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Abstract

Let k and b be integers with k > 1. A set A of integers is called (k,b)-
linear-free if z € A implies kx + b ¢ A. Such a set A is maximal in
[1,n] = {1,2,...,n} if AU{t} is not (k,b)-linear-free for any ¢ in [1,n}\ A.
Let M = M(n,k,b) be the set of all maximal (k, b)-linear-free subsets
of [1,n] and define f(n,k,b) = maz{|4| : A € M} and g(n,k,b) =
min{|A|: A € M}. In this paper a new method for constructing maximal
(k, b)-linear-free subsets of [1,n] is given and formulae for f(n, k,b) and
g(n, k,b) are obtained. Also, we investigate the spectrum of maximal
(k, b)-linear-free subsets of [1,n], and prove that there is a maximal (k, b)-
linear-free subset of [1,n] with z elements for any integer x between the
minimum and maximum possible orders.

1 Introduction

Throughout the paper n,k and b are fixed integers, k¥ > 1. For integers c and d, let
[e,d]={ : z is an integer and ¢ < z < d}. We denote (k' —1)/(k — 1) by (k).

A set A of integers is called k-multiple-free if z € A implies kz ¢ A. Such a
set A is maximal in [1,n] if AU {t} is not k-multiple-free for any ¢ in [1,n] \ A.
Let f(n,k)=max{|4| : A C [1,n] is k-multiple-free}. A subset A of [1,n] with
|A] = f(n,k) is called a maximal k-multiple-free subset of [1,7].

In [1], E.T.H. Wang investigated 2-multiple-free subsets of [1,n] (these are called
double-free subsets) and gave a recurrence relation and a formula for f(n,2). In [3]
Leung and Wei obtained a recurrence and a formula for f(n, k).

Naturally the concept of multiple-free can be generalized to multiple and translat-
ion-free, or linear-free. A set A of integers is called (k, b)-linear-free if z € A implies
kz + b ¢ A. Clearly, if b= 0, A is k-multiple-free; if b =0,k = 2, A is double-free.
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Such a set A4 is maximal in [1,n] if AU {t} is not (k, b)-linear-free for any ¢ in
[1,n]\A. We write M = M (n, k,b) for the set of all maximal (k, b)-linear-free subsets
of [1,n] and define f(n, k,b) = maz{|4| : A € M}, g(n, k,b) = min{|4] : A € M}.

In this paper we focus on three problems concerning f(n,k,b) and g(n,k,b):
(1) constructing maximal (k, b)-linear-free subsets of [1,n] and obtaining formulae
for f(n,k,b) and g(n, k,b); (2) determining the spectrum {]A|: A € M} ; (3) giving
several formulae in some special cases. As it turns out, we deal with the same topic
as the work of Liu and Zhou ([5]), but our approach and results are different.

2 Main results

First we introduce some preliminary results.

A subset A of [1,n] is adjacency-free if A never contains both ¢ and 7+ 1 for any
i, and such an A is maximal adjacency-free if AU {t} is not adjacency-free for any ¢
in {1,n]\ A.

Lemma 1 [4] There is a maximal adjacency-free subset A of [1,7] if and only if
(31 < 1Al <[5
Put P={p : p € [1,n] and p # km + b for any m € N}, and define n(p) =

|log kﬁ—g%%}%j , Qp = {p, Pk + b, pk? + b(k?), - - -, pk"®) + b(k"®)}, for any p € P.

Lemma 2 [1,n] = UpepQp

Proof. For any s € [L,n], if s # km + b then s € Q,, otherwise s = km + b
for some m € [1,n]. In this case, if m # kq + b then 5,m € Q,, otherwise m =
kq+b,s = qk? + b(k®) for some ¢ € N. By repeating the above procedure, we will
eventually obtain s = rk’ + b(k?) € Q, for some j € N, r € [1,n], and r # kt + b for
any t € N. So [1,n] C UpepQ@p.

Clearly Upep@p C [1,n] . We have Upep@, = [1,n].0

It is evident that @, N Q, = 0 if p and r are distinct elements of P. So we have

Lemma 3 Let S be a subset of [1,n], S, = SNQ, for any p € P. Then
S = UpepSp, and S is a maximal (k, b)-linear-free subset of [1, n] if and only if S, is
a maximal (k, b)-linear-free subset in Q.

Now we define a one-to-one correspondence ¢ from @, to [1,n(p) +1] by @(pk* +
b(k*)) = i + 1. Then we have

Lemma 4 S, is a maximal (k, b)-linear-free subset in @, if and only if ¢(S,) is
maximal adjacency-free in [1,n(p) + 1] .

Let Nyp={Q: : i € P, and |Q;] = n(p) + 1} for any p € P. Clearly, @ € Np(p),
SO Nn(p) 75 (b
In the following Lemma, if a < b, we define |22} = 0.

Lemma 5

_b(kn®) —b(kn(p) 1 bl ()2
— ]-n anp L J - 2\_1‘& zstk(:p):l JJ + L }gsjp):? )} for n(p) < n(l)
INn(P)] _bkn(®)
L__j_(_rln ) for n(p) = n(1).
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Proof. Case 1. If n(p) < n(1), for any i € [1,n] such that |@;| = n(p) + 1,
we have ik"® 4 b(k"®) < n and ik"P*L 4 b(kPH1) > n, then ¢ € [| 2T )
L [

If i = km + b for some m € N, then km +b € [[%J +1, [%ﬂ, S0
me I | g et

Clearly,

|Nugpy| = [{i i € P and |Qi] = n(p) +1}|
= |{i:i € [1,n] and |Qi| = n(p) + 1}
—|{i:ie(l,n], |Qi =n(p)+1and: ¢ P}

(| n = b{k"®) n — b{kmP+1)
- kn(p) - knte)=t |

n — b(kn®)+1) n — b{k"P)+2)
- (l Ln(p)=1 J - [ Enp)+2 J)
| n = b(k"®) o|m— b(knP)+1) n — b(k™P)+2)
= PEI) - En) T T

Case 2. If n(p) = n(1), then k"W 4 p(k"M) < n and (k + bk + b(k"V) =
kPO p(kM(D+1) > . Hence 1 < i < k+b for any ¢ € [1,n] such that |Q;| = n(1)+1,
. . n—blk™(®)
50 i % km + b for any m € N. We obtain |Nay| = | 228572 |.00

Theorem 1
() f(n,kb) = Tpep[ 28] = =70 | V|52
()  g(n,k,b) = Tpep "B = SHY NG [H1].

Proof. (i) Let S be a (k,b)-linear-free subset of [1,n]. By Lemma 1 and
Lemma 4, for each p € P, {|S,] : S, is a maximal (k, b)-linear-free subset in Q,} =
{lo(Sp)| = ¢(Sp) is a maximal adjacency-free subset in [1,n(p) + 1]} = [[M;‘],
).

By Lemma 3, S is a maximal (k, b)-linear-free subset of [1,n] if and only if S,
is a maximal adjacency-free subset in [1,n(p) + 1]. If |S| = f(n, k,b), we can choose
|Sp| = [2EJ1] for each p € P. So f(n,k,b) = Tpep[MGH] = Ti) [NI[%] by
the definition of [Ny

The proof of (ii) is similar.0

Example 1. Let n =63, k =2 and b= 1. Then n(1) = 5, [Nyq| = | 25| =
1, and |N;| = l_sa—zfgv)J _ 2]_63—2'(3:*1)] + l63_2$3;+2)J =241 for 0 <i< 4.

£63,2,1) = S8 |N|[21] = 20 x 1423 x 1+ 22X 2+2! x 2+ 20 x 3+1x 3 = 42,

9(63,2,1) = SHO NG| [E1] = 20 x 1+28 x 1+ 22 x 1 +2! x 2+20 x 241 x 2 = 36.

Now we consider the spectrum {|A]: A € M}. We have
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Theorem 2 For any value z in [g(n, k, b), f(n, k,b)], there is a maximal (k, b)-
linear-free subset of {1, n] with = elements.

Proof. Suppose S € M. By Lemma 1 and Theorem 1, we can choose Sp to
have any value in the range [(%], fﬁ@%ﬂ]] for each p € P. So we can obtain a
maximal (k, b)-linear-free subset of [1,n] and |S| = z € [g9(n, k,b), f(n, k,b)]. Also,
when z is in (g(n, k,b), f(n, k,b)) there is more than one subset S which satisfies
[S| =0

Theorem 3 If n = k™ + b(k™) for some m € N, then
@) flnkb) =[] + (k+b—2)[ 2] + TRy B (R + b - 1)(k - D[

(i) g(n,k,b) =[] + (k+b—2)[3] + T2 Kk + b - Dk — 1[5

Proof. Case 1. If n = k™ + b(k™), then n(1) = m and [Nyy| = 1.

Case 2. Suppose n(p) = m — 1 for some p € P. Then pk™ !+ b(k™™!) < n =
k™ 4 b(k™) = (k+b)k™ 1+ b(k™ ), 502 < p< k+b—1,and [Np_1|=k+b—2.

Case 3. Suppose n(p) =m—i—1,1 € (1,m — 1] for some p € P . By Lemma 5,
[Ny | = |PSEmZ) | g b |y | modE ) | = ki3 (k + b — 1)(k — 1).

By Theorem 1, (i) and (ii) are obtained.OI

As we expected, if b = 0, formula (ii) of Theorem 3 is exactly the same as
Theorem 5 of Lai ([2]).

Theorem 4 Suppose k + b > 2. Then f(n,k,b)=g(n,k,b) if and only if n <
k% + kb+b.

Proof. For convenience we denote “if and only if” by “=". By Theorem 1,
Fln k) = g(n, k,b) <= Ti N[5 = S [NITHH] = (1] = [5] for
any i € [0,n(1)] <> n(l) < 2<=> n < k*+kb+b0

Now we give some recurrence relations for f(n, k,b) and g(n, k,b).

Theorem 5 Suppose n = ks + b for some s € N.
(i) If1<i<k,then f(n+i,k,b)= f(n,k,b)+i.
(i) Suppose n + k = pk™ + b(k™), where p € P. If m = 0 (mod 2), then
f(n+k, k,b) = f(n,k,b) + k, otherwise f(n + k,k,b) = f(n,k,b) +k— 1.

Proof (i) Suppose n=ks+b. Thenn+i#kr+bforanyr e N,1<i < k.

Thus
ln - b(k"("))J _ [%ﬁiﬂj for n(p) >0
k() B ["J”;g———%;imj —1i for n(p) =0.

By Theorem 1, we have f(n+1i,k,b) = f(n,k,b) +1i.

(ii) Supose n + k = pk™ + b(k™), where p € P and m = 0 (mod 2), so m 2> 2.
Let S be a maximal (k, b)-linear-free subset in [1,n + k] with |S| = f(n + k, k,b).
Consider Q. By Theorem 1, |S,| = |SN Q| = [AeH] = [mil] =2y,

Let R be a maximal (k, b)-linear-free subset in {1,n+k — 1] with |R| = f(n+k —
1,k,b). Since [L,n+k — 1] = [1,n+ k] — {n + k = pk™ + b(k™)}, consider @, and
n(p) = m — 1. By Theorem 1, |Ry| = |[RN Q,| = [2&H] = [(mDH] = 2.
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We may choose R so that R and S have the same elements in any ¢, for all
q € P except those in Q,. Therefore f(n+k —1,k,b) = f(n +k, k,b) — 1. But by
(i), f(n+k — 1,k,b) = f(n,k,b) + k — 1. Hence f(n +k,k,b) = f(n,k,b) + k.

If m # 0 (mod 2), then by employing the same S and R as above, we have
[mil] = mil = =D+ This implies that f(n + k,k,b) = f(n+k —1,kb) =
fln,k,b)+k—1.0

Example 2. Letn=61,k=2,andb= l.n+k=61+2 =63 = 1x25+1x(25),
and 5 = 1 (mod 2). By (ii), f(63,2,1) = f(61,2,1) + 2 — 1, so by Example 1, we
obtain f(61,2,1) =42 — 1 = 41.

Ifi=1< k=2 By (i), f(62,2,1) = £(61,2,1) + 1 =41+ 1 = 42

On the other hand, it is easy to prove f(61,2,1) = 41, and f(62,2,1) = 42 by
Theorem 1.

Similarly, we have

Theorem 6 Suppose n = ks + b for some s € N.
(i) If1 <1<k, then g(n+1,k,b) =g(nk,b)+1.
(ii) Suppose n+ k = pk™ + b(k™), and p € P. If m =0 (mod 3), then
g(n+ k, k,b) = g(n, k,b) + k, otherwise g(n + k, k,b) = g(n, k,b) + k — 1.0
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