
A polynomial algorithm for cyclic edge connectivity
of Cli bic graphs

Dingjun Lou Lihua Teng Xiangjun Wu

Department of Computer Science
Zhongshan University, Guangzhou 510275

People's Republic of China

Abstract

In this paper, we develop a polynomial time algorithm to find out all
the minilnum cyclic edge cutsets of a 3-regular graph, and therefore to
determine the cyclic edge connectivity of a cubic graph. The algorithm is
recursive, with complexity bounded by O(n31og2 n). The algorithm shows
that the number of mini~um cyclic edge cut sets of a 3-regular graph G
is polynornial in v(G) and that the minimum cyclic edge cutsets can be
found in polynomial time, and so the cyclic edge connectivity of G can be
calculated.

O. Introduction
For a connected graph G, a vertex set S is said to be a vertex cutset of G, if G-S is not

connected. The connectivity K(G) of G is the minimim cardinality of all the vertex cutsets
of G Similarly, an edge cutset E of G is an edge set such that G-E is not connected, and
the edge connectivity A.(G) of G is the minimum cardinality of all the edge cutsets of G
Here we are going to discuss another type of connectivity of a graph, the cyclic edge
connectivity, which is defined below.

For a connected graph G, a cyclic edge cutset is an edge cutset whose deletion
disconnects the graph and such that two of the components created each must contain at
least one cycle. The cyclic edge connectivity CA(G) is the minimum cardinality of all the

cyclic edge cutsets of G If no cyclic edge cutset exists, we set clt(G) =0. In this paper, we
consider only simple, undirected graphs. All terminology and notation not defined in the
paper can be found in [2].

The concept of cyclic edge connectivity was introduced by Tait[1 0] and studied, in
particular, by Plummer[8], for planar graphs, with a slight difference: if no cyclic edge
cutset exists, they set CA.-(G)==. In references [4), [5] and [7], the relation between cyclic
edge connectivity and n-extendability of graphs is studied. In a paper of Peroche[9],
several sorts of connectivity, including cyclic edge connectivity, and their relations are
studied. The following upper bound for the cyclic edge connectivity of a graph G is given
there.

Australasian Journal of Combinatorics 24(2001). pp.247-259

Theorem 1: If G=(V, E) is a simple graph with IVI=n, then CA-(C) ~ 3(n-3), for n;::: 6,

and the bound is sharp. Equality holds when G=Kn.

How to compute the cyclic edge connectivity of an arbitrary graph has not been
studied in the literature as far as we know. Even for cubic graphs, the distribution of
minimum cyclic edge cutsets is unknown. If there are polynomially many such cutsets in
a cubic graph, is it possible to find them in polynomial time? This paper presents a
recursive algorithm to find all the cyclic edge cutsets of an input cubic graph, with time
complexity bounded by O(n3log2n).

In this paper, we are going to develop a polynomial time algorithm that computes the
cyclic edge connectivity of a cubic graph. We use the concept of removing an edge from a
3-connected graphs. This was introduced and studied by Barnette and Grtinbaum[1]. The
distribution of removable edges in 3-connected graphs was studied by Holton, Jackson,
Saito and Wormald[3].

In the first and second sections, we introduce a necessary and sufficient condition for
a cubic graph to have a cyclic edge cutset. Then the concept of removing an edge from a
3-connected graph is presented, and how the removed edge is used in the algorithm to
help compute the cyclic edge connectivity is discussed. In the third section, an algorithm
that returns all the minimum cyclic edge cutsets of a given cubic graph is described. In
the fourth section, we give an example of applying the algorithm. We find all the
minimum cyclic edge cutsets of the Petersen graph, and show that the cyclic edge
connectivity of the Petersen graph is 5. In the last section, the time complexity of the
recursive program is analysed.

1. Preliminaries
Firstly, we give a necessary and sufficient condition for a cubic graph to have a cyclic

edge cutset.
Theorem 2: Let G be a 3-regular graph of order u, let g be the girth of G. Then G

has a cyclic edge cutset if and only if v > 2g - 2 .

Proof.
If G has a cyclic edge cutset S, then let C be one of the cycles in G-S of length c. By

the definition of cyclic edge cutset, G-V(C) must contain at least one cycle. Then, we
have

3(v - c) - c > 2(v - c - 1)

v > 2c - 2 ~ 2g - 2 .

Conversely, if v> 2g - 2, let C be a minimum cycle in G, then

3(v-g)-g > 2(v-g-l).

hence G-V(C) must contain at least one cycle and (V(C), V(G)\V(C» is a cyclic edge

cutset of G.

Now, we consider the cyclic edge connectivity of a cubic graph with vertex
connectivity of 1 or 2.

Lemma 3: Let G be a 3-regular graph.
(1) If K(G)=l and CA-(C»O, then C4(C)=1;

248

(2) If K(G)=2 and CA(G»O, then cA(G)=2.
Proof.
If K(G)= I and CA(G) >0, let v be a cut vertex of G Then one of the components of G­

v must be connected to v by only one edge e. So {e} is a cyclic edge cutset, since 3n-
1>2(n-l), where n is the cardinality of either component of G-e, then either component of
G-e has a cycle. Hence CA(G)=1.

If K(G)=2 and CA(G»O, let {u, v} be a vertex cut of G Then there are three cases for

the edges adjacent to u and v, see figure 1.

case 1 case 2 case 3

Figure 1

In each of the cases, there is at least one edge cutset S of cardinality 2. And such a
cutset is a cyclic edge cutset, since 3n-2>2(n-1), where n is the cardinality of either
component of G-S, then either component of G-S has a cycle. And since
CA(G) ~ A(G) ~ K(G) = 2, we have cA(G)=2.D

We now consider the concept of removing an edge from a 3-connected graph, as
introduced and studied by Barnette and Grtinbaum[I].

Let G be a 3-connected graph and e be an edge of G. We consider the following
operation:

(I) Delete e from G to get G-e;
(2) If some end vertices of e have degree two in G-e, then suppress them;
(3) If multiple edges occur after (2), then replace them by single edges to make the

graph simple.

The resulting graph is denoted by Gee and Gee is said to be obtained by removing e
from G.

2. Description of the algorithm
The algorithm we are going to introduce is a recursive algorithm, it returns all the

minimum cyclic edge cutsets of the input 3-regular graph G In our algorithm, we make
use of the linear algorithm[5] to divide a graph into 3-connected components, denoted by
"triconnect" .

Firstly, our algorithm checks if the input graph G is Kt. If it is, then the empty set
will be returned, since ~ has no cyclic edge cutsets. If K(G)=l or K(G)=2, by lemma3,
the cyclic edge connectivity is 1 or 2 respectively, and all the cyclic edge cutsets can be
found by checking all the minimum vertex cutsets. If G is 3-connected and G is not ~,

then an edge e of G will be removed from G so that Gee is still 3-regular. If the resulting

graph Gee is 3-connected, then the program will be recursively called with the input

24D

graph Gee instead of G. After all the minimum cyclic edge cutsets of Gee have been
returned, we compare them with the minimum cyclic edge cutsets of G. Then we find out
and return all the minimum cyclic edge cutsets of G at the end of the algorithm. If after

removing e from G, the resulting graph Gee has K=2, then in the next recursive step, all

the minimum cyc1ic edge cutsets of Gee will be returned, and then we can get those of G.

The main problem remaining is the relation between the minimum cyclic edge

cutsets of Gee and those of G. We discuss this in three cases. Let S be a cyclic edge
cutset of G, e be the removed edge in the algorithm, and S' be a cyclic edge cutset of

Gee.

Casel:
If e is contained in the only cycle C in one of the components of G-S, say A, then

(Gee)-S has a component which does not contain any cycle, hence the cyclic edge cutset

S of G is not a cyclic edge cutset of Gee. If S is minimum, we have to consider it after

the recursive calling on Gee. This case is illustrated in Fi ure 2.

"
... --, " ... " ,

" "

-/ "[' : e
-\

\
.... ""

Figure 2

/ ' __ ... A

If C is a cycle as above, then (V(C), V(G)\V(C)) is the minImUm cutset which
satisfies that C is the only cycle in A, since G is 3-regular, and I(V(C),
V(G)\V(C»I=IV(C)I. If there is more than one such cutset, the ones with cardinality of the
length of the minimum cycles are those we need, others will be of larger cardinality. So,
we can find all such cutsets by finding all the minimum cycles that contain e. To achieve
this, we use a width-first search of the graph, starting from the two endpoints of e
simultaneously, until an edge connecting the two sub-trees occurs, and each such edge
together with the paths in the sub-trees forms a minimum cycle containing e.

If a cycle appears before the edge connecting two sub-trees occurs, then
minIV(C)I>g, where g is the girth of G, and g is equal to or larger than CA,(G) , so no such

cutsets are minimum cyclic edge cutsets, and we discard them.

Case2:

If for any minimum cyclic edge cutset S' of Gee, S' U {e} is a cyclic edge cutset of

G satisfying that the components of Gee-S' and G-(S' U {e}) are the same, then the

cyclic edge connectivity of G may be larger than Gee by 1 if in Casel it does not find
smaller cutsets. This case is illustrated in Figure 3. We determine whether the two

endpoints of c lie in different components of Gee-S' by finding a path P connecting the

two endpoints, then see if P passes through an odd number of edges in S'.

e

Figure 3

Case3:
Let e=xy. If there are e),e2E S' such that e) is obtained by suppressing x during the

operation of removing e from G, and e2 is obtained by suppressing y, then S' corresponds
to two cyclic edge cutsets of G, S I and S2, where e belongs to the two components A', B'

of G8e-S' respectively. This case is illustrated in Figure 4.

Figure 4

In the following section, we will describe the algorithm in more detail using pseudo­
PASCAL code.

3. The algorithm for cyclic edge connectivity of cubic graphs
Input: a 3-regular graph G
output: all the minimum cyclic edge cutsets of G

Cyclic_connectivity(G):
0) if G=~ then return null;
1) if triconnect(G)=false {G is not 3-connected}
2) then
3) if K(G)=l then

4) if v>2*g(G)-2 then {O(v 2
), but this may be run only once during the

algorithm}
5) begin
6) get all the cut vertices of G; {See[6]}
7) S:= {Sj I Sj is a cut-edge derived from a cut vertex in the last step};
8) return S;

25l

9) endthen
10) else return null
11) else {1\:(G)=2}

12) if v>2g(G)-2 then {O(v 2
), but this may be run only once during the

algorithm}
13) begin
14) divide G into 3-connected components;
15) get all the vertex cutsets of order 2; {See[6]}
16) S: = {Si I Si is an edge cutset of order 2 derived from a vertex cutset in the

last step };
17) return S;
IS) endthen
19) else return null;
20) choose an edge e=xy of G; {G is 3-connected, if we reach here}
21) find out all the minimum cycles Ci that contain e, let c:=ICd, and C:={ (V(Ci),

V(G)\V(Ci))}; {Case 1, see function Min_cycle(x,y), which carries out the task
in detail and is described after the main procedure }

22) G' :=Gge;
23) S:=Cyclic_connectivity(G'), and s:=ISd, VS i E S {the algorithm is recursively

called}
24) if S= cD then
25) if v>2c-2 then return C
26) else return null;
27) flag:=true;
2S) for each SjE S do
29) begin
30) find out an xy-path Pin G, which is not the edge e;
31) if IPnSd is odd
32) then

33)
34)
35)
36)
37)

flag:=flag/\ true; {x and y lies in different components of Gge -Sd
else begin {IPnSd is even}

flag:=flag /\ false;
mark Si as "remain";

endelse
3S) endfor;
39) if flag=true {Case 2 }
40) then if c=s then return C {smaller cyclic edge cutsets are found in Case 1 }
41) else begin {c>s, if we reach here}
42) S:={SiU {e}1 SiES };
43) if c=s+ 1 then return C uS;
44) else return S;
45) endelse;
46) S:={ Si I SjE Sand Si is marked as "remain"}
47) For each SiE S do
48) If there are Si1, Si2 such that Sil, Si2 are obtained from Si as in Case3

49) then S:=S-{Sd+{ Sil, Si2}; {Case 3 }
50) if c=s
51) then return C u S
52) else return S; {c>s, if we reach here}
53) end-of-program.

In step 20 of the main procedure, we must maintain the 3-regularity of Gee, so that
the recursive calling of the algorithm can be continued. To achieve this, we choose an
edge e such that neither of its endpoints is contained in a triangle. If the first edge we
consider has one endpoint in a triangle, we can choose an edge in this triangle, and this
edge must satisfy the requirement, or else G is not 3-connected. This operation of
choosing an edge e to remove can be done in constant steps.

The following Function is to find out all the minimum cycles that contain the edge
e=xy. This is carried out by simutaneously growing width-first search trees from x and y,
one level during each loop, see Figure 5 and Figure 6. The vertices in the left tree are
marked as "left" while the ones in the right tree are marked as "right". If minimum cycles
are found, the both trees do not need to grow any further, see Figure 5 and Figure 6. The
algorithm is described in pseudo-PASCAL as below.

Function Min_cycle(x,y):
0) Begin
1) mark x as "left";
2) mark y as "right";
3) push x to queue 1;
4) push Y to queue2;
5) C:=null; {C is the set of the minimum cycles}
6) i:=O; {i is the level of the width-first search "tree"}
7) even:=false; {true if minimum cycles of even length are found}
8) odd:=false; {true if minimum cycles of odd length are found}
9) While not(even) and not(odd) do
10) Begin
11) for j= 1 to zi do
12) begin
13) rl :=dequeue(queue 1);
14) for each vertex v adjacent to rl do
15) if v is not marked
16) then mark v as "left" and enqueue(queuel, v);
17) else if (v is marked "left") and (v is not the father of fl)
18) then
19) return null {no such cyclic edge cutsets are minimum}
20) else begin {see Figure 5, v is marked "right"}
21) even:=true;
22) C:=C U {the cycle containing (r\ ,v)};
23) endelse
24) endfor
25) if not(even)

26) then for j= 1 to t do
27) begin
28) r2:=dequeue(queue2);
29) for each vertex v adjacent to r2 do
30) if v is not marked
31) then mark v as "right" and enqueue(queue2, v);
32) else if (v is marked "right") and (v is not the father of r2)
33) then return null {no such cyclic edge cutsets are minimum}
34) else begin {see Figure 6, v is marked "left"}
35) odd:=true;
36) C:=C U {the cycle containing (r2,v)};
37) endelse
38) endfor;
39) i:=i+ 1;
40) endwhile
41) return C;
42) End-of-function

i=2
i=2

Figure 5 Figure 6

Theorem 4: The algorithm Min_cycle(x,y) returns all the minimum cycles that
contain edge (x,y).

Proof.
The algorithm Min_cycle(x,y) proceeds by growing two width-first search trees

simultaneously. Since the trees are contructed by simultaneously applying width-first
search of a graph, when an edge e=uv in E(G)\E(T) occurs, its two ends must lie in the
same level (from left tree to right) or lie in two successive levels (from right tree to left).
Otherwise, it joins two vertices in the same tree (left or right).

If u and v are in the same level, e will be found while extending the next level in the
left tree, and all such edges can be found after extending this level in the left tree, So if an
even cycle is found, we don't need to extend the right tree any more, see line 24), Each of
these edges corresponds to an even minimum cycle containing edge (x,y).

If u and v are in successive levels, u in the left tree and level(u»level(v), then e will
be found when extending the (u)th level in the right tree and all such edges can be found
after extending this level in the right tree. Each of these edges corresponds to an odd
minimum cycle containing edge (x,y).

If we find an edge joining two vertices in the same tree (left or right) before we find
an edge joining two vertices in different trees, then we find a cycle shorter than any cycle
containing e=xy. When the input graph G has cyclic edge cutsets, i.e, v > 2g - 2 by

Theorem 1, the edges incident with a shortest cycle form a cyclic edge cutset, hence

CA(C) s g and the edges incident with a minimum cycle containing e=xy do not form a

minimum cyclic edge cutset. That is why in line 17)-19) and line 32)-33) of Function
Min_cycle(x, y), we return null instead of going further to find cycles containing e=xy. 0

Theorem 5: The algorithm Cyclic_connectivity(G) returns all the minimum cyclic
edge cutsets of G.

Proof.

The algorithm proceeds by comparing the minimum cyclic edge cutsets of Gee and
those of G.

Each time the program is recursively called, the input graph is smaller than the
original one by two vertices. If the recursive calling continues, it will certainly stop when
the input graph is 2-connected or it has shrunk to ~. So the algorithm will necessarily
terminate with any input 3-regular graph.

The relation between the minimum cyclic edge cutsets of Gee and those of G is
described in the second section.

In Case I, let C be a minimum cycle containing the removed edge, then
S=(V(C),V(G)\V(C») is a minimum edge cutset of Case 1, i.e. C is the only cycle in one
component A (actually A=C) of G-S. If there are other edges in A, the component A will
be a forest, in which the trees have their roots in C, and the edge cutset (V(A),
V(G)\V(A)) must contain more edges than IV(C)I. So it is sufficient to find all the
minimum cycles containing the removed edge to form the component A, which is
described in the Function Min __ cycle(x, y).

In Case2 and Case3, some steps are taken to convert certain cyclic edge cutsets of

Gee into those of G. Others are cutsets both of Gee and G, and they will remain as they
are returned. Finally, we should compare the edge cutsets in Casel with those derived

from Gee, so that the program returns the minimum among them, this is done in Jines
40),43), 50) in the main procedure. [J

4. Cyclic edge cutsets of the Petersen graph found by applying the algorithm
Here we apply the algorithm provided above to the well-known 3-connected, 3-regular

graph, the Petersen graph. We get 6 minimum cyclic edge cutsets. The first two edge

cutsets are found by adding (VI,V6) to the minimum cyClic edge cutsets of G8 (VI,V6),
which is Case 2 of the algorithm; and the other four cutsets are found by finding 4
minimum cycles containing (VI ,V6), which is Case 1 of the algorithm. We will run through
the algorithm step by step.

1) We choose (VI,V6) as the edge to remove, then Gee will look as the graph in Figure
8;

~ ____________ ~V5

Figure 8

2) Since the graph is still 3-connected, so we continue to choose an edge (V2,VS) to

remove, and Gee will be K3,3, which is shown as below, removing (V7,VIO) will
result in ~ which consists of Vg, V9, V3 and V4.

Figure 9

3) When the graph is ~, the algorithm returns an empty set, since K4 has no cyclic
edge cutsets. In the graph in Figure 9, there are four minimum cycles contain
(V7,VIO), they are V7V3V4VIO, V7V3VgVIO, V7V9V4VIO and V7V9VgVIO. In line 2l in the
algorithm, c is 4, and in line 23, S is an empty set. Since v>2c-2 does not hold, in
line 25 the algorithm returns an empty set to the caller.

4) In the graph in Figure 8, there are two minimum cycles containing (V2,VS), they are

V2V7VjOVS and V2V1V4VS. This time S is still an empty set, and v>2c-2 holds, in line
25 the algorithm returns the set C= { (V2,V3), (V7,V9), (VjO,Vg), (VS,V4», «V2,V7),
(V3,Vg), (V4,V9), (VS,VIO» }.

5) In the original graph, there are four minimum cycles containing (V\,V6), they are
VjV2V3VSV6, VjV2V7V9V6, VjVSVIOVgV6 and VjVSV4V9V6. Figure 10 shows how the
minimum cycles are found by applying Function Min_cycle. In line 21, c=5, C= {
«Vj,V5), (V2,V7), (V3,V4), (Vg,VIO), (V6,V9», «Vj,vs), (V2,V3), (V7,VIO), (V9,V4), (V6,Vg»,
(Vj,V2), (VS,V4), (VjO,V7), (Vg,V3), (V6,V9», «Vj,V2), (vs,Vjo), (V4,V3), (V9,V7), (V6,Vg)
}. In line 23, s=4, S={ «V2,V3), (V7,V9), (VlO,Vg), (VS,V4», «V2,V7), (V3,Vg), (V4,V9),
(VS,VIO» }.

6) Since G-{ Sju(v\ ,V6)} and 08 (VI,V6)-Sj are the same for all Sj in S, in line 39, the
flag is true. And line 41 is carried out. Then since c=s+ 1, CuS is returned as the set
of all the minimum cyclic edge cutsets of the Petersen graph. These are shown in
Figure 11, the first two cutsets are in S, the remaining are in C.

v, v,

v, v, v,

Figure 1 J

5. The time complexity the algorithm
Lemma 6: The girth g of a 3-regular graph G is bounded by 2*log2n, where n is the

2[)/

number of vertices of G.
Proof.
According to the Function Min_cyc1e(x,y), let c be the length of the minimum cycles

containing edge (x,y). If c is even, see Figure 5, then
c

2(22-1):::;n

g :::; c :::; 2 log (~+ 1).
2 2

If c is odd, see Figure 6, we get

(2 l +1_1)+(2 l -l)~n
2 1 2(n+2)+1 g ~ e ~ og 3

Hence the lemma followsIl

Lemma 7: The number en of minimum cycles found in the Function Min_cycle(x,y)

is bounded by 2l~J, where c is the length of the cycles.
Proof.
In the Function Min_cyc1e(x,y), each leaf vertex of the width-first search tree can

stretch out at most two edges to the other tree. If c is even, see Figure 5, then

en ~ 2X2%-1 == 2l%J.

If c is odd, see Figure 6, we have

en ~ 2x 2l%J-! == 2l%J 0

Hence the lemma follows. 0

Only when c is equal to the girth of G, can these cycles each be incident to a
minimum cyclic edge cutset of G, hence the number of minimum cyclic edge cutsets
found in Case I is bounded by u, by lemma 6 and lemma 7.

Theorem 8: In the worst situation, the time. complexity of the algorithm

Cyclic_conncctivity(G) is bounded by O(n} ·!og2 n).

Proof.
The recursive program will stop recursive calling when either G is ~ or G is 1 or 2-

connected. Suppose G has n vertices and, when the program stops recursively calling, G'
has r vertices. In the worst situation, each time when the program returns to the upper

level, it returns sue, that is all the minimum cycles found are finally each incident to a
minimum cyclic edge cutset of G.

During each recursive step, the time needed by the algorithm is linear to the sum of
edges of all the minimum cyclic edge cutsets. By Lemmas 6 and 7, the total time is

O(r -21og2 r+ (r+ (r + 2))- 210g 2 (r+2) + +(r+ (r + 2) + ... +n)· 2log2 n),
where (r+(r+2)+ ... +i) is the possible number of minimum cyclic edge cutsets of the

graph with i vertices, this is calculated by recursively adding the possible number of

minimum cyclic edge cutsets of Gee and the number of those found in Case I; 2Iog2(i) is

the upper bound of the girth of the graph with i vertices. The product of these two terms
is an upper bound of the sum of edges of all the minimum cyclic edge cutsets.

From the formula above, we have
n-r (n-r-i+2)

O(I [(r+i)]·2·log 2 11)

;=0 2

11 - r + 2 Il-r

~O(·2·)og2 11 · I,(r+i»
2 ;=0

i IS even

0(
11 - r + 2 2 I (n + 2)· n)

~ 2" og2 11' 4

To be simple, the time complexity is bounded by O(11' ·10g2 11). [1

Remark: The time complexity as analysed here provides only a very rough upper
bound, which can be reduced by refined analysis. The problem is the difficulty of
counting the minimum cyclic edge cutsets of a graph.

6. References
[1] D. W. Barnette and B. Grunbaum, On Steinitz's theorem concerning convex 3-

polytopes and on some properties of planar graphs. Many Facets of Graph Theory,
Lecture Notes in Mathematics, Vol. 110. Springer-Verlag, New York (1966) 27-40.

[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press,
London (1976).

[3] D. A. Holton, B. Jachson, A. Saito and N. C. Wormald, Removable Edges in 3-
connected Graphs, Journal of Graph Theory, John Wiley & Sons Inc., Vol. 14, No.4,
(1990) 465-473.

[4] D. A. Holton, Dingjun Lou and M. D. Plummer, On the 2-extendability of Planar
Graphs, Discrete Math., North-Holland, 96(1991), 81-99.

[5] D. A. Holton and M. D. Plummer, Matching Extension and Connectivity in graphs
II, Proc. Sixth International Conference on the Theory and Applications of Graphs
(Kalamazoo, 1988), John Wiley & Sons, New York, 1988, 651-665.

[6] J. E. Hopcroft and R. E. Tarjan, Dividing a graph into triconnected components,
SIAM 1. Computing 2:3 (1973).

[7] Dingjun Lou and D. A. Holton, Lower Bound of Cyclic Edge Connectivity for n­
extendability of Regular Graphs, Discrete Math., North-Holland, II2(1993), 139-
150.

[8] B. Peroche, On Several Sorts of Connectivity, Discrete Math., North-Holland, 46
(1983) 267-277.

[9] M. D. Plummer, On the cyclic connectivity of planar graphs, in: Y. Alavi, D. R. Lick
and A. T. White, eds., Graph Theory and Applications (Springer-Verlag, Berlin,
1972) 235-242.

[10] P. G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edingburg 10 (1880)
501-503.

(Received 1/9/2000)

259

