On maximal (k, b)-linear-free sets of integers and its spectrum*

Lihua You Gexin Yu Bolian Liu

Department of Mathematics South China Normal University Guangzhou, 510631, P.R. of China

Abstract

Let k and b be integers with k>1. A set A of integers is called (k,b)-linear-free if $x\in A$ implies $kx+b\not\in A$. Such a set A is maximal in $[1,n]=\{1,2,...,n\}$ if $A\cup\{t\}$ is not (k,b)-linear-free for any t in $[1,n]\setminus A$. Let M=M(n,k,b) be the set of all maximal (k,b)-linear-free subsets of [1,n] and define $f(n,k,b)=max\{|A|:A\in M\}$ and $g(n,k,b)=min\{|A|:A\in M\}$. In this paper a new method for constructing maximal (k,b)-linear-free subsets of [1,n] is given and formulae for f(n,k,b) and g(n,k,b) are obtained. Also, we investigate the spectrum of maximal (k,b)-linear-free subsets of [1,n], and prove that there is a maximal (k,b)-linear-free subset of [1,n] with x elements for any integer x between the minimum and maximum possible orders.

1 Introduction

Throughout the paper n, k and b are fixed integers, k > 1. For integers c and d, let $[c, d] = \{x : x \text{ is an integer and } c \le x \le d\}$. We denote $(k^i - 1)/(k - 1)$ by $\langle k^i \rangle$.

A set A of integers is called k-multiple-free if $x \in A$ implies $kx \notin A$. Such a set A is maximal in [1,n] if $A \cup \{t\}$ is not k-multiple-free for any t in $[1,n] \setminus A$. Let $f(n,k)=\max\{|A|:A\subseteq [1,n] \text{ is } k$ -multiple-free}. A subset A of [1,n] with |A|=f(n,k) is called a maximal k-multiple-free subset of [1,n].

In [1], E.T.H. Wang investigated 2-multiple-free subsets of [1, n] (these are called double-free subsets) and gave a recurrence relation and a formula for f(n, 2). In [3] Leung and Wei obtained a recurrence and a formula for f(n, k).

Naturally the concept of multiple-free can be generalized to multiple and translation-free, or linear-free. A set A of integers is called (k, b)-linear-free if $x \in A$ implies $kx + b \notin A$. Clearly, if b = 0, A is k-multiple-free; if b = 0, k = 2, A is double-free.

^{*}This research was supported by NNSF of P.R.China and Guangdong Province.

Such a set A is maximal in [1, n] if $A \cup \{t\}$ is not (k, b)-linear-free for any t in $[1,n]\setminus A$. We write M=M(n,k,b) for the set of all maximal (k,b)-linear-free subsets of [1, n] and define $f(n, k, b) = max\{|A| : A \in M\}, g(n, k, b) = min\{|A| : A \in M\}.$

In this paper we focus on three problems concerning f(n, k, b) and g(n, k, b): (1) constructing maximal (k,b)-linear-free subsets of [1,n] and obtaining formulae for f(n, k, b) and g(n, k, b); (2) determining the spectrum $\{|A| : A \in M\}$; (3) giving several formulae in some special cases. As it turns out, we deal with the same topic as the work of Liu and Zhou ([5]), but our approach and results are different.

2 Main results

First we introduce some preliminary results.

A subset A of [1, n] is adjacency-free if A never contains both i and i + 1 for any i, and such an A is maximal adjacency-free if $A \cup \{t\}$ is not adjacency-free for any t in $[1,n] \setminus A$.

Lemma 1 [4] There is a maximal adjacency-free subset A of [1, n] if and only if $\left\lceil \frac{n}{3} \right\rceil \le |A| \le \left\lceil \frac{n}{2} \right\rceil.$

Put $P=\{p: p \in [1,n] \text{ and } p \neq km+b \text{ for any } m \in N\}$, and define n(p)=1 $\lfloor \log_k \frac{n+b/(k-1)}{p+b/(k-1)} \rfloor$, $Q_p = \{p, pk+b, pk^2+b\langle k^2 \rangle, \cdots, pk^{n(p)}+b\langle k^{n(p)} \rangle\}$, for any $p \in P$.

Lemma 2 $[1,n] = \bigcup_{p \in P} Q_p$

For any $s \in [1, n]$, if $s \neq km + b$ then $s \in Q_s$, otherwise s = km + bfor some $m \in [1, n]$. In this case, if $m \neq kq + b$ then $s, m \in Q_m$, otherwise m = $kq + b, s = qk^2 + b\langle k^2 \rangle$ for some $q \in N$. By repeating the above procedure, we will eventually obtain $s = rk^j + b\langle k^j \rangle \in Q_r$ for some $j \in N, r \in [1, n]$, and $r \neq kt + b$ for any $t \in N$. So $[1, n] \subseteq \bigcup_{p \in P} Q_p$.

Clearly $\bigcup_{p\in P}Q_p\subseteq [1,n]$. We have $\bigcup_{p\in P}Q_p=[1,n]$.

It is evident that $Q_p \cap Q_r = \emptyset$ if p and r are distinct elements of P. So we have

Lemma 3 Let S be a subset of [1,n], $S_p = S \cap Q_p$ for any $p \in P$. Then $S = \bigcup_{p \in P} S_p$, and S is a maximal (k, b)-linear-free subset of [1, n] if and only if S_p is a maximal (k, b)-linear-free subset in Q_p .

Now we define a one-to-one correspondence φ from Q_p to [1, n(p) + 1] by $\varphi(pk^i +$ $b\langle k^i\rangle = i+1$. Then we have

Lemma 4 S_p is a maximal (k, b)-linear-free subset in Q_p if and only if $\varphi(S_p)$ is maximal adjacency-free in [1, n(p) + 1].

Let $N_{n(p)} = \{Q_i : i \in P, \text{ and } |Q_i| = n(p) + 1\}$ for any $p \in P$. Clearly, $Q_p \in N_{n(p)}$, so $N_{n(p)} \neq \emptyset$.

In the following Lemma, if a < b, we define $\lfloor \frac{a-b}{c} \rfloor = 0$.

Lemma 5

$$|N_{n(p)}| = \begin{cases} \lfloor \frac{n - b\langle k^{n(p)} \rangle}{k^{n(p)}} \rfloor - 2\lfloor \frac{n - b\langle k^{n(p)+1} \rangle}{k^{n(p)+1}} \rfloor + \lfloor \frac{n - b\langle k^{n(p)+2} \rangle}{k^{n(p)+2}} \rfloor & \text{for } n(p) < n(1) \\ \lfloor \frac{n - b\langle k^{n(p)} \rangle}{k^{n(p)}} \rfloor & \text{for } n(p) = n(1). \end{cases}$$

Proof. Case 1. If n(p) < n(1), for any $i \in [1, n]$ such that $|Q_i| = n(p) + 1$, we have $ik^{n(p)} + b\langle k^{n(p)} \rangle \le n$ and $ik^{n(p)+1} + b\langle k^{n(p)+1} \rangle > n$, then $i \in \left[\left\lfloor \frac{n-b\langle k^{n(p)+1} \rangle}{k^{n(p)+1}} \right\rfloor + 1, \left\lfloor \frac{n-b\langle k^{n(p)} \rangle}{k^{n(p)}} \right\rfloor\right]$.

If i=km+b for some $m\in N$, then $km+b\in \lfloor\lfloor\frac{n-b\langle k^{n(p)+1}\rangle}{k^{n(p)+1}}\rfloor+1,\lfloor\frac{n-b\langle k^{n(p)}\rangle}{k^{n(p)}}\rfloor\rfloor$, so $m\in \lfloor\lfloor\frac{n-b\langle k^{n(p)+2}\rangle}{k^{n(p)+2}}\rfloor+1,\lfloor\frac{n-b\langle k^{n(p)+1}\rangle}{k^{n(p)+1}}\rfloor\rfloor$. Clearly,

$$\begin{split} |N_{n(p)}| &= |\{i : i \in P \text{ and } |Q_i| = n(p) + 1\}| \\ &= |\{i : i \in [1, n] \text{ and } |Q_i| = n(p) + 1\}| \\ &- |\{i : i \in [1, n], |Q_i| = n(p) + 1 \text{ and } i \notin P\}| \\ &= \left(\left\lfloor \frac{n - b\langle k^{n(p)} \rangle}{k^{n(p)}} \right\rfloor - \left\lfloor \frac{n - b\langle k^{n(p) + 1} \rangle}{k^{n(p) + 1}} \right\rfloor \right) \\ &- \left(\left\lfloor \frac{n - b\langle k^{n(p) + 1} \rangle}{k^{n(p) + 1}} \right\rfloor - \left\lfloor \frac{n - b\langle k^{n(p) + 2} \rangle}{k^{n(p) + 2}} \right\rfloor \right) \\ &= \left\lfloor \frac{n - b\langle k^{n(p)} \rangle}{k^{n(p)}} \right\rfloor - 2 \left\lfloor \frac{n - b\langle k^{n(p) + 1} \rangle}{k^{n(p) + 1}} \right\rfloor + \left\lfloor \frac{n - b\langle k^{n(p) + 2} \rangle}{k^{n(p) + 2}} \right\rfloor. \end{split}$$

Case 2. If n(p) = n(1), then $k^{n(1)} + b(k^{n(1)}) \le n$ and $(k+b)k^{n(1)} + b(k^{n(1)}) = k^{n(1)+1} + b(k^{n(1)+1}) > n$. Hence $1 \le i < k+b$ for any $i \in [1, n]$ such that $|Q_i| = n(1)+1$, so $i \ne km + b$ for any $m \in N$. We obtain $|N_{n(1)}| = \lfloor \frac{n - b(k^{n(p)})}{k^{n(p)}} \rfloor$. \square

Theorem 1

(i)
$$f(n, k, b) = \sum_{p \in P} \lceil \frac{n(p)+1}{2} \rceil = \sum_{i=1}^{n(1)} |N_i| \lceil \frac{i+1}{2} \rceil;$$

(ii)
$$g(n, k, b) = \sum_{p \in P} \lceil \frac{n(p)+1}{3} \rceil = \sum_{i=1}^{n(1)} |N_i| \lceil \frac{i+1}{3} \rceil.$$

Proof. (i) Let S be a (k,b)-linear-free subset of [1,n]. By Lemma 1 and Lemma 4, for each $p \in P$, $\{|S_p| : S_p \text{ is a maximal } (k,b)\text{-linear-free subset in } Q_p\} = \{|\varphi(S_p)| : \varphi(S_p) \text{ is a maximal adjacency-free subset in } [1,n(p)+1]\} = [\lceil \frac{n(p)+1}{3} \rceil, \lceil \frac{n(p)+1}{2} \rceil].$

By Lemma 3, S is a maximal (k,b)-linear-free subset of [1,n] if and only if S_p is a maximal adjacency-free subset in [1,n(p)+1]. If |S|=f(n,k,b), we can choose $|S_p|=\lceil \frac{n(p)+1}{2} \rceil$ for each $p \in P$. So $f(n,k,b)=\sum_{p\in P}\lceil \frac{n(p)+1}{2} \rceil=\sum_{i=1}^{n(1)}|N_i|\lceil \frac{i+1}{2} \rceil$ by the definition of $|N_{n(p)}|$.

The proof of (ii) is similar.□

Example 1. Let n = 63, k = 2 and b = 1. Then n(1) = 5, $|N_{n(1)}| = \lfloor \frac{63 - \langle 2^5 \rangle}{2^5} \rfloor = 1$, and $|N_i| = \lfloor \frac{63 - \langle 2^i \rangle}{2^i} \rfloor - 2 \lfloor \frac{63 - \langle 2^{i+1} \rangle}{2^{i+1}} \rfloor + \lfloor \frac{63 - \langle 2^{i+2} \rangle}{2^{i+2}} \rfloor = 2^{4-i}$, for $0 \le i \le 4$. $f(63, 2, 1) = \sum_{i=0}^{n(1)} |N_i| \lceil \frac{i+1}{2} \rceil = 2^4 \times 1 + 2^3 \times 1 + 2^2 \times 2 + 2^1 \times 2 + 2^0 \times 3 + 1 \times 3 = 42.$ $g(63, 2, 1) = \sum_{i=0}^{n(1)} |N_i| \lceil \frac{i+1}{3} \rceil = 2^4 \times 1 + 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 2 + 2^0 \times 2 + 1 \times 2 = 36.$

Now we consider the spectrum $\{|A|: A \in M\}$. We have

Theorem 2 For any value x in [g(n, k, b), f(n, k, b)], there is a maximal (k, b)linear-free subset of [1, n] with x elements.

Suppose $S \in M$. By Lemma 1 and Theorem 1, we can choose S_p to have any value in the range $\lceil \frac{n(p)+1}{3} \rceil$, $\lceil \frac{n(p)+1}{2} \rceil$ for each $p \in P$. So we can obtain a maximal (k, b)-linear-free subset of [1, n] and $|S| = x \in [g(n, k, b), f(n, k, b)]$. Also, when x is in (g(n,k,b), f(n,k,b)) there is more than one subset S which satisfies $|S| = x.\square$

Theorem 3 If $n = k^m + b(k^m)$ for some $m \in N$, then

(i)
$$f(n,k,b) = \lceil \frac{m+1}{2} \rceil + (k+b-2) \lceil \frac{m}{2} \rceil + \sum_{i=1}^{m-1} k^{i-1} (k+b-1) (k-1) \lceil \frac{m-i}{2} \rceil;$$

$$\begin{array}{ll} \text{(i)} & f(n,k,b) = \lceil \frac{m+1}{2} \rceil + (k+b-2) \lceil \frac{m}{2} \rceil + \sum_{i=1}^{m-1} k^{i-1} (k+b-1) (k-1) \lceil \frac{m-i}{2} \rceil; \\ \text{(ii)} & g(n,k,b) = \lceil \frac{m+1}{3} \rceil + (k+b-2) \lceil \frac{m}{3} \rceil + \sum_{i=1}^{m-1} k^{i-1} (k+b-1) (k-1) \lceil \frac{m-i}{3} \rceil. \end{array}$$

Proof. Case 1. If $n = k^m + b\langle k^m \rangle$, then n(1) = m and $|N_{n(1)}| = 1$.

Case 2. Suppose n(p) = m-1 for some $p \in P$. Then $pk^{m-1} + b\langle k^{m-1} \rangle \leq n = 1$ $k^m + b(k^m) = (k+b)k^{m-1} + b(k^{m-1})$, so $2 \le p \le k+b-1$, and $|N_{m-1}| = k+b-2$. Case 3. Suppose n(p) = m - i - 1, $i \in [1, m - 1]$ for some $p \in P$. By Lemma 5, $|N_{n(p)}| = \lfloor \frac{n - b(k^{m-i-1})}{k^{m-i-1}} \rfloor - 2\lfloor \frac{n - b(k^{m-i})}{k^{m-i}} \rfloor + \lfloor \frac{n - b(k^{m-i+1})}{k^{m-i+1}} \rfloor = k^{i-1}(k+b-1)(k-1)$.

By Theorem 1, (i) and (ii) are obtained.□

As we expected, if b = 0, formula (ii) of Theorem 3 is exactly the same as Theorem 5 of Lai ([2]).

Theorem 4 Suppose k + b > 2. Then f(n, k, b) = g(n, k, b) if and only if n < b $k^2 + kb + b$.

For convenience we denote "if and only if" by "\iff". By Theorem 1, $f(n,k,b) = g(n,k,b) \iff \sum_{i=1}^{n(1)} |N_i| \lceil \frac{i+1}{2} \rceil = \sum_{i=1}^{n(1)} |N_i| \lceil \frac{i+1}{3} \rceil \iff \lceil \frac{i+1}{2} \rceil = \lceil \frac{i+1}{3} \rceil \text{ for }$ any $i \in [0, n(1)] \iff n(1) < 2 \iff n < k^2 + kb + b$.

Now we give some recurrence relations for f(n, k, b) and g(n, k, b).

Theorem 5 Suppose n = ks + b for some $s \in N$.

- If $1 \le i \le k$, then f(n+i, k, b) = f(n, k, b) + i. (i)
- Suppose $n + k = pk^m + b\langle k^m \rangle$, where $p \in P$. If $m \equiv 0 \pmod{2}$, then f(n+k, k, b) = f(n, k, b) + k, otherwise f(n+k, k, b) = f(n, k, b) + k - 1.

Proof (i) Suppose n = ks + b. Then $n + i \neq kr + b$ for any $r \in N$, $1 \leq i \leq k$. Thus

$$\left\lfloor \frac{n - b\langle k^{n(p)} \rangle}{k^{n(p)}} \right\rfloor = \begin{cases} \left\lfloor \frac{n + i - b\langle k^{n(p)} \rangle}{k^{n(p)}} \right\rfloor & \text{for } n(p) > 0\\ \left\lfloor \frac{n + i - b\langle k^{n(p)} \rangle}{k^{n(p)}} \right\rfloor - i & \text{for } n(p) = 0. \end{cases}$$

By Theorem 1, we have f(n+i,k,b) = f(n,k,b) + i.

(ii) Supose $n + k = pk^m + b\langle k^m \rangle$, where $p \in P$ and $m \equiv 0 \pmod{2}$, so $m \geq 2$. Let S be a maximal (k, b)-linear-free subset in [1, n + k] with |S| = f(n + k, k, b). Consider Q_p . By Theorem 1, $|S_p| = |S \cap Q_p| = \lceil \frac{n(p)+1}{2} \rceil = \lceil \frac{m+1}{2} \rceil = \frac{m}{2} + 1$.

Let R be a maximal (k, b)-linear-free subset in [1, n+k-1] with |R| = f(n+k-1)(1,k,b). Since $[1,n+k-1]=[1,n+k]-\{n+k=pk^m+b\langle k^m\rangle\}$, consider Q_p and n(p) = m - 1. By Theorem 1, $|R_p| = |R \cap Q_p| = \lceil \frac{n(p)+1}{2} \rceil = \lceil \frac{(m-1)+1}{2} \rceil = \frac{m}{2}$.

We may choose R so that R and S have the same elements in any Q_q for all $q \in P$ except those in Q_p . Therefore f(n+k-1,k,b)=f(n+k,k,b)-1. But by (i), f(n+k-1,k,b)=f(n,k,b)+k-1. Hence f(n+k,k,b)=f(n,k,b)+k.

If $m \not\equiv 0 \pmod 2$, then by employing the same S and R as above, we have $\lceil \frac{m+1}{2} \rceil = \frac{m+1}{2} = \lceil \frac{(m-1)+1}{2} \rceil$. This implies that $f(n+k,k,b) = f(n+k-1,k,b) = f(n,k,b) + k - 1.\square$

Example 2. Let n = 61, k = 2, and $b = 1.n + k = 61 + 2 = 63 = 1 \times 2^5 + 1 \times \langle 2^5 \rangle$, and $5 \equiv 1 \pmod{2}$. By (ii), f(63, 2, 1) = f(61, 2, 1) + 2 - 1, so by Example 1, we obtain f(61, 2, 1) = 42 - 1 = 41.

If
$$i = 1 < k = 2$$
. By (i), $f(62, 2, 1) = f(61, 2, 1) + 1 = 41 + 1 = 42$

On the other hand, it is easy to prove f(61,2,1)=41, and f(62,2,1)=42 by Theorem 1.

Similarly, we have

Theorem 6 Suppose n = ks + b for some $s \in N$.

- (i) If $1 \le i \le k$, then g(n+i, k, b) = g(n, k, b) + i.
- (ii) Suppose $n + k = pk^m + b\langle k^m \rangle$, and $p \in P$. If $m \equiv 0 \pmod{3}$, then g(n + k, k, b) = g(n, k, b) + k, otherwise g(n + k, k, b) = g(n, k, b) + k 1.

Acknowledgement

The authors are grateful to the referee for pointing out some writing corrections.

References

- 1. E.T.H. Wang, On double-free sets of integers. $Ars\ Combinatoria\ 28(1989)\ 97-100.$
- 2. Hongyuan Lai, k-multiple-free Sets. Ars Combinatoria 34(1992) 17-24.
- 3. J.Y-T. Leung and W-D Wei, Maximal k-multiple-free sets of integers. Ars Combinatoria 38(1994) 113-117.
- 4. W.D. Wallis and Wan Di Wei, On the spectrum of maximal k-multiple-free sets of integers. Ars Combinatoria 41(1995) 57-64.
- 5. Bolian Liu and Zhou Bo, A generalization of maximal k-multiple-free sets of integers. Ars Combinatoria 52(1999) 285-288.

(Received 18/4/2000)

assiri myskoczinowaka podanownikowa ovikamow
executivative enterior enterio
Openij (m. dame i kina videnta apisio kala s kom tib di kiniko o mnokis
one correlates. Annexes monte periode monte annexes annexes annexes en
RETER (MATERIAL METAL ME
di mandimente della dell'este della
AAAA HAAAA AAAAA AAAAAAAAAAAAAAAAAAAAA
ts accessors and an accessorate and for maximum CDS II as ever accessor
es (d. 10 — (d. 10 d.)) de — object à soit de la constante (d. 10 d.) de de