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Abstract 

A t-(v, k, J\) design D = (X, B) with B = Pk(X) is called a full design. 
For t = 2, k = 3 and any v, we give minimal defining sets for these 
designs. For v = 6 and v = 7, smallest defining sets are found. 

1. Introduction 

Let v, k, t, and J\ be natural numbers such v ~ k ~ t > O. A t-( v, k, J\) design D is 
an ordered pair (X, B) where X is a v-set, and B is a collection of k-subsets (called 
blocks) of X with the property that every t-subset of X appears in exactly J\ blocks. 
A design with no repeated block is called a simple design. A t- (v, k, G=~)) design is 
called a quasi-full design. In this case the number of blocks of the design is G). If 
we take all k-subsets of a v-set as blocks, we obtain a simple quasi-full design, which 
is called a full design. 

A t-( v, k) trade T = (Tl' T2) consists of two disjoint collections of blocks Tl and 
T2 such that for every t-subset B ~ X, the number of blocks containing B in Tl 
is the same as the number of blocks containing B in T2• We say a t-(v, k) trade 
T = (TI, T2) is embedded in a t-(v, k, J\) design D = (X, B), if Tl or T2 or both is 
contained in B. 

In 1990, the concept of a defining set of a t-design was introduced by Gray [1]. 
A set of blocks which is a subset of a unique t-( v, k, J\) design D is a defining set 
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of that design, and is denoted by dD. A minimal defining set, denoted by dmD, is 
a defining set no proper subset of which is a defining set. A smallest defining set, 
denoted by dsD, is a defining set of least cardinality. There is a close relationship 
between defining sets and trades. 

Theorem 1 [1]. Let D = (X, 8) be a t-(v, k, A) design and 8 ~ 8. Then 8 is a 
defining set of D if and only if 8 n T =J 0 for every embedded trade T of D. 

For proving some results we invoke to the following theorem due to Ken Gray [1]. 

Theorem 2 [1]. If the t-(v, k, A) design D is a disjoint union of two designs D' and 
D" with parameters t-(v, k, X), and t-(v, k, X') respectively, where X + X' = A, then 
IdsDI ~ IdsD'1 + IdsD"I· 
In this paper we obtain a minimal defining set for the families of 2-( v, 3, v - 2) full 
designs. 

2. A minimal defining set 

In this section, we consider 2-( v, 3, v - 2) full designs, and give a set of blocks which 
is a minimal defining set for these designs. Before starting the proof, let us introduce 
some notations. We put 

d3 ( v) = the size of a smallest defining set of the full 2- ( v, 3, v - 2) design, 
Bv = the set of blocks which contain the element v, 
Bxy = the set of blocks which contain the set {x, y}. 

Theorem 3. If N = B12 U B v , then the set 8 = P3(X)\N is a defining set of the 
full 2-(v, 3, v - 2) design, where P3 (X) denotes the collection of 3-subsets of X. 

Proof. Clearly INI = (V;l) + V - 3, and so 181 = (~) - G) + 2. 
Suppose that 8 extends to a quasi-full 2-( v, 3, v - 2) design, say D' = (X, 8'). 

We show that D' is a simple design, and hence is the 2-(v, 3, v - 2) full design. Let 
8' = 8'\8 and for 1 ::; i ::; n suppose that Bi is the collection of those blocks of 
5' which contain the element i. Clearly IB~I = (V;l) and IBU = IB~I = 2v - 5. 
First we show that blocks of 5' which contain 1 or 2 must contain both. Next we 
show that T has no repeated block, then that B~ has no repeated block, and finally 
that the design has no repeated block. If T = B~ \B~, then ITI = v - 3 since 
{I, v} is not a subset of any block of 8. Similarly IB~ \B~I = v - 3. Also we have 
8' = B~ U T, and hence T = B~\B~ = B~\B~, and we conclude that every block 
of T contains the pair {1,2}. On the other hand, IB:! = v-I for 3 ::; i ::; v-I, 
and since IB: n B~I = v - 2, we conclude that IT n Bil = 1 for 3 ::; i ::; v - 1. 
Since every block of T contains {1,2}, hence T is constructed uniquely and there 
is no repeated block in T. Now we show that B~ has no repeated block. Since 
8' = 8 U 8' = 5 U B~ U T, and every pair {x, y}, x, y =J. v appears in 8 U T 
v - 3 times, hence every pair appears in B~ exactly once. There are (V;l) pairs from 
{ 1, 2, . .. ,v - I}, and since I B~ I = (V; 1), we conel ude that B~ is constructed uniquely, 
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and hence there are no repeated blocks in B~, and in fact D' is the 2-( v, 3, v - 2) full 
design. 0 

Theorem 4. For v ;:::: 6, the set S which was constructed in the theorem above is 
indeed a minimal defining set. 

Proof. We show that for any block B E S, the set NUB contains a part of a trade 
with volume four. To prove the theorem we consider two cases: 
(i) 1 E B or 2 E B. Without loss of generality assume that 1 E B, and B = {I, x, y} 
where x, y ¢ {2, v}. Therefore NuB contains the trade {{I, x, y}, {I, 2, w}, {2, x, v}, 
{v, w, y}} where w is an arbitrary element which is not in the set {I, x, y, v, 2}. 
(ii) 1,2 ¢ B. In this case B = {x, y, z}, B n {I, 2, v} = 0. Thus NUB contains the 
trade {{x, y, z}, {I, 2, x}, {2, z, v}, {1, y, v}}. 0 

3. Determination of d3 (v) for 3 < v < 7 

Clearly d3(3) = d3 ( 4) = d3(5) = O. 

Theorem 5. d3 (6) = 6. 

Proof. We observe that P3(X) = B1UB2, where X = {I, 2, ... ,6} and Dl = (X, Bd 
and D2 = (X, B2) are 2-(6,3,2) designs. Since the smallest defining set of a 2-(6,3,2) 
design has cardinality 3, see [1], by Theorem 2 we conclude that d3 (v) ;:::: 6. Now 
consider the set S = {134, 135, 145, 123, 124, 125}. Since the pair 16 must appear 
in four blocks, hence our design contains the blocks 126,136,146,156. Now if these 
ten blocks do not uniquely determine our design, then we would have a trade with 
foundation set with size at most 5, which is a contradiction. 

Theorem 6. d3(7)::; 15. 

Proof. Assume that X = {1, 2, ... ,7}. If S = {I, 3, 6}, {1, 4, 5}, {1, 4, 6}, {I, 5, 6}, 
{2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 7}, {2, 4, 5}, {2, 4, 6}, {2, 4, 7}, {2, 5, 7}, {3, 4, 6}, 
{3, 5, 6}, {4, 5, 6}, we claim that S is a defining set of the 2-(7,3,5) full design, and 
hence d3 (7) ::; 15. To prove the claim assume that S can be extended to a quasi­
full 2-(7,3,5) design D' = (X,8). We show that D' is the 2-(7,3,5) full design 
D = (X, P3(X)). Let S' = 8' S, and let s~ and S~j denote the number of blocks of 
S' which contain the element i and the pair {i, j}, respectively. We will show that 
D = D'. We divide the proof into three steps. 
Step 1. Since 6 appears in 9 blocks of S, hence s~ = 6. On the other hand S~7 = 5, 
S~6 = 2, and S~6 = 2, therefore the blocks {I, 6, 7}, {2, 6, 7} E S'. 
Step 2. Since s~ = s~2 = 5, hence the blocks which contain 2 also contain 1. In addi­
tion s~a = 1, for 3 ::; a ::; 7. Hence the block {I, 2, 3}, {I, 2, 4}, {I, 2, 6}, {I, 2, 7} E S'. 
Step 3. Consider S" = S'\ {{I, 6, 7}, {2, 6, 7}, {1, 2, 3}, {1, 2, 4}, {I, 2, 6}, {1, 2, 7} }. 
Since s~7 = 5 and s~ = 6, therefore the element 6 and the pair {6, 7} both appear in 
S" three times. Also s~6 = s~6 = s~6 = 1, so {3, 6, 7}, {4, 6, 7}, {5, 6, 7} E S'. 

Now put S'" = S"\{{3, 6, 7}, {4,6, 7}, {5,6, 7}}. Hence the elements 6 and 2 do 
not appear in any block of Sill. Therefore only five elements appear in the blocks 
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of S",. Also B\P3(X) ~ SIll, and hence the blocks of T = (B\P3(X), P3(X)\B) are 
based on at most five elements. But every trade must be based on at least 6 elements, 
see [2]. So B\P3 (X) = 0, and thus D = D'. 0 

Theorem 7. d3 (7) = 15. 

Proof. Suppose that S is a defining set of the 2-(7,3,5) full design. It is well­
known that there are 30 distinct 2-(7,3,1) designs in the 2-(7,3,5) full design, see 
[3]. Let F = {F1, ..• ,F30 } be the set of distinct 2-(7,3,1) designs. Every block is 
contained in six elements of F, and for any i we have Ids(Fi)1 = 3, see [1]. Define 
r = {(b, Fi) I Fi E F, b E Fi n S}. By counting the pairs of r in two ways, we obtain 
lSI x 6 2: 30 x 3. This implies that lSI 2: 15. Now by Theorem 6, we conclude that 
d3(7) = 15 and the proof is complete. 0 
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