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Abstract

A tree decomposition of a graph G is a family of subtrees whose sets of
edges partition the set of edges of G. In this paper we are interested in the
structure of the trees involved in tree decompositions with the minimum
possible number of factors. We show that arbitary trees may appear in
minimum tree decompositions of maximal planar bipartite graphs, max-
imal planar graphs and regular graphs.

1 Introduction

Let G = (V, E) be a connected simple graph. An edge decomposition of G is a family
of subgraphs G, ..., Gy whose sets of edges partition E. We write

G=G & DG

When each subgraph G; is acyclic we have a forest decomposition. The arboricity
a(@) is the minimum number of forests in a forest decomposition of G. When each
forest is connected, we have a tree decomposition. The minimum number of trees in
a tree decomposition of G is denoted by 7(G). Since each forest on n vertices has
at most n—1 edges, ao(G) = [|E|/(]V|—1)] is a trivial lower bound for both the
arboricity and 7(G).

There are several classes of graphs for which 7(G) attains its minimum value
ao(@). Kampen [3] proved that maximal planar (mp) graphs can be decomposed
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into 3 edge-disjoint trees, therefore we have 7(G) = ao(G) = 3. Ringel [11] proved
that maximal planar bipartite (mpb) graphs verify, 7(G) = ao(G) = 2. Shi, Li and
Tian introduce in [8] a class of graphs with uniform edge-density: G = (V, E) is called
a Py-graph, if |V| > 3 and |E| = k(|V| - 2) and for any subgraph of G, H = (V', E')
with |V'| > 3, |E'| < k(|]V'] — 2). In particular P, contains the mpb graphs and the
mp graphs are contained in P;3. These authors proved that the equality ao(G) = 7(G)
also holds for a graph G in Py U Ps.

Chung [1] obtained the nontrivial upper bound, 7(G) < [|V]/2], for connected
graphs with no multiple edges. Thus, for complete graphs, 7(K,,) = ao(K,) = [n/2].
Truszczyniski [12] showed that the equality ao(G) = 7(G) also holds for complete
bipartite graphs and hypercubes.

For regular graphs of even degree and maximum edge-connectivity it is shown in
[5] that the above equality holds. When the degree is odd, the use of higher measures
of edge-connectivity gives also the result, [6]. In [7] it is proved that any graph G of
order n and minimum degree § > (n — 1)/2 has a decomposition in ag(G) trees.

In this paper we are interested in the structure of the trees involved in a tree
decomposition. We say that a tree decomposition G = T} & --- @ T} is of type
(a1, ...,ax) if T; has n — a; vertices, i = 1,...,k, where n is the order of G.

Ringel [11] conjectured that in mpb graphs the two possible kinds, (1, 1) and (0, 2),
of decompositions in two trees exist. The conjecture was proved by Ouyang and Liu
[10]. A decomposition into three trees of a mp graph can be of type (1,1,1), (0,1,2)
or (0,0,3). Shi, Li and Tian [8] proved that all these types of decompositions exist
for any graph in Pj. For regular graphs, the minimum tree decompositions obtained
in [5, 6] are of type (0,...,0,1).

Our main goal consists in showing that arbitrary trees may appear in different
kinds of minimum tree decompositions (MTD). We consider mpb graphs in Section 2,
Section 3 is devoted to mp graphs and finally we consider regular graphs in Section 4.

In Sections 2 and 3 we prove the following results. We also include proofs of the
Ringel conjecture in Theorem 2.1 and the existence of the three types of MTD for mp
graphs in Theorem 3.1. These proofs are much simpler than the ones in [8] required
to prove the result for Py-graphs, k = 2, 3.

We denote by P[:° the tree obtained from a path P, with m edges by adding
r > 1 leaves to one end vertex and s > 1 leaves to the other one. When r = s we
write P .

Theorem 2.3 Let T be an arbitrary tree. There is a maximal planar bipartite
graph G which admits T as a factor in a minimum tree decomposition of type (0,2)
or (1,1). Moreover, T can be chosen to be the spanning tree in a decomposition of
type (0,2) if and only if T is neither a star S, with m edges, m > 2, nor a Py”,
r,s > 1. O
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Theorem 3.2 Let T be an arbitrary tree of order n > 5. There is a mazimal
planar graph G which admits T as a factor in a MTD of type (a,b,c) for any choice
of 0 <a<b<cwitha+b+c=3. Moreover, T can be chosen to be a spanning
tree in a decomposition of type (0,0,3) if T is not a star Sp,, m > 2. |

In Section 4 we consider the problem for regular graphs. By using the Erdos-
Gallai caracterization of graphical sequences and a result by Kleitman and Wang [4]
about the existence of graphs which admit a certain number of edge-disjoint spanning
trees, we show that every tree can appear in a MTD of regular graphs, provided that
the natural necessary conditions hold.

Theorem 4.1 Let d > 2 be an integer and let T be a tree of order n > d+ 1 with
nd even and mazimum degree A(T) < f%] -+ 1. Then, there is a reqular graph G of
order n and degree d such that

is a MTD of type (0,...,0,0), l = @n—k—l, e=d (mod 2), except if d is odd
and either d =n —3 and T = PF™ ord =n — 1 with A(T) = k + 2. O

2 Maximal planar bipartite graphs

A maximal planar bipartite graph (mpb) is a planar bipartite graph of order n > 4
in which the addition of any edge results in a graph which is no longer planar or
bipartite. All faces in a planar embedding of a mpb graph are 4-cycles. Therefore,
a mpb graph G has 2n — 4 edges and any minimum decomposition of G must be of
type (1,1) or (0,2). We give below a short proof of Ringel’s conjecture about the
existence of both types of decompositions in a mpb graph.

We actually prove that each maximal planar bipartite graph G admits tree decom-
positions of type (1,1) and of type good—(0,2). We say that a (0,2) tree decomposition
is good if the two vertices of G which belong to an only tree are in different chromatic
classes of the bipartition of G.

Theorem 2.1 Each mazimal planar bipartite graph admits mintmum tree decompo-
sitions of type (0,2) and of type (1,1).

Proof. The proof is by induction on the order n of a mpb graph. When n =4
such decompositions are shown in Figure 1.
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Figure 1: The two types of MTD for n = 4.

Let G be a mpb graph of order n > 4. Let C be a 4-cycle which is a face in a
planar embedding of G. Let vy, vy, v, v3 be the vertices of C' where v; is adjacent to
Vit1 (mod 4) in the cycle. Since G is planar, one of the two pairs of vertices, {vo, v2} or
{v1,v3}, have no additional common neighbours than {vy, vz} or {vg, v} respectively.
Assume that the only common neighbours of vy and v, in G are v; and vs.

Let G’ be the mpb graph obtained from G by identifying the vertices vy and v,
in a single vertex v and identifying the pairs of edges v1vg, v1v2 and vovs3, Vav3.

By the induction hypothesis, there are decompositions of G’ of both types (1,1)
and good—(0,2). Let G' = T] @ T be a tree decomposition. Color the edges of G’
with i € {1,2} according to the tree they belong. Color the edges of G — C as they
are colored in G'. To give a color to the remaining 4 edges of C' we consider two
cases (see Figure 2.)
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Figure 2: An illustration of cases 1 and 2 in the proof of Theorem 2.1.

Case 1. The edges viv and vvs have different colors, say 1 and 2 respectively.
Then we color the edges vivg, v1v2 with 1 and the edges vsvg, v3vy with 2.

Case 2. The edges v1v and vvz have the same color, say 1. The vertices vy, v3 can
not both belong to V(T7)\V(T3) and we may assume that v; belongs to V(TI7)NV (T3).
If v € V(T]) N V(T,) as well, there is an only path in T, connecting v; with v.
Therefore, there is an only path either from vy or from v, to v; in G with all edges
colored 2. We may assume that this path connects vy with v;. Then, we color with
1 the edges vyvp, v3vg, v3vy and give color 2 to the edge vivy. We make the same
assignment if v ¢ V(T7) N V(T3).

Let T; be the subgraph of G generated by the edges colored ¢, ¢ = 1,2. We have
an edge decomposition G = T; @ Ty. In both cases above, we have increased by one

the number of edges and vertices of T} and T3 and the resulting graphs are acyclic.
Hence, G =T, @ Ty is a MTD of the same type as G' =T & Ty. ]
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We next consider the problem of completing a given tree 7' to a mpb graph which
admits 7" in a MTD. Note that the star S, with m edges can not be required to be
a spanning tree in a minimum decomposition of a mpb graph. The following easy
Lemma shows that P, can not be a spanning tree in a MTD of a mpb graph.

Lemma 2.2 Let G be a mpb graph such that G = Py* ® T for some tree T. Then
Py* is not a spanning tree of G.

Proof. Suppose that P,*° is a spanning tree. There are exactly two vertices u, v
in one of the chromatic classes of the bipartition of G and they are at distance 2.
Since G is mpb, all vertices adjacent to w in P, must be adjacent to v in G and
viceversa, so that T is not connected, a contradiction.

O

Let us denote by F the graphs which are either stars S,, or Py”*, 7,5 > 1.

Theorem 2.3 Let T be an arbitrary tree. There s a maximal planar bipartite graph
G which admits T as a factor in a minimum tree decomposition of type (0,2) or
(1,1). Moreover, T can be chosen to be the spanning tree in a decomposition of type
(0,2) if and only if T is neither a star S,,, m > 2, nor a Py°, r,s > 1.

Proof. The proof is by induction on the order n of the given tree T'. If n = 4,
the corresponding mpb graphs which admit the star S3 or the path P3 as factors in
minimum decompositions of types (1,1) and good-(0,2), are shown in Figure 3.

(a) //C\\ (b) .
RN ~ 1 S
f P RN
g i A
good-(0,2) (1,1) good-(0,2) (1,1)

Figure 3: The mpb graphs admiting (a) S3 and (b) P; as factors.

Let T be a given tree of order n > 4. Notice that for any tree T ¢ F, with the
exception of Pj, there is a leaf [ of T such that T — [ ¢ F. Let | be a leaf in T # P;
such that 7" =T — [ ¢ F, or any leaf if T' € F, and let vl be the edge of T incident
to .

By the induction hypothesis, there is a mpb graph G’ which admits 7" as a factor
in a minimum tree decomposition of both types.

Let R be the set of faces incident to a vertex v in a planar embedding of G', and
let U be the set of vertices incident to the faces in R in the same chromatic class as
v in the bipartition of G'.
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Suppose that there is a vertex u € U N V(T;). Then, the addition of a vertex
I and edges vl,ul to G' results in a mpb graph G which admits the decomposition
G =T & Ty, where T, = T; +ul. Both T, T are obtained from 7", T, by adding one
vertex and one edge. Therefore, the decomposition of G is of the same type as the
one of G'.

Suppose now that U NV (T3) = 0. There is an only vertex u € U. This implies
that v and v are the only vertices in their chromatic class and they have the same
neighbours wy, ..., wy, t > 2. One of them, say w;, must be in a path in 7" connecting
v to u. Therefore both u and W belong to V(T") \ V(T3) and the decomposition is
of type (0,2). Moreover, T = P,*

Let v,w;, ws,u be the boundary of a face in a planar embedding of G'. Let
G be the graph obtained from G’ by adding two new vertices [ and z and edges
vl,wez, zl,lu. Then G is a mpb graph and G =T @ Ty, where Ty = T4 + {u, 2,1} +
{waz, 21, lu}, is a decomposition of type (1,1). Similarly, by adding three new vertices
to G', we can obtain a (0,2) decompostion of a mpb which have T" as a factor, (see
Figure 4).

u l
(1,1) good-(0,2)

Figure 4: mpb obtained from T = P,"'~".

If T = P, Figure 5 shows mpb graphs admitting a path of five edges P, in any
type of MTD. a

(1,1) good-(0,2)

Figure 5: mpb graphs admiting Ps as a factor.
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3 Maximal planar graphs

We recall that a MTD of a maximal planar (mp) graph G of order n must be of type
(0,0,3), (0,1,2) or (1,1,1).

If G = T1®T>,®T3, we say that a vertex v is non singular in this tree decomposition
if it belongs to the three trees. Otherwise we say that v is singular.

We first prove that a mp graph admits the three types of decompositions. The
proof below is much simpler than the one by Shi, Li and Tian [8] required to show
a similar statement for the wider class of graphs Ps.

Theorem 3.1 Let G be a maximal planar graph of ordern > 5 and x a given vertex
in G. There is a MTD of G of type (a,b,c) for each choice of ¢ > b > a > 0 with
a—+ b+ c=3 such that x is a non singular vertex.

Proof. The proof is by induction on the order n of G. The result holds for n = 5
as it is shown in Figure 6.

(1,1,1) (0,1,2) (0,0,3)

Figure 6: Decompositions of the mp graph of order 5.

Let G be a mp graph of order n > 5.

An edge zy of G is said to be contractible if x and y have exactly two common
neighbors, say u,w. In this case, the contraction of zy and the identification of
the pairs of edges uz,uy and zw,yw gives rise to a mp graph G’ of order n — 1.
Kampen proves in [3] that each vertex of a mp graph of order n > 3 is incident to a
contractible edge.

Let 0 < a < b < c¢such that a +b+ ¢ = 3 and let  be an arbitrary vertex in
G. Let vjvy be a contractible edge incident to x = v;. Denote by u,w the common
neighbours of v; and vy in G. Let G’ be the mp graph obtained from G by contracting
V102 to a vertex v. By the induction hypothesis, there is a minimum decomposition
G' =T] & Ty & Ty of type (a,b,c) such that v is a non singular vertex.

Let H be the subgraph of GG induced by the four vertices u, vy, vy, w. Color each
edge e of G — H with color ¢(e) = ¢ € {1,2, 3} if the corresponding edge in G’ belongs
to the tree T.

To color H we consider two cases.
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Case 1. Suppose that both uv and vw belong to the same tree, say 7]. We may
also assume that w € V(T3), b < 1. The only path in T3 joining v and w in T}
corresponds to a path of edges colored 2 in GG joining v; and w. Then we color the
five edges of H as

c(uvy) = e(uvy) = c(viw) =1, c(vaw) =2, c(vive) = 3.

i).

See Figure 7
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Figure 7: Coloring of H in (i) case 1, and (ii) case 2.

Case 2. Suppose that uv and vw belong to different trees, say uwv € E(T]) and
vw € E(T;). Then we color the five edges of H as

c(uvy) = cluvy) = 1, c(vyw) = clvaw) =2, c(vivg) =3

See Figure 7 (ii).

Let T; be the graph spanned by edges colored ¢ in G, i = 1,2,3. Each T; is
obtained from 77 by the addition of one edge and one vertex without forming any
cycle. Therefore each one is a tree and G = T; @ Ty, @ T3 is a decomposition of G
of type (a,b,c). Moreover, both vy, vs are non singular in this decomposition. The
proof follows by induction. a

We now proceed to prove that every tree is a factor of a mp graph in a decom-
position of a chosen type.

Theorem 3.2 Let T be an arbitrary tree of order n > 5. There is a maximal planar
graph G which admits T as a factor in a MTD of type (a,b,c) for any choice of
c>b>a>0 witha+b+c=3. Moreover, T can be chosen to be a spanning tree
in a decomposition of type (0,0,3) if T is not a star Sp,, m > 2.

Proof. The proof is by induction on the order of 7. It can be easily checked
that the result holds for trees with n = 5 vertices. Let T be a tree of order n > 5
and ¢ > b > a >0 with a4+ b+ ¢ = 3. Let [ be an end vertex of T and vl the only
edge incident to [.

Let 7" = T'— 1. By the induction hypothesis there is a mp graph G' = T" Ty DT}
and the decomposition is of type (a,b,¢). Let W = {wy,...,wi_1} be the set of
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neighbours of v in G’ numbered in clockwise order in a planar embedding of the
graph.

Let us show that there is ¢ such that w; € V(T3) and wiy1 (moa ry € V(T3) (or
viceversa). Set C = V(G') \ V(T3). We can not have W C C, since otherwise we
would have |W| = 3 and v € C, contradicting ¢ < 3. We may assume w; € W\ C.
Since b < ¢, we have b < 1. Hence, either wy € V(T3) or wy € V(T3;). Suppose
Wo € V(TZI)

Let G be the mp graph obtained from G’ by adding a new vertex [ and the edges

vl,wol,wyl. Then To = T + wol and T3 + w;l are both trees and G =T & Tr ® T is
a decomposition of type (a, b, c). The proof follows by induction. |

4 Regular graphs

Minimum tree decompositions of regular graphs have been studied in [5, 6]. If G is
a d-regular graph of order n, then ao(G) = |d/2] + 1 = 7(G) whenever G has good
isoperimetric properties. This bound is also achieved for any graph G of order n and
minimum degree 6(G) > (n — 1)/2. This bound is sharp, see [7].

Here we consider the opposite problem: given a tree T of order n we ask for
regular graphs which admit T as a spanning tree in a MTD of type (0,...,0,[) for
some [ < n.

If T appears as a factor in a MTD of a d-regular graph G of order n, then
clearly [4] > A(T) — 1 and nd must be even. We show that these natural necessary
conditions are also sufficient with two single exceptions. When A(T) = (n + 2)/2
then d = 2A(T) — 3 =n — 1 and G would be the complete graph K, with n even,
which decomposes into n/2 spanning trees. Then the maximum degree of each of
the trees in such a decomposition is at most n/2. The second exception is Pj. The
maximum degree of P is n/2 and G would have degree at least n — 3.

It is easy to show that no regular graph of odd degree n — 3 admits P/ as a factor
in a decomposition of type (0, ...,0,1).

Theorem 4.1 Let d > 2 be an integer and let T be a tree of order n > d + 1 with
nd even and mazimum degree A(T) < fg] + 1. Then there is a regular graph G of
order n and degree d such that

G=ToTh® - dT, DT, k=|d/2]
is a MTD of type (0,...,0,1), Z:@n—k—l, e=d (mod 2), except if d is odd
and either d =n—3 and T = PF™ ord =n — 1 with A(T) = k + 2. O

To prove this result we shall need the following two well know results. Recall
that a sequence dy > dy > --- > d, > 1 is said to be graphical if there is a graph G
with vertex set {w1,...,2,} such that d(z;) = d;, i =1,2,...,n.
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Graphical sequences are characterized by the following result.

Theorem 4.2 (Erd8s, Gallai [2]) Let 1 < d; < dy < -+ < d, be a sequence of
integers such that >, d; is an even number. There is a graph G with vertex set
{@1,...,2n} such that d(x;) = d; if and only if, for each | =1,2,...,n,

> odi<i(l-1)+ Zn: min{/, d;}. (1)

i=l+1

O

Theorem 4.3 (Kleitman, Wang [4]) Let dy > dy > --- > d, > k be a graphical
sequence such that y -, d; > 2k(n — 1). Then the sequence is realizable by a graph
G that has k edge disjoint spanning trees. a

The strategy of the proof of Theorem 4.1 is to show that the tree T' together with
an appropriate Tr,1 can be packed in a d-regular graph G of order n together with
another graph of order n, GGy, which has k£ — 1 edge disjoint trees. The existence of
graph G, is guaranteed by the two theorems given above. We need two lemmas to
proceed with the proof.

Lemma 4.4 Let T be a tree of order n and k > 2 an integer.
(i) If n > 2k+1 and A(T) < k+ 1 then there is a packing of T with a path P of
order k + 1 such that A(T ® P) < k+ 1.

(ii) For even n, if either n > 2k +4, A(T) < k+2 and T # P} orn = 2k +2
and A(T) < k+ 1 there exists a packing of T with a path P of order n/2 + k + 1
such that A(T @ P) < k+2.

Proof. Let 1 =d; =dy < --- < d,, be the degree sequence of T'.

(i) We have dyy» < 2, since otherwise

2n—1)=> di>k+1+3(n—k-1),

i=1
which implies n < 2k.

If k = 2, the subgraph of 7" induced by z7,x2, 3 has maximum degree 1. There-
fore, there is a path P of order 3 which can be packed with T'[z;,zs, z3] and then
A(T® P) < 3.

If k£ > 3 then the subgraph of T generated by {z1,. .., Zt+1} has maximum degree
2 < (k+1)/2. Hence, its complement is hamiltonian. In particular, there is a path
P of order k+1 in the complement of T[x1, ..., %41]. Therefore, A(T@P) < k+1.
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(ii) Let us show that dj <k for j < §+k—1landd; <k+1forj<g+k+1
Suppose that d; > k+ 1 for j = § +k — 1. Then
20n —1) > 2+A—2+(A+1)(——A+2)

which implies n < 2k. Similarly, if d; > k+ 2 for j = (n/2) + k + 1. Then
2(n—1) :idi > S bkt (5 — k) (k+2)
~ 2 2 ’
which implies (2k+4)(k—1) > n(k—1). Hence n = 2k +4 and the degree sequence

is1,...,1,k+ 2,k + 2, which corresponds to Pf”‘“.

Therefore, the complement of the subgraph induced by {21, ..., Zn/244+1} has a
hamiltonian path P with end vertices x, 244, Tp/244+1 and

A(Te P) <k+2.
O
Lemma 4.5 Let 2k — e > dy > -

of integers such that Y o, d; = 2(
n > 2k+4—2e.

>k—1,e€{0,1}, k > 2, be a sequence

-2 d,
—1)(n — 1). Then the sequence is graphical for

Proof. If k =2 then ). | d; = 2(n — 1) and there is a tree realizing the degree
sequence.

Suppose that & > 3. Let

o(l) =1(1—1) +me{1d} Zd

i=l+1

According to Theorem 4.2, we have to show that ¢(I) > 0 for I = 1,...,n. If
I >dy+1then ¢(l) >1(l—dy — 1) > 0. Put dy = n and dp41 = 0.

For each I =1,...,dy, let s = s; be the minimum subindex such that d, 3 < [.

Suppose that s < [. Then

o(l) =1(1—1) Zd—Zd

i=l+1

> (n—dy)d, —dy > 3(k—1)— 2k > 0. Suppose that
2k — 2 when d; = 2k, then

If | = d; then we have ¢(l)
l<dy. Itdy <2k—1lorl<

o(1) (-1 +2(k-1)(n-1)-2> d;
2k —1)(n— 1) — 1(2d, — [ + 1)=1

2k —1)(n — 4+ 2k — 2d,) > 0.

vV v
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Finally, if | = 2k — 1, therefore d; = 2k, n > 2k + 4 and we use that > i di >
(n = 1)(k — 1) to prove ¢(I) > 0.

Suppose now that s > [. Then,

o(l) =1(s — 1) Zd —Zd

i=s+1

If s > dy+1then o(l) > l(s—dy —1) > 0. If s = dy then we have ¢(l) >
(n—dy)d, —1>3(k—1) -2k > 0. Similarly, if s =d; — 1.

Finally, if s < d; — 1, as p(I) = (s = 1) + 2(k = 1)(n = 1) = 320_, di — S\, d;,
then,
l(s—=1)+2(k=1)(n—-1)—(s+1)d,
(dy —3)* +2(k — 1)(n — 1) — (2d, — 5)d;
—di —di +9+2(k—1)(n—1)>0.

e(1)

(AYARAVARAY]

Therefore, for each [ =1,...,n, we have ¢(l) > 0 and the sequence is graphical. O

Proof of Theorem 4.1 Let 1 =d; = dy < --+ < d, be the degree sequence of the
given tree T

Suppose first that d is even. We have d, < k + 1 where £ = d/2. By Lemma
4.4, there is a path Tiyy of order k 4+ 1 such that A(T & Tyy1) < k + 1. Let
1<d] <dj <---<dl <k+1 be the degree sequence of T' @ Tj1;. The sequence

h—1>d, >dy > >, > k-1,

where d} = d — d!, satisfies > -, d; = dn—2(n — 1) — 2k = 2(k — 1)(n — 1). If
d = n — 1, then the sequence corresponds to the complement of T'® T}, and thus it
is graphical. If d < n — 1 then n > 2k + 2 and, by Lemma 4.5, the sequence is also
graphical. By Theorem 4.3 it is realizable by a graph G; with (k — 1) edge disjoint
trees. By construction, the graph G = Gy, ®T & T}, is d-regular and has a minimum
decomposition of type (0,...,0,n — k —1).

The proof is similar if d is odd. Then, either A(T) < k + 2 where d = 2k + 1
and n is even with n > 2k + 4 or A(T) < k+ 1 when n = 2k + 2. By Lemma 4.4,
there is a path Ty41 of order (n/2) + k + 1 such that A(T @ Tiy1) < k+ 2. Let
1<d <dj <---<dl <k+ 2 be the degree sequence of T @ Ty;. The sequence

k—1>dy >dy>->d, > k-1,

where d = d—d, satisfies Y | d; = dn—2(n—1)—2((n/2) +k) = 2(k—1)(n—1).
If d =n — 1, then the sequence corresponds to the complement of T'® T}y and thus
it is graphical. If d < n —1 then n > 2k +4 and, by Lemma 4.5, the sequence is also
graphical. By Theorem 4.3 it is realizable by a graph G; with (k — 1) edge disjoint
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trees. By construction, the graph G = G1®T @© T}4q is d-regular and has a minimum
decomposition of type (0,...,0,(n/2) —k —1). O

Note that, as a consequence of Theorem 4.1, we have the following corollary.

Corollary 4.6 Every spanning tree of order n with mazimim degree A(T) < [ %5+ |+
1 can be extended to a MTD in a complete graph K, . a
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