A note on Brooks’ theorem for triangle-free graphs
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Abstract

For the class of triangle-free graphs Brooks’ Theorem can be restated in
terms of forbidden induced subgraphs, i.e. let G be a triangle-free and
K1 ,41-free graph. Then G is r-colourable unless G is isomorphic to an
odd cycle or a complete graph with at most two vertices. In this note
we present an improvement of Brooks’ Theorem for triangle-free and r-
sunshade-free graphs. Here, an r-sunshade (with r > 3) is a star K7,
with one branch subdivided.

A classical result in graph colouring theory is the theorem of Brooks [2], asserting
that every graph G is (A(G))-colourable unless G is isomorphic to an odd cycle or a
complete graph. Bryant [3] simplified this proof with the following characterization
of cycles and complete graphs. Thereby he highlights the exceptional role of the
cycles and complete graphs in Brooks” Theorem. Here we give a new elementary
proof of this characterization.

Proposition 1 (Bryant [3]). Let G be a 2-connected graph. Then G is a cycle or
a complete graph if and only if G — {u,v} is not connected for every pair (u,v) of
vertices of distance two.

Proof. Let G be a 2-connected graph of order n. If G is a cycle or a complete
graph, then obviously G — {u, v} is not connected for every pair (u,v) of vertices of
distance two. Hence, assume that G is neither a cycle nor a complete graph and that
G — {u,v} is not connected for every pair (u,v) of vertices of distance two. Note
that then there exists at least one vertex v of G with 2 < dg(v) < n — 1. Since G
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is 2-connected, there exists at least one cycle in G. Now let C' be a longest cycle
in G. Assume C is not a Hamiltonian cycle of G. Since C' is a longest cycle and
G is connected, there exist vertices y, z of C and z € V(G) — V(C), such that z is
adjacent to x and y and z is not adjacent to y, i.e. distg(z,y) = 2. Now G —{z,y} is
not connected and the 2-connectivity of G ensures besides the x — y-connecting path
Py via the remaining vertices of C' the existence of a second x — y-connecting path
Ps, which is vertex disjoint from P;. But then by gluing the common end-vertices of
Py and P, together we obtain a cycle C” of length greater than C' — a contradiction
to the special choice of C'. Thus C' = vgv; ... v,_1vg is a Hamiltonian cycle. Now we
consider a vertex v; with 2 < dg(v;) < n—1. Then there exists j & {i — 1,7+ 1} such
that v; is without loss of generality adjacent to v; but not adjacent to v;_;. Since
G — {v;,v;_1} is not connected, we obtain that v; is not adjacent to v;_. Therefore
G — {vj,v;_2} is not connected. Thus dg(v;_1) = 2, and in particular v;_; is not
adjacent to v;41. But now finally, since G —{v;_1, v;11} is connected, we immediately
achieve a contradiction, which completes the proof of this proposition. m

Theorem 2 (Brooks [2]). Let G be neither a complete graph nor a cycle graph with
an odd number of vertices. Then G is A(G)-colourable.

In the recent book of Jensen and Toft [5], (Problem 4.6, p. 83), the problem of improv-
ing Brooks’ Theorem (in terms of the maximal degree A) for the class of triangle-free
graphs is stated. The problem has its origin in a paper of Vizing [7]. The best known
(non-asymptotic) improvement of Brooks’ Theorem in terms of the maximal degree
for the class of triangle-free graphs is due to Borodin and Kostochka [1], Catlin [4]
and Kostochka (personal communication mentioned in [5]). The last author proved
that x(G) < 2/3(A(G) + 3) for every triangle-free graph G. The remaining authors
independently proved that x(G) < 3/4(A(G) + 2) for every triangle-free graph G.
For the class of triangle-free graphs, Brooks” Theorem can be restated in terms of
forbidden induced subgraphs, since triangle-free graphs G satisfy G[Ng[z]] = K1 a4 (2)
for every vertex x of G.

Theorem 3 (Triangle-free Version of Brooks’” Theorem)
Let G be a triangle-free and K ,41-free graph. Then G is r-colourable unless G is
isomorphic to an odd cycle or a complete graph with at most two vertices.

Our main theorem will extend this triangle-free version of Brooks’ Theorem. An
r-sunshade (with r > 3) is a star K, with one branch subdivided. The 3-sunshade
is sometimes called a chair and the 4-sunshade a cross.

Proposition 4 Let G be a triangle-free and chair-free graph; then x(G) < 3. More-
over if G is connected, then equality holds if and only if G is an odd hole.

Proof. Let G be a triangle-free and chair-free graph. Without loss of generality
let G be a connected graph. If G is bipartite, then x(G) < 2 and we are done.
So let G be a non-bipartite graph. With a result of Konig that every non-bipartite
graph contains an odd cycle and the clique size constraint we deduce that G' contains
an odd hole C. If G = C, then x(G) = 3. If G 2 C, then there exists a vertex
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y € V(G)—V(C) adjacent to a nonempty subset I of V(C'). Since w(G) < 2, we have
I is an independent set and |7| < (n(C) —1)/2. But then there exist four consecutive
vertices 1, ..., x4 of C such that I N{xy,...,2z4} = {x2}. Therefore {y,x1,..., 24}
induces a chair in G, a contradiction. This completes the proof of the proposition. m

Now let G be a connected triangle-free graph. For convenience we define for ev-
ery i 6 ZN and z € V(G) the sets N (z) := {y € V(G) | dista(z,y) = i}. A vertex
y € NG ( ) is also called an (i, x)-level vertex. Note that the triangle-freeness of G
forces N5 (z) to be independent for every x € V(G).

Proposition 5 Let G be a triangle-free and cross-free graph. Then x(G) < 3.

Proof. Let G be a triangle-free and cross-free graph. If A(G) = A < 3, then we are
done with Brooks’ Theorem and x(G) < 3. Now let v € V(@) be a vertex of maximal
degree A with A > 4 and suppose without loss of generality that G is connected
and we have N2 (v) # 0. We can also assume that the N(u)/N (v)-argument holds,
(i.e. G contains no pair of non-adjacent vertices u and v, such that Ng(u) C Ng(v)).
Note that the cross-freeness of G forces every vertex of NC(;2>(’U) to be adjacent to at
least |NC(;1>(’U)| —2=A—2 2> 2 vertices of Ng)(v).

Case 1: Suppose we have dg(v) > 5.

Then N (v) is an independent set. Otherwise, if there exist two adjacent (2, v)-level
vertices u; and uy, then because of [Ng(u;) NN, (1)( )| > A(G) —2 for j = 1,2, there
exists at least one (1, v)-level vertex us being adjacent to both vertices. But then
{u1, ug, us} induces a triangle — a contradiction.

Suppose now there exists uz € N(G3) (v), such that us is adjacent to a vertex uy €
(NP () U NP (0)). Since uz € N& (v), there exists us € (N2 (v) N Ng(us)). Note
that the triangle-freeness of G forces that wuy is not adjacent to wuy. Since ug is
adjacent to at least A(G) — 2 vertices of Né”(v), there exists {u(ll),u?)?ugg)} -
(NS (v) N Ng(us)). Recall that because of the definition of the sets N (v), each

M 42 A>} is non-adjacent to each vertex of {us, u4}.

vertex of {u
But then {ul", u! ), ug ) Uy, u3, ug} induces a cross — a contradiction. Hence N& (v)
is independent and N (v) = () for every i > 4. Since for any = € V(G) the set

N (z) for i € {1,2,3} is independent, we obtain that G is bipartite in Case 1.
Case 2: dg(v) = A(G) = 4.

In the following we will examine the structure of G[NS(v)]. Firstly, recall that
the cross-freeness of G forces every (2,v)-level vertex u to be adjacent to at least
two (1,v)-level vertices. On the other hand the N(u)/N(v)-argument forces every
(2, v)-level vertex u to be adjacent to at most three (1, v)-level vertices.

Case 2.1: Suppose there exists a (2, v)-level vertex uy, adjacent to at least two fur-
ther (2,v)-level vertices us and us.

Note that the triangle-freeness of G forces that us and wug are not adjacent. Fur-
thermore, u; is adjacent to exactly two (1,v)-level vertices v1 and v and Ng(ug) N



Ne(v) = Ng(us) N Ng(v) = Ne(v) — Ng(up) = {vs,vs}. Since the N(u)/N(v)-
argument holds, there exist us € (Ng(ua) — Ng(us)) and us € (Ng(u3) — Ng(uz)).
Note that us and us are contained in Né2> (v) U Ng) (v). Firstly, suppose that wuy is
a (3,v)-level vertex. Then {vi,us, u2, vs, vq, us} induces a cross — a contradiction.
Thus {ug, us} C Ng)(v). Observe that Ng(us) N Ng(v) = Ng(us) N Ng(v) = {v1,v2}
and therefore {u1,u4,us} forms an independent set. Because of the N(u)/N(v)-
argument there exist ug € (Ng(us4) — Ng(u1)) and uz € (Ng(us) — Ng(u1)). Then
ug = Uz, since otherwise {v, vy, u1, u4, us, ur} induces a cross and we obtain a con-
tradiction. Analogously to the previous consideration we obtain that ug is a (2, v)-
level vertex, Ng(ug) N Ng(v) = {vs,vs} and {us, us, ug} forms an independent set.

Hence {v,v1,...,v4,u1,...,us} obviously induces a 4-regular graph G”. But then,
since A(G) = 4 and G is connected, we deduce that G = G”. Note that since
{u1, us, ... ,us} induces a 6-cycle, G is easily 3-colourable.

Case 2.2: Every (2,v)-level vertex u is adjacent to at most one (2,v)-level vertex.
Now assume that a (2, v)-level vertex u, is adjacent to another (2, v)-level vertex us.
Then, as already mentioned, u; is adjacent to, say the (1,v)-level vertices v1 and vy
and us is adjacent to the left (1, v)-level vertices v and vy. If, say, u; is adjacent to
a fourth vertex ug, then us is a (3,v)-level vertex and us is not adjacent to up. But
then {vy, ve, us, u1, us, v3} induces a cross — a contradiction. Hence, we obtain that
dg(u1) = dg(ug) = 3, if the (2,v)-level vertices uy and uy are adjacent. Note that
then neither u; nor us is adjacent to a (3,v)-level vertex.

For convenience, we divide the (2, v)-level vertices into three subsets: A; contains all
(2,v)-level vertices, which are each adjacent to exactly one other (2, v)-level vertex,
Ay C (Né2> (v) — A;) contains all remaining (2, v)-level vertices, which are each ad-
jacent to exactly two other (1,v)-level vertices and finally Az = (NS (v) — Ay) — A,
contains all remaining (2, v)-level vertices. Note that each vertex of Aj; is adjacent
to exactly one (3, v)-level vertex, each vertex of A, is adjacent to at least one and at
most two (3, v)-level vertices and also recall that each vertex of A; is not adjacent
to any (3, v)-level vertex. Suppose that u € A, is adjacent to exactly two (3, v)-level
vertices wy and wy. With G := G — Ng[Ng(v)] we then have Ngw(wy) = Nem (ws).
Otherwise, if there exists, say, ws € Ngw(w1) — Ngw(ws), then Ng[u] U{ws} induces
a cross — a contradiction.

In the final part of the proof, we 3-colour G. Now let x1, zo, . . ., T, _5 be the vertices of
G—Ng|v], listed so that we have dist¢ (v, z;) > distg(v, z;) for 1 < i < j <n—>5. Fur-
thermore, let G; := G[{z1,...,x;}] for every 1 < i < n—5. Suppose that there exists
io € {1,...,n—=5} with dg, (zi,) > 3. Note that there exist vertices y; € (V(G)—{v})
and y, € V(G), such that distg(v,y2) = distg(v,y1) — 1 = distg(v, z4,) — 2 and y; is
adjacent to both vertices z;, and y». But then with A(G) = 4 we have dg, (zi,) = 3.
Observe that because of the definition of G;, we have Ng(y2) N Ng[z;] = {y1}. But
then G[Ng[zi,) U {y2}] contains an induced cross — a contradiction. Thus we have
dg,(x;) < 2 for every i € {1,...,(n — A(G) — 2)}. Hence we can easily 3-colour
the graph G’ := G — Ngv] along the sequence 1, s, . .., Tp_a(c)—2. We modify this
3-colouring procedure with the following additional rule: Suppose that we have al-
ready 3-coloured all vertices of x1,...,2;_1 and we will colour the vertex x;. If there



exists a vertex x; € {z1,...,2;—1} with Ng,(z;) C Ng,(z;), then z; should receive
the same colour as ;. Now there exists a j* € {1,...,n — 5}, such that G;. = G".
In the following we will extend the achieved 3-colouring ¢ of G” to a 3-colouring of
G. Now we colour the vertex v with the first colour « and every (1,v)-level vertex
with the colour 8. Then we colour the (blocking-set-) vertices of A; with the colours
a and . Every vertex of Ay is adjacent to three (3)-coloured (1,v)-level vertices
and one vertex of G". Hence the neighbours of an Az vertex consume at most two
colours. Thus there exists for each As vertex a colour, which was not used in the
neighbourhood. Analogously we can colour each vertex of As, which is adjacent to
exactly one (3,v)-level vertex. Therefore, suppose that there exists an Ay vertex u
which is adjacent to exactly two (3, v)-level vertices w; and wq. But then as already
mentioned we have Ngw(w;) = Ngw(ws). Thus, because of ¢’s special choice, we
have ¢(w1) = ¢(we). But then again the neighbours of u consume at most two
colours and there exists a colour, which was not used in the neighbourhood. Thus
G is 3-colourable. This completes the proof of the theorem. m

Theorem 6 Let G be a connected, triangle-free and r-sunshade-free graph with r >
3, which is not an odd cycle. Then

(i) G is r-colourable;
(it) G is bipartite, if A(G) > 2r —3;
(i1i) G is (r — 1)-colourable, if r = 3,4 or if A(G) <r —1.

Proof. If 3 < r < 4, then the theorem holds because of the last propositions.
So let » > 5. Let G* be a connected, triangle-free and r-sunshade-free graph. If
A(G*) = A < r —1, then we are done with Brooks’ Theorem and x(G*) < r — 1.
We prove inductively on the order n(G) of a connected, triangle-free and r-sunshade-
free graph G with A(G) < r that for every vertex v of maximal degree there exists
an r-colouring ¢ of G, such that all vertices of Ng(v) consume the same colour
of ¢. Now suppose the statement holds for every (connected) triangle-free and r-
sunshade-free graph of order less than n(G*) = n. Now let v € V(G*) be a vertex
of maximal degree A with A > r and suppose we have N, (23('0) # (). Note that the
r-sunshade-freeness of G* forces every vertex of N, @ (v) to be adjacent to at least
INY ()] = (r = 2) = A = (r — 2) > 2 vertices of N5 (v).

(i): Now let 1,22, ..., Tp_(a+1) be the vertices of G — N« [v], listed so that we have
distgs (v, z;) > distgs (v, ;) for 1 <7 < 7 < (n— (A+1)). Furthermore let G} :=
G*[{z1,...,z;}] forevery 1 <i < (n—(A+1)). Suppose there exists ig € {1,...,(n—
(A+1))} with de;, (zi,) > (r—1). Note that there exist vertices y; € (V(G*) — {v})
and yo € V(G*), such that distg« (v, y2) = distg+ (v, 1) — 1 = distg= (v, 24,) — 2 and ¥,
is adjacent to both vertices x4, and y,. Observe that because of the definition of G}
we have Ng«(y2) N Ng=[z;,] = {y1}. But then Ng-[z;,] U {y2} induces a supergraph

of the r-sunshade — a contradiction. Thus we have dg:(z;) < (r — 2) for every
ie{l,...,(n—(A+1))}. Hence we easily can colour the graph G’ := G* — Ng=[v]
along the sequence 1, s, ..., Tn_(a+1) With (r — 1) colours ay, @, ..., a,—1. Since
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Nél*)( ) forms an independent set, we can easily extend the partial (r — 1)-colouring
of G},_(a41) to an r-colouring of G*

(ii): Suppose we have dg(v) > (2r — 3).

Then N (v) is an independent set. Otherwise, if there exist two adjacent (2, v)-level
vertices u; and ug, then because of |Ng(u;) NN, (1>( ) >A—(r—2)forj=1,2
there exists at least one (1, v)-level vertex uz being adjacent to both vertices. But
then {u1,us,us} induces a triangle — a contradiction. Suppose now there exists
us € Nég>(1))7 such that us is adjacent to a vertex uy € (N(3>( ) U Ng)(v)). Since
us € N&(v), there exists us € (N (v) N Ng(us)). Note that the triangle-freeness of
G forces that us is not adjacent to uy. Because uy is adjacent to at least A — (r —2)
vertices of N3 (v), there exist {u{",... """} ¢ (N (v) N Ng(us)). Recall that

because of the definition of the sets NG >( ), each vertex of {u{", ... ,ugrfl)} is non-

adjacent to each vertex of {ug, us}. But then {u(ll), o uY_l), Ug, Ug, g} induces an
r-sunshade — a contradiction. Hence N(G3>(v) is independent and Ng)(v) = { for
every ¢ > 4. Since every set Ng) (x) for i € {1,2,3} is independent, we obtain that

G is bipartite. m

Problem 7 Let G be the class of all connected, triangle-free and r-sunshade-free
graphs with 5 < r < A(G) < 2r — 4. Does there exist an r-chromatic member
G*eg?

Using Kostochka’s result that x(G) < 2/3(A(G) + 3) for every triangle-free graph
G, it is not very difficult for » > 9 to reduce the above problem to the range
3/2(r —3) < A(G) <2r —4.

An intriguing improvement of Brooks’ Theorem by bounding the chromatic num-
ber of a graph by a convex combination of its clique number w and its maximum
degree A plus 1 is given by Reed [6] and he conjectured that every graph G can
be colored with at most [(w(G) + A(G) + 1)/2] colors? If Reeds conjecture is
true for the special case of triangle-free graphs (‘every triangle-free graph G sat-
isfies x(G) < [(A(G) + 3)/2]), then it is not very difficult to reduce the above
problem to the unique value A(G) = 2r — 4, which seems to be not intractable.
Moreover, an affirmative answer to this special case of Reeds conjecture on triangle-
free graphs, would imply that there exists no 5-regular, 5-chromatic or 6-regular,
6-chromatic triangle-free graph. This negative results would settle the remaining
cases of Griinbaums girth problem (see [5]).
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