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Abstract

For the class of triangle-free graphs Brooks’ Theorem can be restated in
terms of forbidden induced subgraphs, i.e. let G be a triangle-free and
K1,r+1-free graph. Then G is r-colourable unless G is isomorphic to an
odd cycle or a complete graph with at most two vertices. In this note
we present an improvement of Brooks’ Theorem for triangle-free and r-
sunshade-free graphs. Here, an r-sunshade (with r ≥ 3) is a star K1,r

with one branch subdivided.

A classical result in graph colouring theory is the theorem of Brooks [2], asserting
that every graph G is (∆(G))-colourable unless G is isomorphic to an odd cycle or a
complete graph. Bryant [3] simplified this proof with the following characterization
of cycles and complete graphs. Thereby he highlights the exceptional role of the
cycles and complete graphs in Brooks’ Theorem. Here we give a new elementary
proof of this characterization.

Proposition 1 (Bryant [3]). Let G be a 2-connected graph. Then G is a cycle or
a complete graph if and only if G − {u, v} is not connected for every pair (u, v) of
vertices of distance two.

Proof. Let G be a 2-connected graph of order n. If G is a cycle or a complete
graph, then obviously G − {u, v} is not connected for every pair (u, v) of vertices of
distance two. Hence, assume that G is neither a cycle nor a complete graph and that
G − {u, v} is not connected for every pair (u, v) of vertices of distance two. Note
that then there exists at least one vertex v of G with 2 < dG(v) < n − 1. Since G
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is 2-connected, there exists at least one cycle in G. Now let C be a longest cycle
in G. Assume C is not a Hamiltonian cycle of G. Since C is a longest cycle and
G is connected, there exist vertices y, z of C and x ∈ V (G) − V (C), such that z is
adjacent to x and y and x is not adjacent to y, i.e. distG(x, y) = 2. Now G−{x, y} is
not connected and the 2-connectivity of G ensures besides the x− y-connecting path
P1 via the remaining vertices of C the existence of a second x − y-connecting path
P2, which is vertex disjoint from P1. But then by gluing the common end-vertices of
P1 and P2 together we obtain a cycle C ′ of length greater than C — a contradiction
to the special choice of C. Thus C = v0v1 . . . vn−1v0 is a Hamiltonian cycle. Now we
consider a vertex vi with 2 < dG(vi) < n−1. Then there exists j �∈ {i−1, i+1} such
that vi is without loss of generality adjacent to vj but not adjacent to vj−1. Since
G− {vi, vj−1} is not connected, we obtain that vj is not adjacent to vj−2. Therefore
G − {vj, vj−2} is not connected. Thus dG(vj−1) = 2, and in particular vj−1 is not
adjacent to vj+1. But now finally, since G−{vj−1, vj+1} is connected, we immediately
achieve a contradiction, which completes the proof of this proposition.

Theorem 2 (Brooks [2]). Let G be neither a complete graph nor a cycle graph with
an odd number of vertices. Then G is ∆(G)-colourable.

In the recent book of Jensen and Toft [5], (Problem 4.6, p. 83), the problem of improv-
ing Brooks’ Theorem (in terms of the maximal degree ∆) for the class of triangle-free
graphs is stated. The problem has its origin in a paper of Vizing [7]. The best known
(non-asymptotic) improvement of Brooks’ Theorem in terms of the maximal degree
for the class of triangle-free graphs is due to Borodin and Kostochka [1], Catlin [4]
and Kostochka (personal communication mentioned in [5]). The last author proved
that χ(G) ≤ 2/3(∆(G) + 3) for every triangle-free graph G. The remaining authors
independently proved that χ(G) ≤ 3/4(∆(G) + 2) for every triangle-free graph G.
For the class of triangle-free graphs, Brooks’ Theorem can be restated in terms of
forbidden induced subgraphs, since triangle-free graphs G satisfy G[NG[x]] ∼= K1,dG(x)

for every vertex x of G.

Theorem 3 (Triangle-free Version of Brooks’ Theorem)
Let G be a triangle-free and K1,r+1-free graph. Then G is r-colourable unless G is
isomorphic to an odd cycle or a complete graph with at most two vertices.

Our main theorem will extend this triangle-free version of Brooks’ Theorem. An
r-sunshade (with r ≥ 3) is a star K1,r with one branch subdivided. The 3-sunshade
is sometimes called a chair and the 4-sunshade a cross.

Proposition 4 Let G be a triangle-free and chair-free graph; then χ(G) ≤ 3. More-
over if G is connected, then equality holds if and only if G is an odd hole.

Proof. Let G be a triangle-free and chair-free graph. Without loss of generality
let G be a connected graph. If G is bipartite, then χ(G) ≤ 2 and we are done.
So let G be a non-bipartite graph. With a result of König that every non-bipartite
graph contains an odd cycle and the clique size constraint we deduce that G contains
an odd hole C. If G ∼= C, then χ(G) = 3. If G �∼= C, then there exists a vertex
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y ∈ V (G)−V (C) adjacent to a nonempty subset I of V (C). Since ω(G) ≤ 2, we have
I is an independent set and |I| ≤ (n(C)−1)/2. But then there exist four consecutive
vertices x1, . . . , x4 of C such that I ∩ {x1, . . . , x4} = {x2}. Therefore {y, x1, . . . , x4}
induces a chair in G, a contradiction. This completes the proof of the proposition.

Now let G be a connected triangle-free graph. For convenience we define for ev-
ery i ∈ IN and x ∈ V (G) the sets N

(i)
G (x) := {y ∈ V (G) | distG(x, y) = i}. A vertex

y ∈ N
(i)
G (x) is also called an (i, x)-level vertex. Note that the triangle-freeness of G

forces N
(1)
G (x) to be independent for every x ∈ V (G).

Proposition 5 Let G be a triangle-free and cross-free graph. Then χ(G) ≤ 3.

Proof. Let G be a triangle-free and cross-free graph. If ∆(G) = ∆ ≤ 3, then we are
done with Brooks’ Theorem and χ(G) ≤ 3. Now let v ∈ V (G) be a vertex of maximal
degree ∆ with ∆ ≥ 4 and suppose without loss of generality that G is connected
and we have N

(2)
G (v) �= ∅. We can also assume that the N(u)/N(v)-argument holds,

(i.e. G contains no pair of non-adjacent vertices u and v, such that NG(u) ⊂ NG(v)).

Note that the cross-freeness of G forces every vertex of N
(2)
G (v) to be adjacent to at

least |N (1)
G (v)| − 2 = ∆ − 2 ≥ 2 vertices of N

(1)
G (v).

Case 1: Suppose we have dG(v) ≥ 5.

Then N
(2)
G (v) is an independent set. Otherwise, if there exist two adjacent (2, v)-level

vertices u1 and u2, then because of |NG(uj)∩N
(1)
G (v)| ≥ ∆(G)− 2 for j = 1, 2, there

exists at least one (1, v)-level vertex u3 being adjacent to both vertices. But then
{u1, u2, u3} induces a triangle — a contradiction.

Suppose now there exists u3 ∈ N
(3)
G (v), such that u3 is adjacent to a vertex u4 ∈

(N
(3)
G (v) ∪ N

(4)
G (v)). Since u3 ∈ N

(3)
G (v), there exists u2 ∈ (N

(2)
G (v) ∩ NG(u3)). Note

that the triangle-freeness of G forces that u2 is not adjacent to u4. Since u2 is
adjacent to at least ∆(G) − 2 vertices of N

(1)
G (v), there exists {u(1)

1 , u
(2)
1 , u

(3)
1 } ⊆

(N
(1)
G (v) ∩ NG(u2)). Recall that because of the definition of the sets N

(i)
G (v), each

vertex of {u(1)
1 , u

(2)
1 , u

(3)
1 } is non-adjacent to each vertex of {u3, u4}.

But then {u(1)
1 , u

(2)
1 , u

(3)
1 , u2, u3, u4} induces a cross — a contradiction. Hence N

(3)
G (v)

is independent and N
(i)
G (v) = ∅ for every i ≥ 4. Since for any x ∈ V (G) the set

N
(i)
G (x) for i ∈ {1, 2, 3} is independent, we obtain that G is bipartite in Case 1.

Case 2: dG(v) = ∆(G) = 4.

In the following we will examine the structure of G[N
(2)
G (v)]. Firstly, recall that

the cross-freeness of G forces every (2, v)-level vertex u to be adjacent to at least
two (1, v)-level vertices. On the other hand the N(u)/N(v)-argument forces every
(2, v)-level vertex u to be adjacent to at most three (1, v)-level vertices.

Case 2.1: Suppose there exists a (2, v)-level vertex u1, adjacent to at least two fur-
ther (2, v)-level vertices u2 and u3.
Note that the triangle-freeness of G forces that u2 and u3 are not adjacent. Fur-
thermore, u1 is adjacent to exactly two (1, v)-level vertices v1 and v2 and NG(u2) ∩
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NG(v) = NG(u3) ∩ NG(v) = NG(v) − NG(u1) = {v3, v4}. Since the N(u)/N(v)-
argument holds, there exist u4 ∈ (NG(u2) − NG(u3)) and u5 ∈ (NG(u3) − NG(u2)).

Note that u4 and u5 are contained in N
(2)
G (v) ∪ N

(3)
G (v). Firstly, suppose that u4 is

a (3, v)-level vertex. Then {v1, u1, u2, v3, v4, u4} induces a cross — a contradiction.

Thus {u4, u5} ⊆ N
(2)
G (v). Observe that NG(u4)∩NG(v) = NG(u5)∩NG(v) = {v1, v2}

and therefore {u1, u4, u5} forms an independent set. Because of the N(u)/N(v)-
argument there exist u6 ∈ (NG(u4) − NG(u1)) and u7 ∈ (NG(u5) − NG(u1)). Then
u6 = u7, since otherwise {v, v1, u1, u4, u5, u7} induces a cross and we obtain a con-
tradiction. Analogously to the previous consideration we obtain that u6 is a (2, v)-
level vertex, NG(u6) ∩ NG(v) = {v3, v4} and {u2, u3, u6} forms an independent set.
Hence {v, v1, . . . , v4, u1, . . . , u6} obviously induces a 4-regular graph G′′. But then,
since ∆(G) = 4 and G is connected, we deduce that G = G′′. Note that since
{u1, u2, . . . , u6} induces a 6-cycle, G is easily 3-colourable.

Case 2.2: Every (2, v)-level vertex u is adjacent to at most one (2, v)-level vertex.
Now assume that a (2, v)-level vertex u1 is adjacent to another (2, v)-level vertex u2.
Then, as already mentioned, u1 is adjacent to, say the (1, v)-level vertices v1 and v2

and u2 is adjacent to the left (1, v)-level vertices v3 and v4. If, say, u1 is adjacent to
a fourth vertex u3, then u3 is a (3, v)-level vertex and u3 is not adjacent to u2. But
then {v1, v2, u3, u1, u2, v3} induces a cross — a contradiction. Hence, we obtain that
dG(u1) = dG(u2) = 3, if the (2, v)-level vertices u1 and u2 are adjacent. Note that
then neither u1 nor u2 is adjacent to a (3, v)-level vertex.
For convenience, we divide the (2, v)-level vertices into three subsets: A1 contains all
(2, v)-level vertices, which are each adjacent to exactly one other (2, v)-level vertex,

A2 ⊆ (N
(2)
G (v) − A1) contains all remaining (2, v)-level vertices, which are each ad-

jacent to exactly two other (1, v)-level vertices and finally A3 = (N
(2)
G (v)−A1)−A2

contains all remaining (2, v)-level vertices. Note that each vertex of A3 is adjacent
to exactly one (3, v)-level vertex, each vertex of A2 is adjacent to at least one and at
most two (3, v)-level vertices and also recall that each vertex of A1 is not adjacent
to any (3, v)-level vertex. Suppose that u ∈ A2 is adjacent to exactly two (3, v)-level
vertices w1 and w2. With G′′′ := G−NG[NG(v)] we then have NG′′′(w1) = NG′′′(w2).
Otherwise, if there exists, say, w3 ∈ NG′′′(w1)−NG′′′(w2), then NG[u]∪{w3} induces
a cross — a contradiction.
In the final part of the proof, we 3-colour G. Now let x1, x2, . . . , xn−5 be the vertices of
G−NG[v], listed so that we have distG(v, xi) ≥ distG(v, xj) for 1 ≤ i ≤ j ≤ n−5. Fur-
thermore, let Gi := G[{x1, . . . , xi}] for every 1 ≤ i ≤ n−5. Suppose that there exists
i0 ∈ {1, . . . , n−5} with dGi0

(xi0) ≥ 3. Note that there exist vertices y1 ∈ (V (G)−{v})
and y2 ∈ V (G), such that distG(v, y2) = distG(v, y1)− 1 = distG(v, xi0)− 2 and y1 is
adjacent to both vertices xi0 and y2. But then with ∆(G) = 4 we have dGi0

(xi0) = 3.
Observe that because of the definition of Gi0 we have NG(y2) ∩NG[xi0 ] = {y1}. But
then G[NG[xi0 ] ∪ {y2}] contains an induced cross — a contradiction. Thus we have
dGi

(xi) ≤ 2 for every i ∈ {1, . . . , (n − ∆(G) − 2)}. Hence we can easily 3-colour
the graph G′ := G−NG[v] along the sequence x1, x2, . . . , xn−∆(G)−2. We modify this
3-colouring procedure with the following additional rule: Suppose that we have al-
ready 3-coloured all vertices of x1, . . . , xi−1 and we will colour the vertex xi. If there
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exists a vertex xj ∈ {x1, . . . , xi−1} with NGi
(xi) ⊆ NGi

(xj), then xi should receive
the same colour as xj. Now there exists a j∗ ∈ {1, . . . , n − 5}, such that Gj∗ = G′′′.
In the following we will extend the achieved 3-colouring φ of G′′′ to a 3-colouring of
G. Now we colour the vertex v with the first colour α and every (1, v)-level vertex
with the colour β. Then we colour the (blocking-set-) vertices of A1 with the colours
α and γ. Every vertex of A3 is adjacent to three (β)-coloured (1, v)-level vertices
and one vertex of G′′′. Hence the neighbours of an A3 vertex consume at most two
colours. Thus there exists for each A3 vertex a colour, which was not used in the
neighbourhood. Analogously we can colour each vertex of A2, which is adjacent to
exactly one (3, v)-level vertex. Therefore, suppose that there exists an A2 vertex u
which is adjacent to exactly two (3, v)-level vertices w1 and w2. But then as already
mentioned we have NG′′′(w1) = NG′′′(w2). Thus, because of φ’s special choice, we
have φ(w1) = φ(w2). But then again the neighbours of u consume at most two
colours and there exists a colour, which was not used in the neighbourhood. Thus
G is 3-colourable. This completes the proof of the theorem.

Theorem 6 Let G be a connected, triangle-free and r-sunshade-free graph with r ≥
3, which is not an odd cycle. Then

(i) G is r-colourable;

(ii) G is bipartite, if ∆(G) ≥ 2r − 3;

(iii) G is (r − 1)-colourable, if r = 3, 4 or if ∆(G) ≤ r − 1.

Proof. If 3 ≤ r ≤ 4, then the theorem holds because of the last propositions.
So let r ≥ 5. Let G∗ be a connected, triangle-free and r-sunshade-free graph. If
∆(G∗) = ∆ ≤ r − 1, then we are done with Brooks’ Theorem and χ(G∗) ≤ r − 1.
We prove inductively on the order n(G) of a connected, triangle-free and r-sunshade-
free graph G with ∆(G) ≤ r that for every vertex v of maximal degree there exists
an r-colouring c of G, such that all vertices of NG(v) consume the same colour
of c. Now suppose the statement holds for every (connected) triangle-free and r-
sunshade-free graph of order less than n(G∗) = n. Now let v ∈ V (G∗) be a vertex

of maximal degree ∆ with ∆ ≥ r and suppose we have N
(2)
G∗ (v) �= ∅. Note that the

r-sunshade-freeness of G∗ forces every vertex of N
(2)
G∗ (v) to be adjacent to at least

|N (1)
G∗ (v)| − (r − 2) = ∆ − (r − 2) ≥ 2 vertices of N

(1)
G∗ (v).

(i): Now let x1, x2, . . . , xn−(∆+1) be the vertices of G−NG∗ [v], listed so that we have
distG∗(v, xi) ≥ distG∗(v, xj) for 1 ≤ i ≤ j ≤ (n − (∆ + 1)). Furthermore let G∗

i :=
G∗[{x1, . . . , xi}] for every 1 ≤ i ≤ (n−(∆+1)). Suppose there exists i0 ∈ {1, . . . , (n−
(∆+1))} with dG∗

i0
(xi0) ≥ (r− 1). Note that there exist vertices y1 ∈ (V (G∗)−{v})

and y2 ∈ V (G∗), such that distG∗(v, y2) = distG∗(v, y1)−1 = distG∗(v, xi0)−2 and y1

is adjacent to both vertices xi0 and y2. Observe that because of the definition of G∗
i0

we have NG∗(y2) ∩ NG∗ [xi0 ] = {y1}. But then NG∗ [xi0 ] ∪ {y2} induces a supergraph
of the r-sunshade — a contradiction. Thus we have dG∗

i
(xi) ≤ (r − 2) for every

i ∈ {1, . . . , (n − (∆ + 1))}. Hence we easily can colour the graph G′ := G∗ − NG∗ [v]
along the sequence x1, x2, . . . , xn−(∆+1) with (r − 1) colours α1, α2, . . . , αr−1. Since
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N
(1)
G∗ (v) forms an independent set, we can easily extend the partial (r − 1)-colouring

of G∗
n−(∆+1) to an r-colouring of G∗.

(ii): Suppose we have dG(v) ≥ (2r − 3).

Then N
(2)
G (v) is an independent set. Otherwise, if there exist two adjacent (2, v)-level

vertices u1 and u2, then because of |NG(uj) ∩ N
(1)
G (v)| ≥ ∆ − (r − 2) for j = 1, 2

there exists at least one (1, v)-level vertex u3 being adjacent to both vertices. But
then {u1, u2, u3} induces a triangle — a contradiction. Suppose now there exists

u3 ∈ N
(3)
G (v), such that u3 is adjacent to a vertex u4 ∈ (N

(3)
G (v) ∪ N

(4)
G (v)). Since

u3 ∈ N
(3)
G (v), there exists u2 ∈ (N

(2)
G (v)∩NG(u3)). Note that the triangle-freeness of

G forces that u2 is not adjacent to u4. Because u2 is adjacent to at least ∆− (r− 2)

vertices of N
(1)
G (v), there exist {u(1)

1 , . . . , u
(r−1)
1 } ⊂ (N

(1)
G (v) ∩ NG(u2)). Recall that

because of the definition of the sets N
(i)
G (v), each vertex of {u(1)

1 , . . . , u
(r−1)
1 } is non-

adjacent to each vertex of {u3, u4}. But then {u(1)
1 , . . . , u

(r−1)
1 , u2, u3, u4} induces an

r-sunshade — a contradiction. Hence N
(3)
G (v) is independent and N

(i)
G (v) = ∅ for

every i ≥ 4. Since every set N
(i)
G (x) for i ∈ {1, 2, 3} is independent, we obtain that

G is bipartite.

Problem 7 Let G be the class of all connected, triangle-free and r-sunshade-free
graphs with 5 ≤ r ≤ ∆(G) ≤ 2r − 4. Does there exist an r-chromatic member
G∗ ∈ G?

Using Kostochka’s result that χ(G) ≤ 2/3(∆(G) + 3) for every triangle-free graph
G, it is not very difficult for r ≥ 9 to reduce the above problem to the range
3/2(r − 3) ≤ ∆(G) ≤ 2r − 4.
An intriguing improvement of Brooks’ Theorem by bounding the chromatic num-
ber of a graph by a convex combination of its clique number ω and its maximum
degree ∆ plus 1 is given by Reed [6] and he conjectured that every graph G can
be colored with at most �(ω(G) + ∆(G) + 1)/2� colors? If Reeds conjecture is
true for the special case of triangle-free graphs (’every triangle-free graph G sat-
isfies χ(G) ≤ �(∆(G) + 3)/2�’), then it is not very difficult to reduce the above
problem to the unique value ∆(G) = 2r − 4, which seems to be not intractable.
Moreover, an affirmative answer to this special case of Reeds conjecture on triangle-
free graphs, would imply that there exists no 5-regular, 5-chromatic or 6-regular,
6-chromatic triangle-free graph. This negative results would settle the remaining
cases of Grünbaums girth problem (see [5]).
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