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Abstract

Denote the n x n toroidal queens graph by @Qf. We show that y(Q%,) =
k+ 2 when k = 0,3,4,6,8,9 (mod 12). This completes the proof that
Q%) = 2k — 5(Q}) for all positive integers k.

1 Introduction

The study of combinatorial problems on chessboards dates back to 1848, when Ger-
man chess player Max Bezzel [2] first posed the n-queens problem, that is, the prob-
lem of placing n queens on an n x n chessboard so that no two queens attack each
other. The study of chessboard domination problems dates back to 1862, when C. F.
de Jaenisch [7] first considered the queens domination problem, that is, the problem
of determining the minimum number of queens required to cover every square on an
n X n chessboard. Since then many papers concerning combinatorial problems on
chessboards have appeared in the literature. See [9] for a survey of the topic; recent
results not mentioned there can be found in [4-5, 10, 13-15].

The n-queens problem for chessboards drawn on the torus was first considered
by Pélya (as cited in [1]) who showed that a placement of n mutually non-attacking
queens on an n x n toroidal chessboard is possible if and only if n = 1,5 (mod 6).
For other values of n the maximum number of non-attacking queens was determined
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by Monsky [11]. The study of the queens domination problem on the torus was
initiated in [3]. The results obtained in these papers clearly show that the n-queens
problem and the queens domination problem on the torus differ substantially from
the corresponding problems for plane chessboards.

Consider an n x n chessboard on the torus and notice that the rows and columns
of the chessboard are rings on the torus. We cut the torus along arbitrary lines
separating two rows and two columns, and draw the n x n toroidal chessboard in the
plane, numbering its rows and columns from 0 to n — 1, beginning at the bottom
left hand corner. Thus each square has coordinates (x,y), where x and y are the
column and row numbers of the square, respectively. The lines of the board are the
rows, columns, sum diagonals, abbreviated s-diagonals (i.e., sets of squares such that
x+y =k (mod n), where k is a constant) and difference diagonals, abbreviated d-
diagonals (sets of squares such that y—x = k (mod n)). The s-diagonal (d-diagonal,
respectively) such that x+y = k (mod n) (y—x = k (mod n), respectively) is denoted
by s = k (d = k, respectively) and labelled accordingly in the drawing. Note that
there are n s-diagonals and n d-diagonals, each of which contains n squares, so that
there are 4n lines in total. Rows and columns are collectively called orthogonals.

Consider any d-diagonal — by symmetry we may assume d = 0 — and any s-
diagonal s = k. These diagonals intersect in a square (x,y) if and only if z +y =
k (mod n) and y —z = 0 (mod n); that is, 2y = k (mod n). If n is odd, then
this congruency has exactly one solution for each k, namely y = % if k£ is even and
Yy = % if kis odd. If n is even, then the congruency has no solution if % is odd
and exactly two solutions if k is even, namely y = & and y = 2%, Therefore, if n
is odd, then any d-diagonal intersects any s-diagonal in exactly one square of the
toroidal n x n chessboard, while if n is even, then any d-diagonal and s-diagonal of
the same parity intersect in exactly two squares, while diagonals of different parity
do not intersect in a square at all.

The vertices of Q! the queens graph obtained from an n x n chessboard on the
torus, are the n? squares of the chessboard, and two squares are adjacent if they are
collinear, that is, if they lie on the same line as defined above. It is easy to verify
that for any a,b € {0,1,...,n—1}, the mapping defined by 7,;(z,y) = (z+a,y+D)
is a graph automorphism of Q! so Q! is vertex-transitive. Also, for any integer
m that is relatively prime to n, the mapping defined by m,,(z,y) = (mz, my), with
reduction modulo n, is a graph automorphism of Q!. Automorphisms of this type
will be useful later.

A queen on a square (z,y) of Q! is said to cover or dominate (x,y) and any square
adjacent to (z,y). A set D of squares is a dominating set of Q! if every square of Q!
is either in D or adjacent to a square in D, i.e., if a set of queens, one on each square
in D, covers the board. If no two squares of the dominating set D are adjacent, then
D is an independent dominating set. As is standard in domination theory (see [8]) we
denote the domination number — the minimum cardinality amongst all dominating

sets — of Q! by v(Q%).
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2 DMore definitions and previous results

Let S be a set of squares of QY. A line (row, column, diagonal, orthogonal) which con-
tains (respectively does not contain) a square of S is called an occupied (respectively
empty) line (row, column, diagonal, orthogonal). Let r be any empty row. Each
element of S dominates r exactly three times (by column and s- and d-diagonals),
hence in at most three squares. A similar statement holds for any empty column. If
a square (z,y) is dominated p > 2 times by squares in S, we say that (z,y) contains
p — 1 wastes. The waste number w(l) of an empty line [ is the sum of the wastes on
the squares in [.

If |S]| > k, then S is said to form a perfect pattern on QY if there is at least one
square of S in every third row, column and diagonal, and no queens in any other
row, column or diagonal.

We now show that if S forms a perfect pattern on Q%,,, then S dominates Q%,. We
may choose coordinates so that the label of each occupied orthogonal is a multiple
of 3, and then the labels of the occupied diagonals are also multiples of 3. Consider
a square (z,y) of Q4. If (z,y) is not in an occupied row or column, then z = 1
or 2 (mod 3), and similarly for y. Then either x = y (mod 3) and (z,y) is in an
occupied d-diagonal, or  # y (mod 3), so x +y = 0 (mod 3) and then (z,y) is in
an occupied s-diagonal.

This gives a method (see [3, 12]) of constructing a dominating set S of Q% from
a set S7 of squares of Q. We wish to begin with a set Sy of at most k squares of
@}, that occupies as many lines as possible. To this end, recall that a set of vertices
of a graph G is independent if no two are adjacent, and 5(G) denotes the maximum
size of an independent set of vertices of G. Let S be an independent set of QY
containing 8 = B(Q%) squares. Then Sy occupies 43 of the 4k lines of Q4. There
remain 2k — 23 unoccupied orthogonals and 2k — 23 unoccupied diagonals. Pair off
these orthogonals with these diagonals; for each pair, adjoin the unique intersection
square of the two lines to S, thus obtaining a set S of 8+ (2k — 206) = 2k — 8
squares that occupies every line of Q4. Then S = {(3z,3y) : (z,y) € S} forms a
perfect pattern on @4, and thus dominates. Therefore v(Q%,) < 2k — 3(Q%) for all
positive integers k.

Monsky [11] has shown that

k if £k=1,5,7,11 (mod 12)
BQY={ k=1 if k=210 (mod 12)
k=2 if k=0,3,4,6,89 (mod 12).

The study of the queens domination problem for chessboards on the torus, that
is, the problem of determining (Q?), was initiated in [3], where it was shown that
(@) > {%] for all n, and in particular when n is divisible by 3, that

=k if £k=1,57,11 (mod 12)
Q%) =k+1 if k=2,10 (mod 12)
>k+1 if £k=0,3,4,6,8,9 (mod 12).
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Configurations given in [12] further show that
Y(Q4) <k+2if k=0,3,4,6,8,9 (mod 12). (1)

In this paper we show that the upper bound in (1) is exact, completing the proof
that
(Q%) = 2k — B(Q}) for all positive integers k.

Mynhardt [12] also showed that v(Q%,) < k for all &, and so if n is even and not
divisible by 3, then the best known bounds for y(Q?) are

(4] <~(@)) <2

Denote the graph obtained from the moves of queens on the ordinary (plane) nxn
chessboard by @Q,,. It is easy to see that any dominating set of @,, also dominates Q,
and so ¥(Q%) < v(Q,) for all n. Determining upper bounds for (@) is a difficult
problem — see [6] and [15] for recent bounds. In contrast the upper bounds in [12]
were easier to obtain, but when n = 1,5 (mod 6), the bounds for (Q,,) are still the
best general bounds for v(Q?).

3 Main theorem
Theorem 1 Ifk=0,3,4,6,8,9 (mod 12), then v(Q%,) =k + 2.

Proof. As reported in [3], v(Qf) = 5 and v(Q%,) = 6, so we will assume k > 6.
Suppose to the contrary that S is a dominating set of QY of size k + 1, where
the queens in S occur in rows (in non-decreasing order) 71, ...,7x+1 and columns
C1y ey Chr1- Define A; by Ay =3k+ri—rppand Ay =r;—ryqy fori € {2, k+1};
note that XA, = 3k. Using columns instead of rows, Al ge {1, k+ 1}, s
defined similarly.

Since each queen in S dominates each empty orthogonal [ exactly three times, [
is dominated exactly 3k + 3 times, and since each square in [ is dominated at least
once, w(l) = 3. We see in particular that A;; Al = 0 for at most three values of i
and at most three values of j. Let a, 0 < o < 3, be the number of values of 7 for
which A; = 0.

If s consecutive rows are occupied (respectively empty), we refer to them as a row
block (respectively row blank) of size s. Column block and column blank are defined
similarly. A row (or column) block (or blank) is mazimal if not part of a larger one.
Clearly, the number of maximal row (column) blocks equals the number of maximal
row (column) blanks. Note that for ¢ > 1, a maximal row blank of size ¢ corresponds
to A; =t + 1 for some 3.

We wish to show that S does not have a row or column blank of size 3. Our proof
will require the following two technical lemmas.

Lemma 2 Suppose there is a column blank of size at least 3. (That is, there is a j
with A;- >4.) Then o <2, and there are at most 3 — o mazimal row blocks. There

1s at least one row block of size [k;ﬂ;“] and at least one row blank of size {%-‘
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Figure 1: Three adjacent empty columns

Proof. Without loss of generality we may assume that columns 1, 2, and 3 are empty;
each of these columns contains o wastes caused by more than one queen per row.
Since k > 6 and the chessboard is drawn on the torus, whenever a maximal row block
ends at occupied row r;, there always exists an occupied row 7,1 # ry;if i = k+ 1,
then 7;,1 = r;. Assume without loss of generality that a maximal row block ends at
occupied row r; = 0 (see Figure 1). Then square (2, 1) is in an empty row and empty
column and is dominated along an s- or d-diagonal; in either case there is a waste in
the occupied row 7 = 0 of one of the empty columns 1 (square (1,0)) or 3 (square
(3,0)). Say row ro = x > 2 is the next occupied row and consider square (2,2 — 1)
(which may be the same as (2,1)), which is also dominated diagonally. Again there
is a waste in the occupied row 72 = x of one of the empty columns 1 (square (1,z))
or 3 (square (3,)). Hence every maximal row block contributes at least two wastes
in columns 1 and 3. Since w(1l) + w(3) = 6, there are at most 3 — @ maximal row
blocks. As there is at least one maximal row block, a < 2.

The other assertions of the lemma follow from the fact that the number of occu-
pied rows is k + 1 — «. O

We will also use Lemma 2 with the roles of rows and columns reversed, which we
will refer to as Lemma 2.

Let [, h be integers with 2 < [ < h. Relative to S, an (I, h)-rectangle occurs
where [ consecutive empty columns meet h consecutive rows, of which only the top
and bottom rows are empty.
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Figure 2: Four occupied rows and six empty columns

Lemma 3 Suppose we have an (I, h)-rectangle involving empty columns a,a+1, ...,
a+1—1 and occupied rows b+ 1,....,b+ h — 2, with rows b and b+ h — 1 empty.
Then the squares in the set E = {(z,y) iz € {a,a+1—1} andb<y <b+h—1}
contain at least 2(1 — 2) wastes. Thus one of columns a, a+1— 1 has waste number
at least | — 2.

Proof. Every square of E' is in an occupied row, so diagonal attacks on these squares
give wastes. Consider the 2(I — 2) squares satisfying a <z <a+1—1and y =b or
b+ h —1. Each of these squares has empty row and column, so must be in a diagonal
occupied by S. The diagonals containing these squares are all distinct, and each one
contains a square of E, so at least 2(I — 2) wastes occur at squares of E. The lemma
is proved; an example with [ = h = 6 is shown in Figure 2. O

We can now show that S does not have a row blank or column blank of size 3.
It suffices to consider column blanks; for purposes of contradiction, assume there is
a column blank of size 3.

First consider the case k > 9. Here Lemma 2 gives a row block of size 4 and a
row blank of size 6. Using the latter and Lemma 2', we get a column blank of size
6. Thus there is some h > 6 such that there is a (6, h)-rectangle. By Lemma 3 there
is an empty column ¢ with w(c) > 4, a contradiction.

Now let & = 8. We claim that there cannot be a row block of size more than
4. If there is, we can assume without loss of generality that rows 0, 1, 2, 3, 4 are
occupied. Then 75(5) is a dominating set of size 9 for @4, and 75(S) occupies at
least the rows 0, 5, 10, 15, 20. Going around the torus, the five differences we get
from these numbers are 5, 5, 5, 5, 4; all at least 4. Since |75(S)| = 9, there are at
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most four other rows occupied by m5(S); thus 75(S) has some A; > 4, so has a row
blank of size 3. Then Lemma 2’ implies 75(.5) has a column blank of size 5, whence
Lemma 2 gives a row blank of size 5, so for some d, m5(S5) has Ay > 6, which clearly
does not happen.

So S cannot have a row block of size more than 4, which implies that any (I, h)-
rectangle for S has h < 6. By Lemma 2, S has a row block of size 3 and a row blank
of size 5, and then Lemma 2 gives a column blank of size 5. These facts imply there
is an (I, h)-rectangle with [ = 5 and h = 5 or 6. Then by Lemma 3, some empty
columns ¢, ¢ have w(c) + w(d) > 2(I — 2) = 6 (from diagonal covers of squares in
occupied rows). Since w(c), w(c’) < 3, we may conclude « = 0. Since |S| =9, there
are at least five occupied rows not yet discussed, which fall into at most two maximal
row blocks (Lemma 2). Thus there is another row block of size 3; using this with the
previously employed column blank to make another rectangle, we get more wastes
in columns ¢; and ¢y, a contradiction.

Finally, consider k = 6. By Lemma 2, there is a row block of size 3 and a row
blank of size 4, and then Lemma 2’ gives a column blank of size 4. Then for some
h > 5, there is a (4, h)-rectangle, and by Lemma 3, w(c) +w(c’) > 4 for some empty
columus ¢, ¢.

Let z be the size of a largest row block. There are 7 — o — z occupied rows
not in this block, and by Lemma 2 there are at most 2 — a other maximal row
blocks; if any of these row blocks has size two or more, then for some h' > 4 we
have a (4, h/)-rectangle involving the same columns but different rows, thus giving at
least four additional wastes in columns ¢ and ¢ jointly, so that w(c) + w(¢’) > 8, a
contradiction. Therefore {753—;“1 < 1, which implies z > 5. We may assume without
loss of generality that S occupies rows 0, 1, 2, 3, 4. Then the automorphic image 77(.5)
is a dominating set of size 7 for Q%g, and the rows occupied by 77(S) include 0, 3,
7, 10, 14. Going around the torus, the successive differences between these numbers
are 3, 4, 3, 4, 4. From the fact that 77(S) has at most two more occupied rows,
we may derive two conclusions. First, 77(S) has at least four maximal row blanks,
and second, at least one of these has size 3. However, these lead to a contradiction,
because the first implies by Lemma 2 that 77(S) has no column blank of size 3 or
more (the number of maximal row blanks being equal to the number of maximal row
blocks), while the second implies by Lemma 2’ that 77(.S) has a column blank of size
at least P;_L;-‘ > 4.

This concludes the proof that S does not have a row or column blank of size 3.

It follows that A} < 3 for each j € {1,...k + 1} and A; < 3 for each i €

{1,....k +1}. But S¥'A; = 3k and the only possibilities are

(i) A; =3 for k — 2 values of i and A; = 2 for three values of ¢

(i1) A; =3 for k — 1 values of i, A; = 2 for one ¢ and A; =1 for one i
(791) A; = 3 for k values of ¢ and A; = 0 for one i.

A similar statement holds for the A, Suppose that for some j, A} > 2, AL, | = 2 and
A;+2 > 2. Choose i such that A; = 3 and consider the intersection of the sections of
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Figure 3: Dominating squares in empty rows in column d creates wastes in columns

d£2

rows and columns concerned (see Figure 3). Say columns d and d + 2 are empty and
columns d 4 1 are occupied, while rows e and e + 3 are occupied with rows e+ 1 and
e + 2 empty. The squares in the empty rows in column d are dominated diagonally,
and we see that at least two wastes are created in columns d £ 2. Since k > 6, there
are at least four values of ¢ such that A; = 3, and in each case at least two wastes
occur, giving w(d — 2) + w(d + 2) > 8, which is impossible.

Therefore possibility (i) does not occur for either rows or columns. If possibility
(i) occurs, say A; = 2 (A, = 2), then (without loss of generality) A, =1 (A}, =
1, respectively). Thus there are queens in every third row and every third columun;
without loss of generality in the sets of rows and columns R3 = C3 = {0, 3,6, ..., 3k —
3}. Depending on whether possibility (i7) occurs for rows and/or columns, there may
also be a queen in an additional row u and/or column v (see Figure 4). This implies
that at most two of the squares of S have diagonal labels not divisible by 3.

We next show that each diagonal with label divisible by 3 is occupied by a queen
in S. Suppose that s-diagonal s = 3h is empty. Note that 2k of the 3k squares of s
have neither row nor column label divisible by 3. At most two of them are covered
orthogonally if row u or column v is occupied. Hence at least 2k — 2 of these squares
must be covered by d-diagonals, none of which has label divisible by 3. Since at
most two such d-diagonals are occupied, and each of them intersects s in at most
two squares, we see that 2k —2 < 2.2, contradicting & > 6. Thus every s-diagonal
and, similarly, every d-diagonal, with label divisible by 3 is occupied by S. Denote
these sets of s- and d-diagonals by S3 and Ds, respectively. (There may be additional
occupied diagonals.)

Observe that every square (t,u) in row u is dominated exactly once along a line
q: € C3US3U D3, which intersects row u + 1 only in squares in C3 N S3ND3. We may
thus move the queen on square (¢, u) along g» to row u + 1 to obtain a dominating
set of @Y, in which there are queens in every third row only. Similarly, we may move
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3h

Figure 4: Diagonals required to dominate squares in empty rows and columns
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the queen in column v to column v 4+ 1 to obtain a dominating set S’ that forms a
perfect pattern on Q5.

The k + 1 queens in S” have coordinates (3x;, 3y;) for 0 < i < k, where {z; : 0 <
i<k}={y;:0<i<k}={0,..,k—1}. Consider the set X of queens on @} with
X ={(@i,y:) : (324, 3y;) € S'}. Let s; = (x;+y:) (mod k) and d; = (y; — ;) (mod k)
be the s- and d-diagonals containing (x;, ;). Then there are queens in every row,
column, s-diagonal and d-diagonal of Q% (S’ forms a perfect pattern on Q%,.), so that
there are one row, one column and one diagonal of each type that contain exactly
two queens. By symmetry we may assume that row 0, column 0, s-diagonal p and
d-diagonal ¢ contain two queens. Now,

si = (z;+y) (mod k) for each i
k

ie. >osi = > (xi+y) (mod k) (summing over all queens in X)
i=0 =0

. k=l N =0 since row 0, column 0 and

e ; itp = 2 Z;) i (mod k) { s-diagonal p contain two queens

ie. @ +p = k(k—1) (mod k)
ie. p = @ (mod k).
Similarly, ¢ = @ (mod k). Now if k is odd, then % is integral and so p = ¢ = 0.

If k is even, then p = ¢ = g Define w to be 1 if k is odd, 2 if k is even. It is easy to
check that @ = b (mod k) implies that a® = b (mod wk). We thus have

52 = (zi+y)? (mod wk) = (22 + 2y +y?) (mod wk)
and
& = (y;—x:)* (mod wk) = (22— 2zy; +y?) (mod wk),
therefore

s2+d? = 2(z2+y?) (mod wk) for each i.
As before, summation over all queens in X gives

k

Z(sf—l—df) = 22 2 +92) (mod wk)

=0
k-1 k-1
that is, 2 Z PH+pP+g = 4 Z i (mod wk). (2)
=0 i=0
If k is even, (2) gives
2k(k—1f)j(2k—1) n %2 _ 4k(k—16)‘(2k—1) (mod 2k)
ie. w - k—; = 0 (mod 2k)

ie. 2k {M} = 0 (mod 2k).
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Thus W is an integer, which is impossible if £ = 0,4,6,8 (mod 12). If k is
odd, (2) gives
72'“(1“712;(2'“71) = 0 (mod k)

ie. k[%} = 0 (mod k).

Thus % is an integer, which is impossible if £ = 3,9 (mod 12). [ ]
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