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Department of Mathematics and Statistics

University of Vermont
16 Colchester Avenue
Burlington, VT 05401

U.S.A.
dalibor.froncek@uvm.edu
dalibor.froncek@vsb.cz

Abstract
So far, the smallest complete bipartite graph which was known to have
a cyclic type decomposition into cubes Qd of a given dimension d was
Kd2d−2,d2d−2. Using binary Hamming codes we prove in this paper that
there exists a cyclic type factorization of K2d−1,2d−1 into Qd if and only
if d is a power of 2.

1. Introduction

The 1-dimensional cube Q1 is the graph K2 while the 2-dimensional cube
Q2 is isomorphic to the cycle C4. In general, the d-dimensional hypercube Qd is
defined recursively as the product Qd−1�K2, which is defined as follows: Take
two copies, Q and Q′, of Qd−1 with vertex sets V (Q) = {v1, v2, . . . , v2d−1} and
V (Q′) = {v′1, v′2, . . . , v′2d−1} and join each pair of corresponding vertices vi and v′i
by an edge viv

′
i. The resulting graph is then the hypercube Qd. Obviously, such

a hypercube has 2d vertices and d2d−1 edges. Another useful definition of the
hypercube Qd (often called just a cube) can be stated as follows: Take all binary
vectors of length d and assign them to vertices u1, u2, . . . , u2d . Then join two
vertices by an edge if and only if the corresponding binary vectors differ exactly at
one position. We present in Figure 1 bipartite adjacency matrices (BAM) of the
cubes Qd for d = 1, 2, 3, 4.

One can notice that the 2d−1 × 2d−1 bipartite adjacency matrix BAM(Qd)
of cube Qd can be easily recursively constructed from the 2d−2 × 2d−2 matrix
BAM(Qd−1) of Qd−1 in such a way that we put into both left upper and right
lower 2d−2 × 2d−2 submatrices of BAM(Qd) a copy of BAM(Qd−1). Then we fill
the back diagonal with “1”s and all other entries with “0”s.
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[ 1 ]
[

1 1
1 1

] ⎡
⎢⎣

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 1
1 1 1 0 0 0 1 0
0 1 1 1 0 1 0 0
1 0 1 1 1 0 0 0
0 0 0 1 1 1 0 1
0 0 1 0 1 1 1 0
0 1 0 0 0 1 1 1
1 0 0 0 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1

As the hypercubes are bipartite graphs, it is natural to ask which complete
bipartite graphs can be decomposed or even factorized into hypercubes. We say
that Kn,m has a decomposition into subgraphs H1,H2, . . . ,Hp, all isomorphic to a
given graph H, if V (H1) = V (H2) = · · · = V (Hp) = V (Kn,m) and the edge sets
E(H1), E(H2), . . . , E(Hp) form a decomposition of E(Kn,m). That means that
E(H1)∪E(H2)∪ · · · ∪E(Hp) = E(Kn,m) and E(Hi)∩E(Hj) = ∅ for i �= j. Hence
by decomposition of Kn,m into hypercubes we in general mean that the graph
H has one component isomorphic to a cube Qd for some d and (possibly) some
isolated vertices. By factorization we mean that the graph H itself is isomorphic
to a hypercube Qd for an appropriate d and therefore contains no isolated vertices.
The subgraphs H1,H2, . . . ,Hp are then called factors of Kn,m. The necessary
condition for factorization of a complete bipartite graph Kn,m into d-dimensional
hypercubes is that the parts have to be both of the same order 2d−1 and d itself
must be a power of 2. If it is not so, then the number of edges (or size) of the
hypercube does not divide the size of Kn,m. It was proved by El-Zanati and Vanden
Eynden [1] that this necessary condition is also sufficient. In fact, they also proved
that for other dimensions than powers of 2 the hypercubes Qd can be packed into
K2d−1,2d−1 , the smallest complete bipartite graph that allows embedding of Qd.
Their result follows.

Theorem 1. (El-Zanati, Vanden Eynden [1]) Let d be a positive integer with t =
2d−1 = dq + r, 0 ≤ r < d. Then Kt,t can be decomposed into q cubes Qd and an
r-factor. If r �= 0 this r-factor itself decomposes into 2d−r cubes Qr.

However, in this paper we are interested in cyclic type decompositions and the
decompositions used in the proof of Theorem 1 are not of this type. Cyclic type
decompositions were studied by Vanden Eynden [6]. We shall follow the notation
used in [6]. Let Kn,m be a complete bipartite graph and G a bipartite graph such
that nm = q|E(G)|. We denote edges of Kn,m as (i, j), where i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . ,m}. We say that Kn,m has an (r, s)-cyclic decomposition into
G if we can assign labels to the vertices of G such that for any edge (i, j) that
belongs to G0

∼= G all edges (i + lr, j + ls), l = 1, 2, . . . , q − 1 belong to different
copies G1,G2, . . . ,Gq−1 of G, where the set {G0,G1, . . . ,Gq−1} forms a decompo-
sition of Kn,m. Vanden Eynden generalized earlier results of Rosa [5] (concerning

202



decompositions of complete graphs) to prove the following.

Theorem 2. (Vanden Eynden [6]) Let G be a bipartite graph with parts U,V and
edge set E. Suppose that n and m are positive integers and r and s are integers such
that r|m, s|n, and |E| = gcd(ms,nr). Let t = gcd(r, s), R = r/t, S = s/t, and
k = gcd(Sm,Rn). Define ψ : Zm × Zn → Zk × Zt by ψ(i, j) = (Si − Rj, 	i/R
).
Then there exists an (r, s)-cyclic decomposition of Km,n into copies of G if and
only if there exist one-to-one functions M and N from U and V into Zm and
Zn, respectively, such that the function θ : E → Zk × Zt defined by θ(u, v) =
ψ(M(u),N(v)) is one-to-one.

It was proved by Vanden Eynden that for a given d ≥ 2, graph Kd2d−2,d2d−1 can
be (r, s)-cyclically decomposed into hypercubes Qd. This result was extended by
the author in [3]. It was shown that for any given d ≥ 2, graph Kd2d−2,d2d−2 can also
be (r, s)-cyclically decomposed into hypercubes Qd. A (4, 8)-cyclic factorization of
K16 into Q4 was also presented in the paper. Another (r, s)-cyclic factorization of
K16 into Q4 with parameters r = s = 4 was found by Fĺıdr [2], who also proved
with the help of a computer that K128,128 can be (8, 128)-cyclically factorized into
Q8.

In this paper we prove that for every d which is a power of 2 there exists an
(d, 2d−1)-cyclic factorization of K2d−1,2d−1 into 2d−1/d copies of hypercube Qd.

2. (r, s)-cyclic factorization of K2d−1,2d−1 into hypercubes Qd

First we determine suitable values of the parameters r, s. According to Theo-
rem 2 we want to choose r, s such that r, s|2d−1 and gcd(r2d−1, s2d−1) = |E(Qd)| =
d2d−1. Then obviously gcd(r, s) = d. Because we know that r, s and d are pow-
ers of 2, we can see that d = min{|r|, |s|}. We choose d = −r. It follows from
Theorem 2 that t = gcd(r, s) = d,R = r/t = −d/t = −1 and S = s/t = s/d.
Furthermore, k = gcd(S2d−1, R2d−1) = gcd(S2d−1,−2d−1) = 2d−1. Hence we get
ψ : Z2d−1 × Z2d−1 → Z2d−1 × Zd defined by ψ(i, j) = (Si + j,−i). Similarly, if
we set d = r, we have ψ(i, j) = (Si − j, i). Thus we get the following necessary
condition for the value of the parameter r.

Proposition 3. If for a given d, d = 2c ≥ 2, there exists an (r, s)-cyclic factor-
ization of Kn,m into Qd with |r| ≤ |s|, then n = m = 2d−1, |r| = t = d, k =
2d−1, |R| = 1, S = s/d and the function ψ : Z2d−1 × Z2d−1 → Z2d−1 × Zd is defined
as ψ(i, j) = (Si + j,−i) for r = −d or ψ(i, j) = (Si − j, i) for r = d.

Before we proceed to a general construction, we present here an (r, s)-cyclic
factorization of K8,8 into Q4. We define the cube Q4 by the bipartite adjacency
matrix presented in Figure 1 and label the vertices of each partite set of the cube
Q4 (that means, define the functions θ,M,N) with labels from the set {0, 1, . . . , 7}.
From now on we always assign vertices u1, u2, . . . , u2d−1 to the rows 1, 2, . . . , 2d−1,
respectively, and v1, v2, . . . , v2d−1 to the columns 1, 2, . . . , 2d−1, respectively.

According to Proposition 3, we set r = −4, s = 8. This yields t = 4, R =
−1, S = 2 and k = 8. The function ψ : Z8 × Z8 → Z8 × Z4 is then ψ(i, j) =
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(2i + j,−i). We define the functions M and N from U = {u1, u2, . . . , u8} and
V = {v1, v2, . . . , v8} both into Z8 as M(ua) = a − 1 for a = 1, 2, 3, 4, M(u5) =
5,M(u6) = 4,M(u7) = 7,M(u8) = 6 and N(vb) = b − 1 for b = 1, 2, . . . , 8. The
function θ defined in Theorem 2 is one-to-one, as can be observed from the “labeling
array” shown in Figure 2.

Notice that the asterisks correspond to “0”s in the bipartite adjacency matrix
of Q4. A non-blank entry in a row i and a column j denotes the value of the first
entry of the function θ(ui, vj) = (2M(ui) + N(vj),−M(ui)), that means, the sum
2M(ui) + N(vj) taken modulo 8 (because k = 8). The second entry, −M(ui), is
taken modulo 4, as the parameter t equals 4.

N 0 1 2 3 4 5 6 7
M v1 v2 v3 v4 v5 v6 v7 v8

0 u1 0 1 ∗ 3 ∗ ∗ ∗ 7
1 u2 2 3 4 ∗ ∗ ∗ 0 ∗
2 u3 ∗ 5 6 7 ∗ 1 ∗ ∗
3 u4 6 ∗ 0 1 2 ∗ ∗ ∗
5 u5 ∗ ∗ ∗ 5 6 7 ∗ 1
4 u6 ∗ ∗ 2 ∗ 4 5 6 ∗
7 u7 ∗ 7 ∗ ∗ ∗ 3 4 5
6 u8 4 ∗ ∗ ∗ 0 ∗ 2 3

Figure 2

From now on, if we view a row i of a matrix as a vector, we denote it by
ı̄. We can observe that the sums of row vectors 1̄ + 6̄, 2̄ + 5̄, 3̄ + 8̄ and 4̄ + 7̄
of the bipartite adjacency matrix BAM(Q4) always give the 8-dimensional vector
(1, 1, . . . , 1). Moreover, if we consider also the rows of the labeling array of cube Q4

as vectors (with asterisks replaced by “0”s), we can see that the set of entries of each
of four resulting vectors 1̄+6̄, 2̄+5̄, 3̄+8̄ and 4̄+7̄ is precisely the set {0, 1, 2, . . . , 7}.
Why is it so? Notice that M(u1) ≡ M(u6) ≡ 0 (mod 4),M(u2) ≡ M(u5) ≡ 1
(mod 4),M(u3) ≡ M(u8) ≡ 2 (mod 4),M(u4) ≡ M(u7) ≡ 3 (mod 4) and d = 4.

Let M(ui1) ≡ M(ui2) ≡ b (mod d), say M(ui1) = gd + b,M(ui2) = hd + b.
Then for S = s/d = 2 we get SM(ui1) = s

d(gd + b) = sg + s
db = 8g + 2b. Similarly,

SM(ui2) = s
d (hd + b) = sh + s

db = 8h + 2b. Because the first entry of function θ,
2M(ui)+N(vj), is taken modulo 8, we can see that 2M(ui1)+N(vj1) = 2b+ j1−1
and 2M(ui2)+N(vj2) = 2b+ j2−1. On the other hand, the second entry, −M(ui),
is taken modulo 4. Thus we have shown that θ is really one-to-one: If M(ui1) �≡
M(ui2) (mod 4), then θ(ui1 , vj1) differs from θ(ui2, vj2) in the second entry. If
M(ui1) ≡ M(ui2) (mod 4), then θ(ui1 , vj1) differs from θ(ui2 , vj2) in the first entry
as long as j1 �= j2. But for every choice of i1 and i2 such that M(ui1) ≡ M(ui2)
(mod 4) we can see that in each column of BAM(Q4) exactly one of the rows i1, i2
contains “1” while the other one has “0” there. Or, as we said equivalently above,
the sum of the row vectors ı̄1 and ı̄2 is equal to (1, 1, . . . , 1).
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One can also check that in BAM(Q8) there are eight classes of sixteen rows
each with the property that the sum of the sixteen corresponding vectors always
gives the 128-dimensional vector (1, 1, . . . , 1). For instance, one such a class con-
sists of rows 1, 10, 19, 28, 34, 41, 52, 59, 72, 79, 86, 93, 103, 112, 117, 126, another one
of rows 6, 13, 24, 31, 37, 46, 55, 64, 67, 76, 81, 90, 100, 107, 114, 121. Therefore, it is
reasonable to expect that we could use similar approach as in the previous case
and obtain an (r, s)-cyclic factorization of K128,128 into Q8. We thus formalize the
method used above for the general case for any d = 2c > 4. Later we shall guarantee
the existence of the classes of rows giving always as their sum the 2d−1-dimensional
vector (1, 1, . . . , 1).

Suppose that for a given d = 2c ≥ 4 and for p = 2d−1/d there exists a set of p
row vectors of BAM(Qd), {ı̄1, ı̄2, . . . , ı̄p}, such that their sum is equal to the 2d−1-
dimensional vector (1, 1, . . . , 1). We will say that this set is the summing class of
these rows and/or of the corresponding vertices ui1 , ui2 , . . . , uip

. It is obvious that
no two rows of the same summing class SC can have “1” in the same column. We
will also say that two edges of Qd, (u1, v1) and (u2, v2), belong to the same labeling
class if θ(u1, v1) = (x, z) and θ(u2, v2) = (y, z) for some z ∈ {0, 1, . . . , d − 1} and
x, y ∈ {0, 1, 2, . . . , 2d−1 − 1}. Each “1” appearing in one of rows ı̄1, ı̄2, . . . , ı̄p (and
consequently in the vector (1, 1, . . . , 1)) corresponds to one edge of Qd. We want
to define the one-to-one functions M and N in such a way that the 2d−1 edges
corresponding to the 2d−1 “1”s of a summing class SC will form a labeling class.
Moreover, we want to guarantee that the function θ restricted to the vertices of
the summing class SC will be one-to-one.

Let (u1, v1) and (u2, v2) be edges such that vertices u1 and u2 belong to the
same summing class SC. Because θ(ui, vj) = (SM(ui) + N(vj),−M(ui)) and we
want (u1, v1) and (u2, v2) to fall to one labeling class, it must hold that M(u1) ≡
M(u2) ≡ b (mod d) for some b. Furthermore, in summing class SC there is exactly
one “1” in each column and therefore v1 �= v2. Because N has to be one-to-one, it
must hold that N(v1) �≡ N(v2) (mod 2d−1), since d|2d−1. But then θ(u1, v1) can be
equal to θ(u2, v2) only if SM(u1) �≡ SM(u2) (mod 2d−1). Hence it remains to find
the parameter S and the function M such that SM(u1) ≡ SM(u2) (mod 2d−1) for
every pair of vertices u1, u2 that belong to the same summing class SC. Because
we already know that M(u1) ≡ M(u2) ≡ b (mod d) for some b, we can write
M(u1) = a1d + b and M(u2) = a2d + b. To guarantee that SM(u1) ≡ SM(u2)
(mod 2d−1) it suffices to choose S such that Sd ≡ 0 (mod 2d−1). Because S = s/d,
we can see that S = 2d−1/d will do for any choice of a1, a2. This yields s = 2d−1.

Let us briefly repeat what we have done so far. We have summing class SC
of rows {ı̄1, ı̄2, . . . , ı̄p}, and the corresponding set of vertices {ui1 , ui2 , . . . , uip

} of
partite set U of Qd. We have an arbitrary one-to-one function N and the function
M defined as M(uz) = azd + b for each z ∈ {i1, i2, . . . , ip}. We have chosen
s = 2d−1. When we set az = z − 1 for each z = 1, 2, . . . , p, we can see that M
restricted to summing class SC = {ui1 , ui2 , . . . , uip

} is one-to-one.
Therefore, if we now find a way how to split the rows of BAM(Qd) into d

summing classes SC0, SC1, . . . , SCd−1 forming a decomposition of the set of all
rows of BAM(Qd), we are done. Each summing class SCb will then determine
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2d−1 edges that will form one of the labeling classes. Before we do that, we first
formalize our previous thoughts as follows.

Lemma 4. For a given d, d = 2c ≥ 4, set r = −d, s = 2d−1 and p = 2d−1/d.
Choose b ∈ {0, 1, . . . , d − 1}. Let SCb = {ı̄1, ı̄2, . . . , ı̄p} be a summing class of
row vectors of BAM(Qd) and Ub = {ui1 , ui2 , . . . , uip

} be the corresponding set of
vertices of partite set U of Qd. Denote Eb the set of all edges having one of its
endvertices in Ub. Let N : V → Z2d−1 be defined as N(vq) = q − 1 for each
q ∈ {1, 2, . . . , 2d−1} and Mb : Ub → Z2d−1 be defined as Mb(uiz

) = (z − 1)d + b
for each z ∈ {1, 2, . . . , p}. Then the function θb : Eb → Z2d−1 × Zd defined by
θb

(
u, v

)
=

(
2d−1

d Mb(u) + N(v),−Mb(u)
)

is one-to-one.

Proof. For any fixed b0 and any uiz
∈ Ub0 we have Mb0(uiz

) = (z − 1)d + b0 ≡ b0

(mod d). This yields θb0
(
uiz

, vq

)
=

(
2d−1

d

(
(z − 1)d + b0

)
+ q − 1,−b0

)
=

(
2d−1(z −

1) + 2d−1

d b0 + q − 1,−b0

)
=

(
2d−1

d b0 + q − 1,−b0

)
for every q ∈ {1, 2, . . . , 2d−1}.

Therefore from θb0(uiz
, vq) = θb0(uix

, vy) it follows that ( 2d−1

d b0 + q − 1,−b0) =
( 2d−1

d b0 + y − 1,−b0) which yields q = y. Thus we have vq = vy which implies
immediately that uiz

= uix
, because among all rows ı̄1, ı̄2, . . . , ı̄p there is exactly

one “1” in the column corresponding to vq. This proves that θb0 is one-to-one. �
Now we are going to present a method of decomposition of rows of BAM(Qd)

into 2d−1/d disjoint summing classes. No two rows ı̄1, ı̄2 belonging to the same
class SC can have “1” in the same column. But this means that the corresponding
vertices ui1 , ui2 of partite set U of Qd have no common neighbor and hence their
distance in Qd is greater than 2. As Qd is bipartite, it follows that for any two
vertices ui1 , ui2 that belong to the same summing class it must hold that their
distance in Qd is at least 4. To achieve our goal, we use the extended Hamming
binary code Hâm(2, d).

The binary linear code C of length n and dimension k (2-[n, k]-code for short)
is a k-dimensional subspace of the n-dimensional vector space over the field GF (2)
and is defined by its generating matrix G(C) = Gk×n whose rows form a basis of
the subspace (i.e., the code) C. The parity check matrix H(C) = H(n−k)×n of the
code C is the matrix satisfying GHT = O, where O = Ok×(n−k) is the zero matrix.
The vectors of the subspace C are called codewords and the Hamming distance of
two codewords x̄, ȳ of C, denoted distHam(x̄, ȳ), is the number of positions where x̄
and ȳ differ. The minimum distance of code C, denoted d(C), is then the smallest
distance among all pairs x̄, ȳ of C.

The Hamming binary code Ham(2, 2c − 1) is the 2-[2c − 1, 2c − c − 1]-code
defined by its parity check matrix Hc×(2c−1). Recall that d = 2c. The i-th column
of matrix H is just the number i in binary form. Again, the rows of generating
matrix G form the basis of the (2c − c − 1)-dimensional subspace. The following
property of Hamming codes is a classical result and can be found in every coding
theory book.

Theorem 5. (Hamming [4]) The minimum distance of any binary Hamming code,
d
(
Ham(2, 2c − 1)

)
, is equal to 3.
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The extended Hamming binary code Hâm(2, 2c) is the 2-[2c, 2c − c − 1]-
code defined again by its parity check matrix Ĥ(c+1)×2c which arises from matrix
Hc×(2c−1) by first adding a new last column consisting of c “0”s and then adding
a new last row consisting of 2c “1”s. This is known in coding theory as adding
the overall parity check. The new row guarantees that the sum of all entries of
every codeword of extended Hamming code Hâm(2, 2c) will be zero and therefore
the number of “1”s in every codeword x̄ ∈ Hâm(2, 2c) (called the weight of x̄ and
denoted w(x̄)) will be even. The following property of extended Hamming codes
appears to be fundamental in our construction.

Theorem 6. (Hamming [4]) The minimum distance of any extended binary Ham-
ming code, d

(
Hâm(2, 2c)

)
, is equal to 4.

The assertion is obvious. By adding the averall parity check, we cannot lower
the distance between two codewords. But because the weight of any codeword of
(Hâm(2, 2c) is even, the distance between any two codewords must be also even
and therefore at least four.

Let us now turn our attention back to the definition of Qd using binary vectors.
We can see that one partite set consists precisely of all vertices whose corresponding
vectors have an even weight while the other one consists precisely of all vertices
whose corresponding vectors have an odd weight. It is not difficult to observe
that the even-weight vectors form a (d − 1)-dimensional subspace W of the space
V (2, d) of all binary vectors of length d (where d = 2c) and that Hâm(2, 2c) is a
(d− c − 1)-dimensional subspace of W . Therefore, we can now decompose W into
2d−1/2d−c−1 = 2c = d cosets x̄ + Hâm(2, 2c), where x̄ ∈ W . Indeed, the order
of each coset is also 2d−c−1 = 2d−1/d. It is also well known from coding theory
that the minimum distance in each such a coset is again 4. We summarize these
well-known facts as a corollary.

Corollary 7. Let Hâm(2, 2c) be the extended binary Hamming code of length d =
2c. Let W be the (d − 1)-dimensional subspace of V (2, d) consisting of all vectors
of even weight. Then there exists a decomposition of W into 2d−1/2d−c−1 = 2c = d
cosets x̄+Hâm(2, 2c), where x̄ ∈ W . Moreover, for each such coset x̄+Hâm(2, 2c)
it holds that d(x̄ + Hâm(2, 2c)) = 4.

To arrive at the desired conclusion, we have to make one more observation.
It is another well known fact that the graph distance of two vertices in a cube is
equal to the Hamming distance of their binary vector labels. The proof of this
observation is not difficult and can be left to the reader.

Proposition 8. Let Qd be a d-dimensional hypercube and let φ be a one-to-one
function from the vertex set of Qd into V (2, d) defined in such a way that two
vertices x, y ∈ Qd are adjacent if and only if their respective labels, x̄ = φ(x) and
ȳ = φ(y), differ exactly at one position. Then

distQd
(x, y) = distHam(x̄, ȳ),

where distHam(x̄, ȳ) is the Hamming distance of the vectors x̄ and ȳ.
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But now we are done. We have partite set U of Qd corresponding to subspace
W . We can decompose U into d subsets corresponding to the cosets of W according
to the vector labels of the vertices of U . In each of these subsets there are 2d−1/d
vertices and the distance between any two vertices in each subset is at least 4.
Therefore no two vertices of the same subset (which is in fact our summing class)
have a common neighbor and therefore they do not have “1” in the same column
of BAM(Qd). Because every vertex of Qd is indeed of degree d, there are exactly
2d−1 “1”s in the 2d−1/d rows of BAM(Qd) corresponding to the vertices of the
same subset. But it then follows that the sum of the row vectors of the same subset
of BAM(Qd) is equal to the 2d−1-dimensional vector (1, 1, . . . , 1) and the vertices
really form a summing class. We summarize our observations in the following
theorem.

Theorem 9. Let Qd with d = 2c ≥ 4 be a d-dimensional hypercube with vertex
bipartition U,V defined by bipartite adjacency matrix BAM(Qd) whose rows cor-
respond to partite set U and columns correspond to partite set V . Let every vertex
of Qd be labeled by a vector of d-dimensional binary vector space V (2, d) in such a
way that

(1) the labeling function φ : U ∪ V → V (2, d) is one-to-one,
(2) U consists of the vertices whose vector labels have an even weight, and
(3) two vertices u and v are adjacent if and only if their vector labels φ(u) and

φ(v) differ exactly in one position.

Let Hâm(2, d) be the extended binary Hamming code and x̄ be an arbitrary vector
of V (2, d) of even weight. Then the vectors of the coset x̄ + Hâm(2, d) determine
the vertices of one summing class of U , and summing classes SC0, SC1, . . . , SCd−1

form a decomposition of partite set U .

Proof. Let U = {u1, u2, . . . , u2d−1} and for i = 1, 2, . . . , 2d−1 let ı̄ be the row
vector of BAM(Qd) corresponding to vertex ui. Let φ : U ∪ V → V (2, d) be a
bijection defined in such a way that two vertices ui and vj are adjacent in Qd

if and only if vectors ūi = φ(uj) and v̄j = φ(vj) differ exactly in one position.
If x̄ is an arbitrary vector of an even weight, then according to Corollary 7 for
every two vectors ūi1 and ūi2 that belong to coset x̄ + Hâm(2, d) it holds that
distHam(ūi1 , ūi2) ≥ d

(
x̄ + Hâm(2, d)

)
= 4. But from Proposition 8 it follows

that distQd
(ui1 , ui2) = distHam(ūi1 , ūi2) ≥ 4. Therefore, vertices ui1 and ui2 do

not have a common neighbor in Qd. Hence for the corresponding row vectors ı̄1
and ı̄2 it holds that w(ı̄1 + ı̄2) = w(ı̄1) + w(ı̄2) = 2d. It immediately follows
that if x̄ + Hâm(2, d) = {ūi1 , ūi2 , . . . , ūip

}, where p = 2d−c−1 = 2d−1/d, then
w(ı̄1+ ı̄2+ · · ·+ ı̄p) = w(ı̄1)+w(ı̄2)+ · · ·+w(ı̄p) = pd = 2d−c−1d = 2d−1. Therefore,
row vectors ı̄1, ı̄2, . . . , ı̄p form a summing class of BAM(Qd) and the corresponding
vertices ui1 , ui2 , . . . , uip

form a summing class of U . Moreover, because φ is one-
to-one, the summing classes SC0, SC1, . . . , SCd−1 clearly form a decomposition of
the partite set U . �

Our main result now follows instantly.
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Theorem 10. The complete bipartite graph Km,n has an (r, s)-cyclic factorization
into hypercubes Qd if and only if m = n = 2d−1 and d = 2c, where c is a non-
negative integer.

Proof. The necessary condition is evident: the size of Km,n is divisible by the size
of Qd only if m = n = 2d−1 and d = 2c.

For c = 0 and c = 1 we observe that K1,1 = Q1 and K2,2 = Q2. For c ≥ 2 it
follows from Theorem 9 that one partite set of graph K2d−1,2d−1 can be decomposed
into d summing classes SC0, SC1, . . . , SCd−1. From Lemma 4 it follows that there
exists one-to-one function N : V → Z2d−1 defined as N(vq) = q − 1 for q ∈
{1, 2, . . . , 2d−1} and for each SCb there is one-to-one function Mb : Ub → Z2d−1

defined as Mb(uiz
) = (z − 1)d + b for z ∈ {1, 2, . . . , p}. It also follows from the

Lemma that functions θb : Eb → Z2d−1×Zd are one-to-one. Therefore we can define
functions M : U → Z2d−1 and θ : E → Z2d−1×Zd as “joins” of the respective partial
functions Mb and θb in the obvious way: M(u) = Mb(u) and θ(u, v) = θb(u, v) if
and only if the vertex u belongs to summing class SCb. Functions M,N and θ are
clearly one-to-one. This according to Theorem 2 guarantees the existence of the
(−d, 2d−1)-cyclic factorization of K2d−1,2d−1 into hypercubes Qd. �
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3. D. Fronček, Note on cyclic decompositions of complete bipartite graphs into
cubes, Discussiones Mathematicae — Graph Theory 19 (2) (1999), 219–227.

4. R. W. Hamming, Error detecting and error correcting codes, Bell Systems Tech.
J. 29 (1950), 147–160.

5. A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs
(Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris, 1967, pp. 349–
355.

6. C. Vanden Eynden, Decompositions of complete bipartite graphs, Ars Combina-
toria 46 (1997), 287–296.

(Received 10 Jan 2001)

209


