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Abstract 
The Ramsey number R(Cn or Kn- 1 , Km) is the smallest integer p such 
that every graph G on p vertices contains either a cycle en with length 
n or a K n - 1 , or an independent set of order m. In this paper we prove 
that R(Cn or K n - b K 3 ) = 2(n - 2) + 1 (n 2: 5), R(Cn or K n - 1 , K4) = 
3(n - 2) + 1 (n 2: 7). In particular, we prove that R(C4 or K 3 , K 3 ) = 6, 
R(C4 or K 3 , K4) = 8, R(C5 or K4, K 4 ) = 11 and R(C6 or K 5 , K 4) = 14. 

1. Introduction. 
We shall consider only graphs without multiple edges or loops. 
The Ramsey number R(Cn or Kn - 1 , Km) is the smallest integer p such that 

every graph G on p vertices contains either a cycle Cn with length n or a complete 
graph K n-l on n - 1 vertices, or an independent set of order m. 

In 1976, R.H. Schelp and R.J. Faudree in [2] stated the following problem: 

Problem 1.1 ([2]). Is it true that R(Cn or K n - b Km) = (n - 2)(m - 1) + 1 
(n 2: m)? 

With this problem, the aim of Schelp and Faudree was to solve the following 
problem: 

Problem 1.2 ([2]). Find the range of integers nand m such that R(Cn , Km) = 
(n - 1)(m - 1) + 1. In particular, show that the equality holds for n 2: m. 

However, we think that Problem 1.1 is more difficult than Problem 1.2. And in 
fact, the statement is false for m :::; n :::; 2(m - 1). (See Lemma 2.3 below.) 

In [3], we proved that R(Cn ,K4) = 3(n - 1) + 1 (n 2: 4). 
In this paper, we prove that R(Cn or Kn - b K 3 ) = 2(n - 2) + 1 (n 2: 5) and 

R(Cn or K n - 1,K4 ) = 3(n - 2) + 1 (n 2: 7). In particular, we prove that R(C4 or 
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K 3 , K 3 ) = 6, R(C4 or K 3 , K 4) = 8, R(C5 or K 4, K 4) = 11 and R(C6 or K5 , K4) = 
14. 

The following notation will be used in this paper. If G is a graph, the vertex 
set (resp. edge set) of G is denoted by V(G) (resp. E(G)). For x E V(G), N(x) = 
{v E V(G) I xv E E(G)} and N[x] = N(x) U {x}. If X c V(G), then (X) is the 
subgraph induced by X. We denote by a(G) the independence number of G, and 
by g(G) the girth of G. 

2. Lemmas. 

For convenience, in Lemma 1 to Lemma 3 below, we assume G is a graph that 
contains the cycle (VI, V2, ... , vn ) of length n but no cycle of length n + l. 
Lemma 2.1 ([3]). Let X ~ V(G) \ {VI, V2,'" ,vn }. Then 

(a) No vertex x E X is adjacent to two consecutive vertices on the cycle. 
(b) If x E X is adjacent to Vi and Vj, then Vi+! Vj+! rf. E( G). 
(c) If x E X is adjacent to Vi and Vj, then no vertex x' E X is adjacent to both 

Vi+! and Vj+2. 

Lemma 2.2. Let Im - I be an independent set of order m - 1 with Im - I ~ V(G) \ 
{Vl,V2,'" ,vn}. Ifn 2: 2m 3 and IN(x)n{Vl,V2,'" ,vn} 1= k, where x Elm - I , 

then k :::; m - 3. 

Proof. For x E Im - I suppose the neighbors of x on the cycle are ViI' Viz, ... ,Vik' 

By parts (a) and (b) of Lemma 2.1 we know that that {x, Vidl, ... ,VidIl is an 
independent set; hence k + 1 :::; m - 1. To prove that k ::; m - 3, suppose to 
the contrary that k = m - 2. Then 2k = 2m - 4 so since n 2: 2m - 3 we may 
put z = Vik+2, where ik + 2 =f=. i l (mod n). Then xz rf. E(G). If x'z E E(G) for 
some x' E I m-l then by part (c) of Lemma 2.1 {x, x' , ViI' ... ,Vik} is an m-element 
independent set; otherwise I m - 1 U {z} is an m-element independent set. Hence 
k::; m- 3. 0 

Corollary. If n > (m - l)(m - 3) + 1 and G contains a Cn - 1 and a vertex 
disjoint independent set Im - 1 with size m - 1, then G either contains a Cn or an 
independent set of m vertices. 

Proof. If there is no independent set of m vertices then each vertex on the Cn - 1 is 
adjacent to at least one vertex in 1m - I , But then some vertex in I m - 1 is adjacent 
to at least r (n - 1) / (m - 1) 1 2: m - 2 vertices on the cycle, contradicting Lemma 
2.2. 0 

Lemma 2.3. 
(1) R(Cn or K n- 1 , Km) 2: (n - 2)(m 1) + 1 (n 2: m). 
(2) R(Cn or K n- 1 , Km) 2: (n - 2)(m - 1) + 2 (m ::; n :::; 2(m - 1)). 

Proof. 
(1) This is trivial. 
(2) Starting with the cycle (XI,Y2,'" ,Xm-l,Ym-l,Xm ), let G be the graph 

obtained by replacing each Yi by a Kn - 3 • (Thus each vertex in the K n - 3 that 
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replaces Yi is adjacent to Xi and Xi+1') It is easy to see that G contains no K n - 1 

and a( G) ::; m - 1. If the edge XmXl is removed, then each block of the resulting 
graph has n - 1 vertices; hence there is no Cn. Any other cycle in G must use the 
edge XmXl, and then it must have length at least 2( m - 1) + 1 ::::: n + 1. 0 

Lemma 2.4 [1]. Let G be a graph on n ~ 3 vertices. If 6(G) ::::: n/2, then G either 
is pancyclic or else G = K n/2,n/2' 

3. The Ramsey number R(Cn or Kn-1,Km) for m = 3,4. 

Theorem 3.1. R(Cn or K n - b K 3 ) = 2(n - 2) + 1 (n ~ 5). 

Proof. 
Let G be a graph with order 2(n - 2) + 1. Suppose a(G) ::; 2 and suppose G 

contains neither a Cn nor a K n - 1 . 

Let X E V(G) and Vx = V(G) \ N(x). Then (Vx) is a clique of G. Since G does 
not contain a K n - 1 then IVxl ::; n - 2. Thus d(x) ~ n - 2. 

If d(x) ~ n - 1 for every x E V(G) then by Lemma 2.4 G is pancyclic, a 
contradiction. 

Thus there is a vertex x E V(G) such that d(x) ::; n - 2. (Note n ~ 5). Hence 
we have d(x) = n - 2 and (Vx ) ~ K n - 2. It is clear that there are two nonadjacent 
vertices in N(x), say Yt, Y2. Since aCG) ::; n - 2, there is a vertex ZI in Va; such 
that ZI ¢ N(YI). Thus Zl E N(Y2) since a(G) ::; 2. Similarly, there is a vertex in 
Vx , say Z2, such that Z2 ¢ N(Y2) and Z2 E N(yr). 

Thus (x, Yb Vl, V2,' .. , Vn-4, Vn-3, Y2) is a cycle of G, where VI = Zt, Vn-3 = Z2 
and {V2, V3, ... ,Vn-4} C Va; \ {Zl, Z2}, a contradiction. 

Therefore R(Cn or K n - b K 3 ) = 2(n - 2) + 1 (n ~ 5). 0 

Theorem 3.2. 
(1) R(C4 or K 3 , K 3 ) = 6. 
(2) R(C4 or K 3 , K 4 ) = 8. 
(3) R(C5 or K 4 , K 4 ) = 11. 
(4) R(C6 or K 5 , K 4 ) = 14. 

Proof· 
(1) It is clear that R(C4 or K 3,K3 ) = 6. 
(2) Suppose G is of order eight and girth at least five. We shall prove that 

a( G) ~ 4. If G is bipartite, this conclusion is immediate, so we assume that 
G contains an odd cycle. If (X) ~ 0 7 is the shortest odd cycle in G, then the 
"remaining vertex u is adjacent to at most one vertex in X. But any five-element 
subset of X contains a three-element independent set; hence {Xi,Xj,Xk,U} is an 
independent set for appropriate i, j, k. If (X) ~ C5 is the shortest odd cycle in G, 
then since {u, v, w} = V( G) \ X does not span K3 we may assume that u and v are 
nonadjacent. Since g( G) ~ 5 neither u nor v is adjacent to more than one vertex 
in X. Hence there are three vertices in X, none of which is adjacent to either u or 
v. Since G contains no K 3 , we thus find that {Xi,Xj,U,v} is an independent set 
for appropriate i, j. 
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(3) Suppose G is a graph of order eleven that contains neither C5 nor K4, and 
a(G) :::; 3. In view of the result R(C5 or K 4 , K 3 ) = 7 obtained earlier, we have 
5(G) ;::: 4. Using R(C4 , K4) = 10 as well, we may assume that 

where (Xl, X2, X3, X4) is a C4 in G and Y is an independent set. Since each ver­
tex in X is adjacent to at least one vertex in Y and G contains no C5 , there is 
no loss of generality in assuming XIYI,X3YbX2Y2 E E(G). Then X2X4 ~ E(G); 
otherwise, (Xl, Yb X3, X2, X4) is a C5 in G. Since there is no C5 in G, it is ap­
parent that X2YI ~ E(G) and X4YI ~ E(G). In the same way XIY2 ~ E(G) and 
X3Y2 ~ E(G). Since 5(G) ;::: 4, we have YIZ E E(G) for some Z E Z. Note that 
XIZ ~ E(G), Y2Z ~ E(G), ZX3 ~ E(G); otherwise G contains (Z,Xl,X2,X3,YI), 

(Z,Y2,X2,X3,YI), (Z,X3,X2,XI,YI), respectively. Now XIX3 E E(G); otherwise 
{ x I, X 3, Y2, z} is an independent set. Then x 4 Y2 ~ E ( G); otherwise G contains 
the cycle (X4,Y2,X2,XI,X3). Since X4YI ~ E(G) and X4Y2 rt. E(G), we have 
X4Y3 E E (G) and thus X3Y3 rt. E ( G). Finally, if ZY3 E E (G) then G contains 
the cycle (Z,Y3,X4,Xl,YI) and if ZY3 ~ E(G) then {X3,Y2,Y3,Z} is an independent 
set. 

(4) Suppose G is a graph of order fourteen that contains neither C6 nor K 5 , 

and a(G) :::; 3. In view of the results R(C5 , K 4 ) = 12 and R(C6 or K 5 , K 3 ) = 9, we 
may assume that X = {Xl, X2, X3, X4, X5} and Y = {Yl, Y2, Y3} are disjoint subsets 
of V(G) such that (Xl, ..• , X5) is a C5 in G and Y is an independent set. Since 
6 > (4 - 1)(4 - 3) + 1, the desired result follows from the corollary to Lemma 
2.2. 0 

Lemma. If G is a graph of order 2m having independence number a( G) < 3 and 
containing neither Km+! nor Cm+2 then G 22Km. 

Proof. In view of Bondy's theorem, we may assume that 8(G) :::; m 1. Let 
x E V(G) be a vertex of degree 8(G), and set A = N[x] and B = V(G) \ A. 
Then IBI ;::: m and (B) is complete since a(G) < 3. Since K m +1 Cf:. G, we have 
5(G) = m - 1. If (A) is complete then G 2 2Km , so let us assume u, v E A and 
uv ~ E(G). Since Km cj.. G and a(G) < 3 there are distinct vertices w, z E B 
such that uw ~ E (G) and v z ~ E ( G). Then the path w, v, X, u, z together with the 
appropriate path of length m - 2 joining wand z in (B) yields a Cm +2 C G and 
thus a contradiction. 0 

Theorem 3.3. R(Cn or K n -l,K4) = 3(n - 2) + 1 (n;::: 7). 

Proof. Suppose n ;::: 7 and G is a graph of order 3(n-2)+1 that contains neither Cn 

nor K n - l and satisfies a(G) :::; 3. Since R(Cn - b K4) = 3(n - 2) + 1 for n ;::: 5, we 
may assume that (Xl, X2, ••. , Xn-l) is a cycle in G. With X = {Xl, X2,··. ,Xn-l} 

consider the subgraph of G spanned by V (G) \ X. If this graph has independence 
number 3 then we have Cn C G or a( G) ;::: 4 by the corollary to Lemma 2.2. Hence 
the subgraph of G spanned by V(G) \ X has 2(n - 2) vertices and its independence 
number is 2. By the preceding Lemma, we thus find a partition V(G) \X = (Y, Z) 
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such that (Y) ~ (Z) ~ K n - 2 • Since (X) is not complete, we may assume that 
XIXk rf. E(G) where k :S l(n + 1)/2J. If XIV rt E(G) and XkV tf. E(G) for every 
V E Y u Z then {XI,xk,Y,Z} is a 4-element independent set for arbitrary Y E Y 
and Z E Z such that yz rf. E(G). (There must be such a z since G contains 
no K n - l .) Hence by symmetry we may assume that XIYI E E(G) and (since G 
contains no K n - l ) XIY2 rf. E(G). Note that XkYi rf. E(G) for all i =11; otherwise 
(since (n + 1)/2 + 1 :S n) there is a cycle (Xl, ... ,Xb Yi,'" ,YI) in G of length n. 
In particular, XkY2 rt E(G). We now consider two cases. 

Case (i). XkZ rt E(G) for all Z E Z. If XIZi E E(G) for some Zi E Z then 
Y2Z rt E (G) for all Z E Z; otherwise there is a cycle (Xl, YI, . " ,Y2, Z, Zi) of length 
n in G. Then since there is some Zj E Z such that XIZj rf. E(G) we find that 
{Xl,Xk,Y2,Zj} is an independent set. IfXIZ rf. E(G) for all Z E Z then we can pick 
a vertex Zj E Z such that Y2Zj rf. E(G) and then {XbXk,Y2,Zj} is an independent 
set. 

Case (ii). XkZI E E(G) and XkY2 rt E(G). By repeating an earlier argument, 
we have XIZ2 rf. E(G). IfY2Z2 rf. E(G) then {XbXk,Y2,Z2} is an independent set. 
Otherwise, (x!, ... ,Xk, Zl, ... ,Z2, Y2, " . , YI) is a cycle in G of length ~ k + 4 and 
G contains a Cn provided n ~ l (n + 1) /2 J + 4. This completes the proof in case 
n ~ 8. In case n = 7, we are left to consider the case k = 4. In particular, we 
may assume XIX3 E E(G) and then the argument proceeds as before except that 
(Xl, X3, X4, Zb Z2, Y2, YI) provides the C7 . 0 
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