter 1-factor

of Kzn.
4. N\K,, WHEN ¢ IS EVEN

Assume t is even > 2 and 2n > 6¢. Put s = t/2 and put

(1) Vi= {alaa27 o ‘;ahallv (1,'2,'- : '104}7
Ey = {{alv a'1}5 {‘7'270’52}7 MR {aha;}}’
(2) V'II = {bOabI) b2; et 7bt~17 :)7 blla bl2a Tty b{‘.-—l}?
En = {{bOa :)}} U {{bl’ b.,s}v {bZa bg+1}1 ) {bs; bé«l}}
U{{bs+l9 bll}, {bs+2’ bl2}» Tt {bt—l? b,.s-—l}}’

(3) ‘/III = {OO, 07 C1,C2y" ", C5-1, clla 6,27 . ')Cfg—l}a

EIII = {{OO, 0}7 {Clv Cll}v {027 612}1 ftty {Cs—la c{g—l}})
(4) V}V = {dlv d27 Tty d37dl1yd,2a Tty dfg})

EIV = {{d17 dl],}y {d27 d&}) Tt {d37 d{g}}‘

(5) When r is odd, put u = v = (r —3t+1)/2. When r is even, put u = (r — 3t)/2,
v=(r—38t+2)/2. Put
VVl = {617 €2, ", Cuy, el1)6127 T 8;}, EV1 = {{61763}7 {621 6’2}) Ty {em 6;}},

VVz = {fl)f?:' ".yfvyf{vféa' . '7f1,;}; EVz = {{fhf{}a {f?zfé}v t 'a{fv: f{;}}

We define V3, and o as follows;
Van = {00} UVI UV UV UViv UV, UV,
o= (00)(fy fo-1 -+ fi

Cs—1Cs— ~r 1 0C ¢y - Cpy
bo by by -+ by_y

fifs o fy

G oy - aydl b dl

€y €y "0 €]

b

dydy_y - d)

by byp -+ b

dl d2 ds

e e €u)




and put £ = (o) (see Figure 12).
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Figure 12: Nngs

Proposition 4.1 Assume ¢ is even > 2 and 2n > 6t. Then
S = ErUE; UEnUEwy UEy UEy,
is a starter 1-factor of K5, with respect to £ = (o).

Proof. We need only show that the lengths of the edges of S; are all different.
(1) |Bf| =t. d(Er) ={1,3,5,---,2t — 1}.
(2) |Bul=t. dEyqp)={r—t+1,r—t+2,---,7}
(3) |E1r1| = s. d(Errr) = {00,2,4,6,---,t — 2}
(4) |Ev| = s d(Ev) = {t,t+2,t +4,---,2t = 2},
)

(5) |Bv,| = v and |Ey,| = v.
When r is odd, d(Ev) = {2t + 1,2t + 3,2t + 5,---,7 — t} and d(Ey,)
{(2t,2t +2,2t+4, -, r —t—1}.
When r is even, d(Ey,) = {2t + 1,2t + 3,2t +5,---,r —t — 1} and d(Ey,) =
(26,2t + 2,2t + 4,7 — t}.

Therefore d(S;) = {00,1,2,---,r}, from which it follows that S; is a starter
1-factor of Ky,.
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We denote by N;Ks,, the 1-factorization induced by S; in Proposition 3.1 and 4.1.
5. EVEN STARTERS

When the vertices are labeled as Vo, = {00,00'} U {0,1,2,--+,2n - 3} = {o0, 0’} U
Zan—2, we define an even starter.

Let o; be the vertex permutation o3 = (00)(c0’)(0 1 2 -+ 2n — 3) and put
¥; = {0,). For any edge {a,b} of K, we define the length of the edge with respect
to 215

_ [ minflb—al,@n=2)~b—al}  (a,b# 00,00
d({a,b}) = { 00 (otherwise)
We note that 1 < d({a, b}) < n— 1 when q,b # 00, 00'.

An even starter of Z, o is a set of edges T' = {{vi,w;} € Fy, | 1 <4 < n—2}
such that the set of vertices of T is Va,, \ {00, 00’, 0, a} for some a € Vs, a # oo, 00,0,
and d(T) = {1,2,---,n —2}.

If T is an even starter of Zo,_9, T = T U {{00, 0}, {c0’,a}} is called an even
starter 1-factor of Ky,. We may call o¢T' (1 < i € 2n — 3) an even starter 1-factor.
For an even starter 1-factor 7", we obtain a l-factorization of Kj, by rotating 7'
according to o; and adding the pinwheel P,

P= {{O,n—-1},{1,n},~-,{n—~2,2n—-3}},

that is, £;7" U {P} is a 1-factorization of Kj,.

Some starter 1-factors of K5, can be extended to even starter 1-factors of Konyo
([1], p48). Our starter 1-factors constructed in sections 3 and 4 can be extended to
even starter 1-factors, also (Figures 13,14). We denote the induced 1-factorizations
by N/K,, and N;'Ks,, respectively.

When ¢ > 3, N;K, has more variations N\” Kan, Ny Ky, and N,V"K,, (Fig-
ures 15 to 18).

Finally, we should mention whether the 1-factorizations constructed in this paper
are new, i.e., not isomorphic to known 1-factorizations. For example, when 2n =
20,22, the t satisfying 6t < 2n are t = 1,2,3; so Ky, has GK,y,, G'Ky,, AKoyp,
W Kony W' Kpny W K, WO Koy WO Ko, WO Ko, NiKgn, NiKpny N Ko (t =
1,2,3), NsW Ky, NaW'Ky,, NsW"K,,. It is shown that these 1-factorizations are
not isomorphic each other with the aid of a computer.

It is not easy to demonstrate in general that the 1-factorizations constructed in
this paper are new, but it is clear that there are new 1-factorizations among them
because the number of the 1-factorizaions of K5, constructed in this paper increases
as 2n increases.
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Figure 13: N}Kss

Figure 14: Ny Ksg
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Figure 15: NV K
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Figure 17: N Kyq
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