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The enumeration of labelled spanning trees of K,
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Abstract

Using a bijection to decompose a labelled rooted bipartite tree into several
ones with smaller size and their exponential generating functions, this
paper concerns the number of labelled spanning trees of the complete
bipartite graph K, ,,.

1 Introduction

Regarding the number of labelled spanning trees of the complete graph K, and
complete bipartite graph K, ,, various methods ([1, 3, 4, 9, 10] and [1, 2, 5, 6, §8])
have appeared. With the same purpose this paper establishes another bijection
similar to that in [3], with the difference being that labelled rooted trees of height
2 are used, which is necessary for the bijection considered here. From the bijection
we can derive an equation between two kinds of exponential generating functions for
two classes of labelled rooted spanning trees in K, ,: one class has no restriction;
the other consists only of those spanning trees with height 1 or 2.

A labelled rooted spanning tree in the complete bipartite graph K, , (V(Kpmn) =
AUB,|A| =m,|B|=n,m > 1,n > 1) with root in B will be briefly called an [m, n]-
tree in this paper, which may be called labelled rooted bipartite tree elsewhere.
Vertices in A and B will be labelled from the set {1’,2',...,m'} and {1,2,...,n}
respectively.
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2 The number of labelled [m,n]-trees

Let T be an [m,n]-tree and v* be its root. The height of a vertex v(v € V(T))
and of T are defined by W(v) = d(v*,v) and W(T) = max{W(v) | Vv € V(T)}
respectively, where d(v*, v) is the distance between v* and v. Obviously there are m
odd height vertices and n even height vertices in 7. When W (T') is 1 and 2, we call
T a 1-rooted tree and 2-rooted tree, briefly as ORT and T RT.

Any even height vertex vy in T" which is not a leaf will be called an IP. Let
OV (vg) = {v | v € V(T) and the path from the root to v contains vy}. We denote by
OV G(vg) the subgraph of T' induced by the vertex set {v | v € OV (vy), d(vo, v) < 2},
which is a labelled rooted subtree (with root vg) of T. Let OVW (vg) = max{d(vg, v) |
v € OV (v9)}. When OVW (vy) = 1, call vy a 1-IP, otherwise a 2-1P.

An [m,n]-tree in which there are (k — r) 1-IPs and (r) 2-1Ps is called an
[m,n, k,r)-tree. From this definition, a TRT is an [m, n, 1, 1]-tree for some m and n,
and an ORT is an [m, 1,1, 0]-tree for some m.

Theorem 2.1 There is a bijection between the set of all [m,n, k,r]-trees and the set
of forests of r TRT's and k —r ORT's in which the height 2 vertices are labelled from
{1,2,...,n+k—1} and the roots from {1,2,...,n}, and other height 1 vertices from
{1,2,...,m'}.

Proof. We first give the procedure to construct an [m,n, k,r]-tree from a forest
Fof r TRTs and k —r ORT's.

1. In F mark the vertices n + 1,n+2,...,n+r — 1 by symbol *(star) and mark
vertices n+r,...,n+ k — 1 by symbol #(double-cross).

2. Select out TRT's in F, let Fy be this subset, and let the set of the left trees in
F be Fl-

3. Find the tree Ty in Fy with the smallest root such that there is no starred
vertex in Tp, let ¢ be the root of Tj.

4. Find the tree T} in Fy that contains the smallest starred vertex. Let j* be this
starred vertex.

5. Merge Ty and T3 by identifying ¢ and j* and keeping ¢ as the new vertex. (See
Figure 2.1.)
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6. Repeat (3), (4) and (5) until F has no starred vertex.
7. Find the tree Ty in F} with the smallest root; let i be this root.

8. Find the tree T3 in F' that contains the smallest double-crossed vertex. Let j#
be that vertex.

9. Replace j# with Ty in Tj as (5). (See Figure 2.2.)
10. Repeat (7), (8) and (9) until £ has no double-crossed vertex.

It is easy to see that we at last get an [m,n, k,r]-tree. The reverse procedure is
as follows:

1. Select out all the (r) 2-1Ps and (k—r) 1-1 Ps; denote them by Vo = {v1,..., 0.}
and Vi = {v,41, ..., v} respectively.

2. Find the smallest 1-IP i in V;.

3. Remove OV G(i) and relabel the original vertex i by (n +7)#. Then we get an
ORT with root 1.

4. Repeat (2), (3) and relabel the encountered 1-IPs subsequently by (n + r +
D#, ..., (n+k—1)# until there is no vertex v in V; with W (v) > 0.

5. Find the smallest 2-7P ¢ in Vo with OVW (i) = 2.

6. Remove OV G(7) and relabel the original vertex ¢ by (n + 1)*. Then we get a
TRT with root 1.

7. Repeat (5), (6) and relabel the encountered 2-1Ps by (n+2)*,...,(n+r—1)*
subsequently until there is no vertex v in V5 with W(v) > 0.



76 YINGLIE JIN AND CHUNLIN LIU

713# 10* 2 4
< 5

3
\ /\ )
2 4 6 T 6

[10,9, 5, 3]-rooted tree
Figure 2.3

Example: Figure 2.3 shows a [10, 9,5, 3]-tree together with its ORT's and T RT's.

Let T ,,,1 be the number of ORT's of order m + 1 and consider the function

T1 (.Z‘, y) = Zl Tl,m,l J;fn—'y
Obviously T (z,y) = y(e*—1) an is the exponential generating functlon for
ORTs, where the label of the root is already defined. For convenience, let T ,(z) =
Yooy T 127 be the exponential generating function for [m,n]-trees of helght 2,
where the labcl of the root is already defined. Suppose the number of non-leaf height
1 vertices is t; then we have

oo min{m,n—1} m
m T
= E E t'S(n—1,t)— 2.1
I) m=1 t=1 < t > (n 7 )m' ’ ( )

where S(n — 1,t) are the Stirling numbers of the second kind. If we let (7T*(x))" =
T7(x) then

dTl z,y)
Yy

» o] T*7 (I)’ljn71
yT*(x) _ 1 = n—1 $
‘ n; (n—1)!

oo oo min{m,n—1} S( ~-1 t) myyn= 1
“1n=2 t=1 (n —1Dl(m _t)-
S(n, t)xmy"
nl(m —t)!

I
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Let Tpn(m > 1,n > 1) be the number of [m, n]-trees and consider

Theorem 2.2 The exponential generating function T(x,y) satisfies:

oo 00
— Z Z ’I”men71

n=1m=1

m

Yy
min!’

n

(2.3)

Proof. When n = 1, Ti(z,y) is the exponential generating function for [m, 1]-
trees. Let Ty, ,(n > 1) be the number of [m, n]-trees with height bigger than 1 and
consider the function

ZZTan

n=2m=1

First we show that from the bijection in Theorem 2.1, Ty(x, y) satisfies

)= 33 —nl_’")k)!T;; (@) T @)~ (24)

where N = min{n — 1, k} and ey =n—1.

Let Ty(z,y) = S5, T () L. Then the coefficient of £ in T,,(z) is the number of
[m, n]-trees whose height blggcr than 1. In fact the number kof IPshas 1 <k <n
and the number r of 2-/Ps has 1 < r < min{n — 1,k}. By Theorem 2.1, we first
define the roots of those TRT's and ORT's, there are g? (Z::) ways. Then we can
consider a partition of the n — 1 height 2 vertices into r blocks and put all vertices of
each block as vertices of a TRT in r1S(n—1,7) ways. From the definition of T}*_, (),
we know that the exponential generating function for forests of » T'RT's whose roots
and height 2 vertices are already defined is T}y () --- T} (x). Similarly the function

T (zy)
(=)

for forests of k —r ORT's whose roots are already defined is k=7 Then we get

=SS (1) (32 s o7 (R

k=1r=1

which completes the proof of (2.4).
Let f(z,y)|{yny be the term containing T in f(z,y). Noting S(m,l) # 0 is
equivalent to 0 < [ < m, therefore from (2.2) and (2.4) we have

oo n min{n—1k} S(n _ 177')

Ty () Ty (@)(e” = D) y"

Ty(z,y) = e =Ry

]

1 r=0

3
||
o

k

&S = L) (T (@) (= Dl — 1)
B n;,;; (n—1)! (k—7)!(n—k)!
QG E @Oy (@ D= Yy
B T;,;; 7! (1) (k—r)l(n—k)!



78 YINGLIE JIN AND CHUNLIN LIU
LS
n=2k=1 k! (TL - k) {y;n—1} n
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Therefore
T(z,y) =Ti(z,y) + Ta(z,y) = i i S bl A
/ / / n=1m=1 m!n!
For the first few terms of T'(z,y) we have
xy 2y 2%y 3xyd  Sa?y?
Tlay) = o+ 3o Yom e T o
4oyt 36z%y% 24232 2y
14t 2130 321 T
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From Theorem 2.2 we now can get the well known result which gives the number
of rooted spanning trees of the labelled complete graph K,(n > 1); let 7(K,) be that

number.

Theorem 2.3

7(K,) =n""".

(2.6)

Proof. To a labelled rooted spanning tree of K,,, suppose the number of vertices
whose height is even is r; then 1 < r < n — 1. In fact if we first select r labels
out of {1,...,n} for the r vertices and the remaining n — r labels for the n — r odd
height vertices, then from the definition of 7, , we have that the number of labelled

rooted spanning trees of K, with r even height vertices is Cf) T,—rr. Recall the Abel

identity ([7])

and replace z,y, k by —n, 0,7 respectively. Then from Theorem 2.2 we get

n—1
’fL) Tn,n,. _ Z <7l> ’I‘n_T(Tl _ ,,,)r—l _ nn—l. 0O
T

n

e =3 ()=t

k=0

r=1

Let 7(K,,,,) be the number of labelled spanning trees of K,,,,. Then from The-

orem 2.2 we have
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Theorem 2.4
T(Kmp) =m™ 'n™ 1 (2.7)

Proof. We first calculate the number of labelled rooted spanning trees of K, .
From the definition of T}, , we know that the number of labelled rooted spanning
trees of K,,, with root in A and B is T, ,, and T,, ,, respectively, which tells us that
the number of labelled rooted spanning trees of K, ,, is

—1 -1
,Tn,m + Tm,n = m"*nm + nmmn L

Because there are m + n vertices in all and any vertex can be selected out as the
root, the number of labelled spanning trees of K,,,, is

m"n™ - pmmn!
T(Konn) =

which completes the proof.

)

m-+n
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