The spectral radius of triangle-free graphs
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Abstract

In this note, we present two lower bounds for the spectral radius of the
Laplacian matrices of triangle-free graphs. One is in terms of the numbers
of edges and vertices of graphs, and the other is in terms of degrees and
average 2-degrees of vertices. We also obtain some other related results.

1 Introduction

Let G = (V, E) be a graph with the vertex set V(G) and the edge set E(G). The
value of a function f : V(G) — R at a vertex y is defined by f(y). For y € V(G),
we denote by d(y) the degree of y. The Laplacian matrix L(G) of G is defined by

d(y)a if r=1y,
L(z,y)=4¢ —1, if z and y are adjacent,
0, otherwise.

It is easy to see that L(QG) is singular, positive semidefinite. Hence the eigenvalues
of L(G) can be denoted by A (L(G)) > -+ > A\, (L(G)) = 0. The spectrum of L(G)
can be used to obtain much information about the graph; for example, estimates for
the diameter of the graph (see the survey by Merris[8]). In particular, estimates or
bounds for A\;(L(G)) and A,_;(L(G)) are of great interest. Recently, some upper
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bounds for A;(L(G)) have been obtained in terms of degrees and average 2-degrees
of vertices by Li and Zhang [7] and Merris [9]. As to the lower bounds for A\(G),
Fiedler in [4] proved the following result:

M (L(G)) =

max {d(z)}. (1)

n — 1 zev(a)

Recently, Grone and Merris in [5] improved the above result by showing that if
G has at least one edge, then

M (L(@)) > max {d(z)}+ 1. (2)
zeV(G)

In this note, we obtain two lower bounds for the spectral radius A;(L(G)) of
triangle-free graphs; one is in terms of the numbers of edges and vertices of graphs,
and the other is in terms of degrees and average 2-degrees of vertices. We also obtain
some other related results. For triangle-free graphs, the second bound is better than
(2) of Grone and Merris.

2 Lemmas

In this section, we present some lemmas which will be used to obtain our main results.
We also give a new proof of inequality (2) and characterize the equality in (2).

Let G be a graph with the degree diagonal matrix D(G) and the (0,1)-adjacency
matrix A(G). Let Q(G) = D(G) + A(G).

Lemma 2.1 Let G be a graph. Then
M (L(G)) < M(Q(G)). (3)

Moreover, if G is connected, then the equality in (3) holds if and only if G is a
bipartite graph.

Proof. Since the absolute value of any (z,y)-th entry in L(G) is no more than
the corresponding (z,y)-th entry in Q(G) and Q(G) is nonnegative and positive
semidefinite, the inequality in (3) follows from Wielandt’s theorem (see [1], Theo-
rem 2.2.14, for example). Moreover, if G is connected, then L(G) and Q(G) are
irreducible. Hence it follows from Wielandt’s theorem that the equality in (3) holds
if and only if L(G) = WQ(G)W™!, where W is a diagonal matrix whose diag-
onal entries have modulus one, say W = diag(e’, u € V(G)), where ¥ = —1
and 6, is real. Let L(G) = (lw) and Q(G) = (quv). Then l,, = ¢@%)q,,
and therefore ¢®«=%) = 1 or — 1 if wwv € E(G). Since G is connected, for
any two distinct vertices u, v € V(G), there exists a path u = wjug---u; = v
in G. Thus, e« = H;?;ll ¢%;=04;11) i 1 or —1. Therefore we may assume
that W = ¢?W,, where W; is a diagonal matrix whose diagonal entries are 1 or
—1. Moreover, L(G) = W,Q(G)W; . By comparing with corresponding entries of
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L(G) = W1Q(G)W7 !, it is easy to see that L(G) = WQ(G)W ™! if and only if G is
bipartite. m

Remark: In fact, if G is bipartite and is not connected, the equality in (3) still
holds.

The follow lemma is well-known (see [8], for example).

Lemma 2.2 Let H be a bipartite subgraph of G. Then \(L(G)) > M(Q(H)).
Now we are going to give a new proof of inequality (2).
Theorem 2.3 [5] Let G be a graph with at least one edge. Then
> .
ML) 2 s {d(2)} +1 @)

Moreover, if G is connected, then the equality in (4) holds if and only if n%/d()é){d(x)} =
S
|[V(G)| — 1, where |V(G)| is the cardinality of the vertex set V(G).
Proof. Let d(z) = n%;z()é){d(x)} and H be the bipartite subgraph of G with edge set
S
E(H)={(z,z) € E(G),x € V(G)}. Then H is a star graph with d(z) + 1 vertices.
Thus M\ (L(H)) = d(z) + 1. Hence the inequality in (4) follows from Lemma 2.2.
Suppose that G is connected. If H%/(l()é){d(x)} = |V(G)| — 1, then M\ (L(G)) >
S
[V(G)|. On the other hand, it is well known that [V (G)[ — A\ (L(G)) is an eigenvalue
of L(G), where G is the complement of G. So |V(G)| — A\ (L(G)) > 0. Hence the
equality in (4) holds.
Conversely, if d(z) = n%/aé){d(x)} < |V(GQ)| — 1, then there exist vertices y; and
S
yo such that (z,y1) € E(G), (z,y2) ¢ E(G) and (y1,42) € E(G), since G is connected.
Let H' be the bipartite subgraph of G with F(H') = E(H) U {(y1,y2)}. Define the
function f : V(H') — R by f(z) =1, if x = z; f(x) = 1/d(z), if (z,2) € E(G);
f(z) =0, otherwise. Then

MQUH)) = max %

d(z)(1 +1/d(2))* + (1/d(=))*
- 14 (1/d(2))%d(z)
> d(z)+ 1.

Hence, by Lemma 2.2, \(L(G)) > d(z) + 1. This completes the proof. m

Lemma 2.4 Let G be a triangle-free graph on |V (G)| vertices and |E(G)| edges.
Then there exists a bipartite subgraph H of G such that

AEGPE [EG)], L [l
max{ VR 5 + W) > d(l)}

zeV(G)
SAAE@GPE S EG)] 1 3/4
) {IV(G)P’ oL }

Proof. This follows from the results of Erdés et al. [3] and Shearer [10]. =

|E(H)|

%
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3 Lower bounds for spectral radius of
triangle-free graphs

Now we give the main results of this paper.

Theorem 3.1 Let G be a triangle-free graph. Then

2 3/4
M (L(G)) > max { 16| E(G)| 2|E(G)| |E(G)] } .

> 5
VG VO] 2V @) ®)
Moreover, if G is the complete bipartite graph K, ,, of order 2n, then the equality in
(5) holds.

Proof. Let H be a bipartite spanning subgraph of G with the largest number of
edges. Hence by Lemmas 2.2 and 2.4, we have

ML(G) = M(Q(H))

\%

V(@)
{16E(G)I2 2AE(G)  |BG)P! }
V@PE " V(G 2v2v(a)))’

where 1 is the vector with all coordinates 1. Moreover, if G is the complete bipartite
graph K, , of order 2n, then by (5), we have A\(L(G)) > 2n. On the other hand,
M (L(G)) < 2n. Therefore, the equality in (5) holds. =

From Theorem 3.1, it is easy to get a well known result, i.e., Turan’s Theorem.

Corollary 3.2 (Turan’s Theorem[2]) Let G be a connected graph with |E(G)| >
HV(G)[2. Then G contains at least one triangle.

Proof. If G does not contain any triangle, by Theorem 3.1, we have

16|E(G)|?
VP < M(L(G)) < V(G

Hence |E(G)| < {|V(G)|?, which contradicts the condition of Corollary 3.2. There-
fore the result holds. m

Corollary 3.3 Let G be a triangle-free graph with maximum degree A. Then the
smallest eigenvalue of the adjacency matriz A(G) satisfies

M(A(G)) Smin{A BE@)P | 20EG)] _ |B@)P }

VGE " = VG 2v2V(G)
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Proof. Let D(G) be the degree diagonal matrix. Then
M(L(G)) < M(D(G)) = Au(A(G))-

Hence the result follows from Theorem 3.1. =

Now we are going to give the second lower bound for A; (L(G)) in terms of degrees
and average 2-degrees. The average 2-degree of a vertex u, denoted by m,, is the
average of the degrees of its neighbors.

Theorem 3.4 Let G = (V, E) be a triangle-free graph. If d,, and m,, are the degree
and the average 2-degree of a vertex u, respectively, then

1
M(L(G)) > max{g(du + g+ /(dy — ma)? + 4dy, u € v} . (6)
Proof. Let L(U) be the principal submatrix of L(G) corresponding to U, where

U = {u,v1,- -, v} is the closed neighborhood of a vertex w and d,, = k. Obviously,
M(L(G)) > M (L(U)). Since G is triangle-free, we may assume that

d, =1 =1 .= -1
Lwy=| H o O 0

With elementary calculations, we see that the characteristic polynomial of L(U)
is
k 1 k

i=1 i=1

Note that A\ (L(G)) > M (L({U)) > d,, for each ¢ = 1,--- k. Hence A\ (L(G))
satisfies

k
MG ~du2 3 e

By the Cauchy-Schwarz inequality, we have

k 1 F o JM(L(G)) —dy, ,
;(Al(L(G)) - d); NG —d, > (Z ) = k2
d, > K _ du

YR MLG) —dy,) ML(G) —my

since m, = 1 >¥ | d,,. This inequality yields the desired result. m

M(L(G)) —

For d-regular triangle-free graphs, we have the following result.
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Corollary 3.5 Let G be a d-regular triangle-free graph on n vertices . Then

M (L(G)) >max{47d2, d+\/3}. (7)

16|F 2 AL
Proof. Since % =" and %(du + My + 1/ (dy — my)? + 4d, = d + V/d, the

inequality follows from Theorems 3.1 and 3.4. m

Corollary 3.6 Let G be a d-regular graph on n vertices. If the complement G of G
1s a triangle-free graph, then the algebraic connectivity of G satisfies

Mn-1(L(G)) < min{(3n —2d=2)Q2d+2- n)7 d+1—+vVn—-1- d} .

n

Proof. Since \,_1(L(G)) = n — A\ (L(G)), the result follows from Corollary 3.5. =

Remark.  The bounds (2) and (5) are incomparable in general, as we will see
in Example 3.7. However, for triangle-free graphs, (6) is better than (2) of Grone
and Merris. In fact, if we denote by f(m,) the bracket of the right side in (6),
then f(m,) > f(1) = d, + 1, since f(m,)" > 0. Furthermore, in [6], the authors
constructed, explicitly for every prime p = 1 (mod 4), and found for infinitely many
values of n, a d (= p + 1)-regular triangle-free graph G on n vertices whose smallest
eigenvalue of the adjacency matrix exceeds —2+/d — 1. Therefore the spectral radius
of the Laplacian matrix of G is no more than d + 2v/d — 1. Hence the result of
Corollary 3.5 is good in some sense.

As the conclusion of this note, we give one example to illustrate our main results.
Example 3.7. Let G; and G5 be graphs of order 6 and 7 respectively, as follows:

G1 G2
Fig. 1

The largest eigenvalues of the Laplacian matrices of graphs G; and G5 and their
lower bounds are as follows.

M(L(G)) bound in (5) bound in (6) bound in (2)
G 5.56 4.74 4.57 4
Go 4.88 3.10 4.43 4
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