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Abstract

A necessary condition is given for the existence of some Generalised Bhaskar
Rao designs (GBRDs) with odd block size over cyclic groups of even order. Some
constructions are given for GBRDs over cyclic groups of even order with block size
3 and with block size 4.
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1 Introduction

A design is a pair (X, B) where X is a finite set of elements arid B is a finite collection
of (not necessarily distinct) subsets (called blocks) of X. A balanced incomplete block
design, BIBD(v,b,7,k, ), is a design with v elements and b blocks such that

(i) each element appears in exactly r blocks
(ii) each block contains exactly k(< v) elements
(ili) each pair of distinct elements appears in exactly A blocks

Since r(k — 1) = AMv — 1) and vr = bk are well-known necessary conditions for the
existence of a BIBD(v,b,7,k,\) we denote this design by BIBD(wv,k,}).

Let G be a finite group with identity e, and let Z(G) be the group ring of G over
the ring of integers Z. A generalised Bhaskar Rao design (with one association class)
with parameters v,b,7,k, A and G is a v x b matrix with entries from G U {0}, where
0 ¢ G, such that

WWt =rel + l%? > og(J-1) (1)
e
where W+ is the transpose of W with the group elements replaced by their inverses,
and the product WW™ is evaluated in Z(G).
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Let N be the matrix formed from W by replacing its group element entries by 1;
then (1) gives
NNT = (r = NI+ )J

that is, N is the incidence matrix of a BIBD(v,k,A). Thus we use the notation
GBRD(v,k, A\;G) to denote a generalised Bhaskar Rao design with one association
class. Note that a necessary condition for the existence of a GBRD(v,k, X; G)is |G| | A.

Note that the existence of a GBRD(v,k, \;G) for some v,k and G implies the
existence of a GBRD(v,k,cX;G) for all ¢, by concatenation.

In this paper we are concerned only with the case where G is the group Z, of
integers modulo n. We will use + to denote the addition in Z, (the ‘multiplication’
of the group ring Z[Z,]) and & to be the addition of the group ring. The zero of the
group ring will be denoted by #; the identity of Z, by 0 as usual.

We further restrict attention to the case n even; necessary and sufficient conditions
for the existence of a GBRD(v,3,A; Z,,) where 1 is odd are given in [2].

2 The group Zy,t € N

Theorem 2.2 below eliminates the possibility of the existence of certain
GBRD{(v,k, A; Z21)s.

Lemma 2.1 If there is a GBRD(v, k,\; Z,.0,) then there is a GBRD(v,k, \; Z,).

Proof: Replace every group element entry z of the GBRD(v,k,A; Z,.,) by 2 (med
n). Clearly the resulting matrix is a GBRD(v,k,X; Z,). ]
Theorem 2.2 A necessary condition for the existence of a GBRD(v,k, 2¢ct; Zyi) with

t, k and ¢ odd is v =0 or I (mod 4).

Proof: In view of Lemma 2.1 above it is sufficient to prove the result for ¢ = 1 only.

Let k and ¢ be odd and suppose there exists a GBRD(v,k,2¢; Z3); denote it by B.
Let B be the set of matrices, of the same size as B, with *’s in the same positions as
B and elements of Z; elsewhere. We associate with every matrix M € B a binary (3)
-vector d(M) as follows. Let M € B. If (r;,r;) is any pair of rows of M define

d(ri,rj) =ao+ap+ ...+ age
where the a; are given by
ri—T;=a0® a1 ... B age (a1 € Z3,0< 1< 2¢—1)

Label the distinct unordered pairs of rows of M by pi{M), p2(M),... WP )(M) (where
2
the ordering is the same for all M € B). Define d(M) by

aon=amon), (125 (3)).
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of its group element entries ¢ by the group element a’. This change can only affect
k — 1 pairs of rows; we have

M) =d(M)+e

where ¢ is a vector of weight £ — 1 if a — @’ = 1 and is the zero vector otherwise.

Let A be the matrix in B with every group element entry 0, so that d(A) is the
zero vector. Since B can be obtained from A by repeatedly replacing occurrences of
the group element entry 0 by the group element entry 1, it follows that d(B) lies in
the span of a set of vectors all of weight k& — 1. Since £ — 1 is even, and the set of even
weight binary (})-vectors is a subspace of the vector space of binary (;)-vectors, d(B)
has even weight.

Now since B is a GBRD over Z; with A = 2¢, ¢ odd,

d(pi(B) =c(0+1) =1 , (195 (’2’)) ,

ie. d(B) has every component equal to 1, and so has weight (5).
Thus (3) is even, i.e. v = 0 or 1 (mod 4). o

The rest of the paper gives constructions for GBRDs with k¥ = 3 and with k = 4.
S; will denote the subset {1,2,...,t - 1,4+ 1,...,2t — 1} of Zy; where t € N. (We
assume that we add and multiply elements of S as elements of Zy;.

The following lemma is a generalisation of Lemma 3.1 [4].

Lemma 2.3 If there exist

(1) k — 1 permutations my,mo,...,7g—1 of Sy, t € N, such that for all
pg€{l,....k~1}, p#q,

{mp(5) = my(2) | i € S1} = Se » (2)
(ii) a GBRD(v,k,2;Z5) ,
(iii) a BIBD(v,k, 1),
then there exists a GBRD(v, k,2t; Zat).

Proof: In the GBRD(v,k,2; Z3) replace each 1 by ¢, to give a matrix A. Let B be
the incidence matrix of the BIBD(v,k,1), with entries * and 0. Form a new incidence
matrix C' from B by, replacing in each column of B,

(i) each * by a row of 2t — 2 #’s
(ii) the 5 0 by r;(1),...,m(2t~1) (G =1,...,k=1),
(iii) the k*" 0 by a row of 2t — 2 (s -
Then B||C is a GBRD(v,k,2t; Z3;) (where || denotes concatenation). O

Lemma 2.4 For all t > 4 there exist at least two permutations w1, Ty of S; satisfying
(2) of Lemma 2.3.



Proof: We consider separately the four cases according to the congruency modulo 4
of t. In each case m is taken to be the identity, and we exhibit a construction for a
particular mp. Recall that operations are modulo 2.

(i) t =0 (mod 4)
Put u = -é—t, and take

fu—i~-1 (i=1,...,u—-1)
u—1 (i =u)
wo(i) =< du—1 (i=u+1u+2,...,2u~1,2u+1,...,3u~1)
4u—~i—-3 (i=3u,3u+2,. 4u-2)
du—14 1 (zw3u+l3u+3 ,A4u — 1)

il

il

Then m2(S¢) is the union of the following sets

{m2(3) zwl,u..‘,u—»l} = {4u—2,4u-3,..., 3u}
{ma(d) | # =0} = {u—-1}
{m2(z) z*u+] o 2u—1,2u+ 1, 3u~1} = {3u—-1,3u—-2,...,2u+1,

Qu—1,...,u+1}
{u~3,u~5,...,314u-1}
{w,u—2,...,4,2}

{mo(i) | i =3u,3u+4,..  4u—2}
{ma(d) | § =3u+1,3u+3,... 4u—3,4u— 1}

ot

which is Sy, and {i — 72(i) | 7 € Sy} is the union of the following sets

(i=ma(i) | i=1,2,...,u~1} = {3,5,....%u—32u~1}

{i —ma(d) | i =u} = {1}

{i—mo(i) |i=u+1,... 2u~12u+1,... 3u~1} = {2u+2,2u+4,... ,4u—2,
2,...,2u— 2}

{i—w3(i) | =3u,3u+2,3u+4,. ..  4u—2} = {2u+3,2u+7,... ,4u~1}

{i—ma(d) |4 =3u+13u+3,.. ., 4u—34u— 1} = {2u-+1,2u+5,...,4u—3}

which again is S%.
(i) =1 (mod 4)
Put w = §(t - 1) and take

du—i+1 (i=1,...,u—-1)
u—1 (i=w)
mo(i) =< du—1+2 (z v+ Lu+2,...,2u,2u+2,...,3u+1)
4y —1—1 3u+23u+4....4u)
4u —~1+3 (z~3u+33u+5 SLdu+1)

H

Then m2(5¢) is the union of the following sets

{m(d) | i=1,2,...,u—~1} = {4u,du—1,...,3u+2}

{ma(i) | i =u)} = {u—-1}

{me() li=u+lu+2,...,2u,2u+2,...3u+1} = {Sut+1,3u,... 2u+2
2u,...,u+1}

{mo(d) | i =3u+2,3u+4,... 4u} = {u—3u—5,...,1,4u+1}

{ma(d) | i =3u+3,3u+5,... du+1} = {u,u—2,...,2}
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{i~m(i)
{i—m(3)
{i — m2(3)
{i ~ 7a(3)
{i — (%)

i=1,2,...,u~1}
i=u}

i=3u+2,3u+4,... 4u}

which again is ;.

(iii) ¢ =2 (mod 4)

_ 1
Putu =3

ma(%)

i=utlu+2,...,2u2u+2,...,3u+ 1}

i=3u+3,3u+5,... du+1}

{3,5,...,2u~1}

= {1}
= {2u+2,2u+4,...,4u,
2,4,...,2u}

{2u+5,2u+9,...,4u+ 1}
{2u+3,2u+7,...,4u—1}

o

(t +2), and take

du—i-5 (i=1,...,u—~1)

u—1 (i=u)

du—i—4 (i=uv+l,u+2,...,2u-3,2u~1,...,3u - 5)
=<1 (i=3u—4)

w—3 (i = 3u — 3)

du—i—7 (i=3u~—23u,...,4u— 6)
du—i—3 (I=3u—1,3u+1,...,4u—5)

Then 7,(5:) is the union of the following sets

{ma(d)
{ma(d)

{ma(i)
{ma(d)
{ma(d)

i=1,...,u—1}

i=u+l,...,2u—3,%u~—1,..

i=3u~—2 3u,...,4u — 6}
i=3u—13u+1,... 4u—5}
i =u,3u—4,3u - 3}

{4u~6,4u —7,...,3u ~4}
{8u~5,3u ~6,...,2u~1,
2u—-3,... ,u+1}
{u—5u—7,...,1,4u~5}
{u—2,u—4,...,42}
{u—~1,u,u—3}

., 3u—~5}

o

which is S}, and {7 — m2(¢) | ¢ € S} is the union of the following sets

{i~ma(3)
{é~m2(d)
{i = m3(d) |
{i — w2(2)
{i—ma()

i=1,2,... u-1}

i =3u~—2,3u,...,4u ~ 6}

i =u,3u —4,3u — 3}

which again is 5.

(iv) t =3 (mod 4)

There are

(a)y t=1
Let

two subcases:
,2 (mod 3)

41

”Z(i):{t—zi

t=u~1,...,2u~3,2u~1,

1=3u—1,3u-+1,...,4u—7,4u~ 5}

{3,5,...,2u~ 1}
{2u+2,2u+4,...,4u — 6,
2,...,2u — 6}
{2u+3,2u+7,...,4u~ 5}
{2u+1,2u+5,...,4u~ T}
{1,2u — 4,2u}

il

i

o, 3u -5}

I

(i=12,...,t—1)
f=t+1,t+2,...,2t~ 1)
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and {t — 2 | i =14+ 1,6 +2,...,2t — 1} is the set of odd elements of S;.
Therefore 79 is a permutation of §;.

We must show that 7y — 75 is a permutation of §;. Now for i € 5}

i~ 4i= -3
i— (t—2i)=3i+1

Since 2t is not divisible by 3, for i,j € 5,
~3i=-3] = 3(i-j)=0 = i~j=0 < i=j
Similarly, for ¢,7 € Sy,
Jitt=3+1 &> i=]
To prove that 7y — w9 is a permutation of 5y it remains to show that
—3i 5 35+t (tefl,...,t~1}, jef{t+1,...,2t—-1})

ie. that
~3i£3;  (ije{l,....t—1})

But this follows since for ¢,7 € 9, —3t = 3j <= i = —7J similarly to above.

t =0 (mod 3)
Put t = 12u + 3, and take
2 (i=1)
120+ 5 — 2i (i=2,4,... 6u)
120 + 6 — 2 (i=13,5,...6u+1)
24u+6 - r(12u+3—i) (i=6ut2,6u+3,. .., 12u+2)
12u+1- 2 (i =12u+4,12u +6, ..., 16u + 4)
ma(i) = 24y +4 — 21 (i=12u+5,12u+7,...,14u + 1)
12u +2— 2 (i=14u+3,14u+5,...,16u + 3)
120 —1—2¢ (i=16u+516u+7,...,18u+ 1)
2du+ 6 - 2i (i = 16u+ 6,16u+8,...,18u+2)
24u+5 (i=18u+3)
12u+4 (i =18u+4)
24u+6—7(12u+3—14) (i=18u+5,18u+6,...,24u + 5)

Then 79(5%) is the union of the following sets

10



{ma(i) | i =1}

{my(i) |1=2,4,...,6u}

{ma(i) | 1=3,5,...,6u-+1}

{mao(i) | i =6u+2,6u+3,12u + 2}

{1}

I

{ma(i) | i =12u+4,12u+6, ..., 16u + 4}
{ma(d) |1 =12u+ 5,12+ 7,..., 14u+ 1}
{mo(i) | i =14u+ 3,14u+5,..., 16u+ 3}
{ma(3) | i =16u+5,16u+7,...,18u+ 1}
{mo(d) | i =16u+6,16u+8,...,18u+ 2}
{m2(¢) | i =18u -+ 3,18u + 4}

{7o(d) | i =18u+5,18u+6,...,24u+ 5}

L]

LI

{2}

{12u+1,12u~3,... 5}
{12,120 — 4,.. . 4}

{24u + 4}
U{24u+1,24u~3,...,12u + 5}
U{24u+2,24u ~2,...,12u + 6}
{124~ 1,12u~5,... du~ 1}
{24u,24u — 4, 20u + 8}
{8u+2,8u—2,... ,4u+2}
{4u—~5,4u—9,...,3}

{16u,16u — 4,...,12u + 8}
{24w 45,122 + 4}

{20u +7,20u+3,... 12u+7}
Ufdu ~2,4u —6,...,6}

U{20u + 4,20u,...,16u + 4}
U{24u + 3,24u —1,...,20u + 11}
U{12u - 2,12u —6,...,8u + 6}
U{12u+2,1}

which is Sy, and {i — m(3) [ i € 5;} is the union of the following sets

{i = ma(i) | i =1}
{i—mo(i) | i=2,4,... 6u}

{i—mao(i) | i=3,5,...,6u+1}

{i— mwa(3) | i =6u+ 2,6u+ 3,12u + 2}

{i—me() |1 =12u+4,12u+6,...,16u + 4}
{i—mi) |i=12u+5,12u+7,... 1du+ 1}
{i — ma(3) t=14u+3,14u+5,...,16u+ 3}
{i = ma(d) | § =16u+5,16u+7,..., 18u+ 1)
{i—ma(i) | i =16u+6,16u+8,. .., 18u + 2}
{i— ma(i) | i =18u + 3, 18u + 4}

{i — ma(2) i=18u+5,18u-+6,...,24u+ 5}

which again is S;.

S {24u+5}

= {12u+47,12u+13,... 24u +1,
1,7,...,6u—5}
(12u+9,12u+ 15,... 24u + 3,
3,9,...,6u—3}

= {12u+4}
Uf6u+8,6u+14,...,24u + 2}
U{6u +6,6u-+12,...,24u}
{5,11,...,12u+5}

{120+ 11,12u+ 17, ... 18u — 1}
{6u+1,6u+7,...,12u+1})
{12u+10,12u+]6,.“,181.&—2}
{6,12,.. . ,6u— 6}
{18u -+ 4, 6u}
{18u+10,18u+16,.‘,,24u—2}
U{2,8,...,6u+2}

U{24u + 4,4,10,. .., 12u — 2}
Uf18u + 11,18u +17,..., 24u — 1}
U{6u+9,6u+15,...,12u — 3}
U{6u + 3, 18u + 5}

il

o

i

i

[m]

Theorem 2.5 There ezists a GBRD(v, 3, 2t; Zot) forallt > 4and allv=1o0r9 (mod

12).

Proof: Let v satisfy the above condition. From [3], a GBRD(v,3,2; Z3) exists, and
the existence of a BIBD(v,3,1) is well known. The result then follows from Lemmas

2.3 and 2.4.

11
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INote. Rhesults about the existence ol GO ALY, 3,205 Log)s with t < 4 are given in [4].
For some values of v, for example v = 6, there exists a GBRD(v,3,2t; Zy;) for even
t but not for odd t:

Theorermn 2.6 There exists a GBRD(v,3,2t; Z4;) for t even and v = 6.

Proof: In the following incidence matrix of a BIBD(6,3,2)
10 0 1

[l S e Bl il

DO e e e CD
DO b et D e
o O D
Pt e e (DD
_—CD O O e e
— 0 e O

1
1
0
0
1

e (D R D
S o D e D

replace:

each 0 by t #’s

the 1% 1 of each column by t 0%s

the 284 1 of columns 1,2 and 4 by 0,1,2,...,1—1
the 274 1 of columns 3,7, 8 and O by £, 6+ 1,...,2t — 1
the 2°4 1 of columns 5 and 10 by 1,3,...,2¢ — 1
the 2" 1 of column 6 by 1,2,... ¢

the 3*% 1 of columns 1,2, 3 and 4 by 0,2....,2 — 2
the 39 1 of columns 5 and 10 by t,£4+1,...,%t — 1
the 34 1 of columns 6 and 7 by 2t — 1,21 — 2, ... %
the 3 1 of column 8 by ¢ — 1,4 - 2,...,0

the 3" 1 of column 9 by 1,3,...,2t— 1

It is easy to check that the resulting matrix is a GBRD(6,3,2¢; Z3). ]
We now construct GBRDs with k = 4.

Lemma 2.7 Ift = 1 or 5 (mod 6) then there exist at least three permutations Ty, wq, T3
of Sy satisfying (2) of Lemma 2.5.

Proof: Let 7y and m; be the permutations given in the proof of Lemma 2.4, (part (iv)
(a)), and let 73(2) = #a(é) — 7 (2 € Sy).

The proof of Lemma 2.4 (part (iv)(a)) remains valid for all ¢ = 1 or 5 (mod 6), so
we have that 7y, 79 and m; — 7o are permutations of 5. Now

m3(i) = (i — ma (1))
so clearly w3 is a permutation of S;. Also

. L [=2 (i=1,...,1-1) B .
z*ﬂ‘*(’)"{uu (i=t+1,...,2t—1) =1+ m(i+ 1)

so T3 — 73 is a permutation of 5;. Finally
m(t) = ma(i) =1 (i€ 5)

s0 Ty — T3 is a permutation of 5. ]
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(mod 12), v a prime power (or v = 85 or 133).

Proof: From [1] there exists a GBRD(v,4,2t; Zy;) for all v satisfying the above condi-
tion, and the existence of a BIBD(v,4,1) is well-known. The result then follows from
Lemmas 2.3 and 2.7. i
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