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Abstract

From any projective plane of order n we construct a self-dual code over
F, of length 2n? 4+ 2n + 2 if either ¢ = 2 or ¢ is a prime congruent to 1
(mod 4) that divides n + 1 and of length 2n* + 2n + 4 if there is a prime
q congruent to 3 (mod 4) dividing n + 1.

1 Introduction

There have been many interesting results concerning the connection between codes
over finite fields and finite designs. Usually, a code is formed from a design by
generating it with the characteristic functions of the blocks. For a full account of
this connection see [1]. The codes constructed in this work shall be constructed in a
different manner than the usual construction.

In [4], Glynn gives a construction of self-dual binary codes from projective planes
of odd order. In this work we shall generalize this construction to produce self-dual
codes over various primes from projective planes. The constructions are equivalent
for the case given in [4] but there the setting is different and is done in a very different
way. His technique relies on the binary code corresponding to boolean characteristic
functions and uses the geometry heavily. We simply give generators for the code and
so we can generalize to non-binary fields and to other planes.

1.1 Planes

A finite projective plane II with points P, lines £, and incidence relation Z C PU L
satisfies the following:
(1) any two points are incident with a unique line;
(2) any two lines are incident with a unique point;
and
(3) there exist at least four points no three of which are collinear.
It follows that |P| = |£] = n® + n + 1 for some n, which is the order of the
plane. Finite projective planes exists for all prime power orders. It is not known if
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there exist planes for non-prime power orders. For a complete description of finite
projective planes see Chapter 6 of [1] and the references therein.

1.2 Codes

A code is a subset of the space F* where F, is the finite field of order ¢. A linear
code is a vector subspace of the ambient space. In general, we let ¢ be a prime.

Attached to the ambient space is the usual innerproduct, i.e.

[v,w] = Z VW,

The orthogonal to the code is given by
Ct ={w | [v,w] =0 Vv € C}.

A code is self-orthogonal if C' C C+ and is self-dual if C' = C*. Self-dual codes
exist for all even lengths for g = 2and ¢ =1 (mod 4) and for all lengths divisible by
4for g=3 (mod 4). For a complete description of self-dual codes and all undefined
terms see [5].

The Hamming weight of a vector is the number of non-zero elements in the vector.
The minimum weight of a code C is denoted by d¢ and is the smallest of all non-zero
Hamming weights in the code.

The Hamming weight enumerator of a code C is given by

W Wole,) = 32 a0y

ceC

where wt(c) is the number of non-zero elements in c¢. Usually, when displaying the
weight enumerator we set y = 1.

2 Constructing the codes

Let IT be a plane of order n and ¢ a prime that divides n + 1. For a given point
p in P, let x, be the vector of length n? + n + 1 that has a 1 at the coordinate
corresponding to p and a 0 elsewhere. Let A, be the vector of length n* +n + 1 with
a 1 at the coordinate for a line L if L is incident with p and a 0 elsewhere.

List the points of II by P = {p1,...,Pn24ns1} and the lines of II by £ =
{€1,...,€y2ins1} and use the points as coordinates of the first n2 + n + 1 places
and the lines as the coordinates of the second n? +n + 1 places in F2™ 7™+,

For p; # pa, let A(p1,p2) = (Xp1 — Xpas Apr — Apy)- Specifically, this vector has a
1 at the coordinate corresponding to p;, a —1 on the coordinate corresponding to ps
and a 0 elsewhere on the first n2 +n 4 1 coordinates. On the second set of n? +n+1
coordinates, there is a 1 on the coordinates corresponding to the lines through p;
but not through ps, a —1 on the lines corresponding to the lines through p, and not
through p; and a 0 elsewhere. The Hamming weight of A(py,ps) is 2n + 2.
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Lemma 2.1 For a plane Il of order n and q a prime dividing n + 1, with p; € P,
(2) [A(p1,p2), Aps, pa)] = 0.

Proof. It is enough to consider the following three cases.
Case 1: If the p; are distinct then there are no non-zero coordinates matching up
on the first n? +n + 1 coordinates. On the second n? +n + 1 coordinates

[(API - )‘Pz)’ ()‘Ps - >‘JJ4)] = P‘pu >‘133] - P‘pla )‘p‘J - [)‘Pza )‘ps} + P‘Pm )‘p‘J
1-1-141=0.

Case 2: If p; = p; and py # pg then

(3) [(Xpr = Xp2)s (Xps — Xpa)] = 1

since p; matches p3 and py is distinct from ps. Then

[(API - )‘Pz)’ ()‘Ps - >‘JJ4)] = P‘pu >‘JJ1] - P‘pla )‘p‘J - [)‘Pza )‘pl} + P‘Pm )‘p‘J
= (n+1)—1—1+1:n.

This gives that
(4) [((Xpl - Xﬁz)v (>‘131 - )‘pz))’ ((Xﬁs - Xm)’ ()‘ps - >‘JJ4))] =l+n=
Case 3: If p; = py and py # p3 then

(5) [(Xpl - Xﬁz)v (Xps - Xm)] =-1

since p; matches py (which has a —1 at this coordinate) and p, is distinct from ps.
Then

[(API - )‘Pz)’ ()‘Ps - >‘JJ4)] = P‘pu >‘133] - P‘pla )‘pl} - [)‘Pza )‘pl} + P‘Pm )‘pl}
= 1-(n+1)—-1+1=-n.

This gives that

(6) (o = Xp2)s (Ao = Apa))s (Xps = Xpa)s (Aps = Ap))] = =1 =n =0.

Define the following code. Let
(7) C(1I) = (A(p1,p2) | p1,p2 € P).

Lemma 2.2 IfII is a projective plane of order n with q a prime dividing n+1 then
C(II) is a self-orthogonal code of length 2n? + 2n + 2 and dimension n* + n.
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Proof. The dimension follows from the fact that a basis can be made by fixing
p1 and then taking A(py,p;) for the other n? + n values of i. It is easy to see that
these n? +n vectors are linearly independent and span the space. The fact that it is
self-orthogonal follows from Lemma 2.1. a

Let P be the vector that is 1 on the coordinates of P and 0 elsewhere and let
L be the vector that is 1 on the coordinates of £ and 0 elsewhere. Notice that
P,L € C(II)*. The codimension of C(IT) in C(IT)* is 2. In fact, the cosets of C' are

It is easy to determine the orthogonality relations between the cosets. Any vector
in C;; is of the form c+¢P + jL for some c € C' and any vector in Cy j: is of the form
d +1P+ j'L for some ¢ € C. We shall denote the inner-product of any vector in
C,j with any vector in Cy j» by [C;j, Cy j]. We notice that sincen+1=0 (mod g),
we have n = —1 (mod ¢) and n? =1 (mod ¢). Then

e+ iP+jL,d +iP+ L] = il[P,P|+if[P, L]+ ji|L,P] + ji'[L, L]
= di'(n*+n+1)+j5i/(n*+n+1)
= i +j5.
Hence
(9) [Ci,j, Cil,jl} =7’ + jj,

What is needed to form a self-dual code is a self-orthogonal vector in C/(II)*.
Since P and L are in the orthogonal, so are i and jL for 7,7 in ;. Consider the
vector (1P + jL), that is the vector with an ¢ in the first n> + n + 1 coordinates and
a j in the second n? + n + 1 coordinates. Then

(10) [(iP+jL),iP+jL)] = (n*+n+1)i*+ (n*+n+1)5?
nZ(Z'Z +'72) — Z'Z +'72

We need 12+ 3% = 0, which has a solution i = /—1j in F, whenever g =1 (mod 4).
Define D(IT) = (C,¢P + jL), where i = /—1j for some j € F,.

Theorem 2.3 Let II be a plane of order n with ¢ =1 (mod 4) a prime dividing
n+ 1, then D(II) is a self-dual code.

Proof. Lemma 2.2 gives that the code is self-orthogonal of dimension 1 less than
a self-dual code. Adjoining a self-orthogonal vector from the dual code C(IT)1 will
give a self-dual code. We have shown that i P+ jL, with i = v/—1j, is self-orthogonal
and hence the code is self-dual. |

Any automorphism of the projective plane II induces an automorphism of the
codes C(II) and D(II) by simply allowing it to act on the coordinates as it acts
on the points and lines of the plane. It is clear that if two planes are isomorphic
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then their associated codes are also isomorphic. Therefore, the codes associated with
desarguesian planes have non-trivial automorphism groups.

In [4], Glynn gives this construction (in a very different form) only for odd planes
and binary codes. Hence 2 always divides n + 1 and does not divide n? +n + 1
but does divide 2(n? + n + 1). Thus, he constructs the code (C,P + L). He also
notes that C(II) is doubly-even, that is, the Hamming weight of each vector is a
multiple of 4. The construction employed there is intimately related to the theory
of shadows. Specifically, C(II) is the doubly-even subcode of codimension 1 in D(II)
and C(II)* — D(II) is the shadow of the code D(II). Glynn shows that the minimum
weight of the self-dual code is 2n for a plane of order n and the minimum weight of the
shadow is n 4 2. Moreover, he shows that the number of vectors of minimum weight
in the shadow is 2(n? +n + 1). Using these facts and applying the theory of shadows
gives that the weight enumerator of the [26, 13, 6] self-dual code with dg = 5 formed
from the plane of order 3 and the [62, 31, 10] self-dual code with ds = 7 formed from
the plane of order 5 have unique weight enumerators. This simplifies the proofs given
in [4].

Additionally, in the binary case there is another interesting relationship for the
weight enumerators given in the following theorem.

Theorem 2.4 Let I be a projective plane of odd order n, and let ¢ = 2. Then
(11) Wowy(2,y) = Wean (2, y) + Weoa (v, ).

Proof. The code D(IT) = C(IT) U (C(IT) 4 (P + L). The vector P+ L is the all one
vector and hence adding the all one vector to any vector in C'(II) changes each 1 to
a 0 and each 0 to a 1. |

Theorem 2.5 Let I be a plane of order n, ¢ =3 (mod 4) a prime dividing n + 1
then C(I1) is a mazimal self-orthogonal code.

Proof. We need to show that there is no self-orthogonal vector in C(II)*. Assume
to the contrary, then there exists a vector of the form ¢+ ¢P + jL for some vector ¢
in C(II), that is self-orthogonal. This follows from the fact that C(II)* = U, jer, C;-
Then [c+ iP + jL,c+iP + jL] = 0. Noticing [c¢,iP] = 0 = [¢, jL] since iP, jL are
in C(I1)*, we have that i* + j* = 0 and then that v/—1 € F, with ¢ =3 (mod 4)
which is a contradiction. Therefore the code is a maximal self-orthogonal code. O

Example 2.6 Consider the projective plane of order 2. Here 3 divides n+1. Hence
C(I1) is a mazimal self-orthogonal code of length 14 over Fs with minimum weight
6. Its weight enumerator is

(12) Wem(L,y) = 1+ 84y° + 476y° + 168y'2.
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We shall show how to construct a self-dual code in the case where ¢ =3  (mod 4).
To each vector in C;; = (C 4 P + jL) adjoin a vector of length 2, w; ;. To insure
linearity we want w;; = ¢wi o + jwg,1. For the new code to be self-dual we need,
[wi j, wirj)] = —[Cyj, Ca 7). It is enough to find w; o and wy; with the property that

(13) [wi,0, w1,0]) = [wo,1, wo,] = —1
since [P,P]=[L,L] =n*+n+1=1, and
(14) [w1,07 wo,l] =0

since [P, L] = 0.
Since ¢ =3 (mod 4) it is well known that there exist o, 8 with o + 5% = —1.
Let wy o = (a,B) and wg; = (—f, a). These vectors satisty equations (13) and (14).
Define
(15) E(C) = Ui;(Cijywij).
The length of this code is 2(n* + n + 1) + 2 = 2n? + 2n + 4 and has dimension

n?+n+2.
This gives the following theorem.

Theorem 2.7 Let II be a projective plane of order n with ¢ =3 (mod 4) a prime
dividing n + 1. Then E(I1) is a self-dual code of length 2n* + 2n + 4.

To continue Example 2.6, if II is the plane of order 2 then E(C) is a self-dual
code of length 16 with weight enumerator

(16) Wemy(1,y) = 1+ 224y° + 2720y° + 3360y'* + 256y"°.

This code is optimal for ternary self-dual codes of length 16.

The construction of E(II) is similar to the techniques of shadow construction
given in [2] and [3] for self-dual codes.

For a given point ¢ in £, let 7, be the vector of length n? +n + 1 that has a 1 at
the coordinate corresponding to ¢ and a 0 elsewhere. Let 1, be the vector of length
n%? 4+ n + 1 with a 1 at the coordinate for a point p if ¢ is incident with p and a 0
elsewhere.

We shall consider vectors of the form

(17) F(€17€2) = (ull = Mgy ey — 77[1)'

Notice that the order is switched in the second part. For binary codes, as in [4], the
order is not switched in the second part since subtraction is addition.

Essentially, the lines and points play the opposite role in this construction. We
shall show that the code generated by these vectors is in fact C/(II).

Let ¢; and ¢, be two lines in II with {p1,ps, ..., p,} the points on ¢; not on ¢, and
{p, ph,...,p,} the points on £, not on ¢;. It is easy to see that Y 7 (xp — Xp) =
ey — [, on the first n? + n + 1 coordinates. On the second n? + n + 1 coordinates

consider Y 7"\ (A, — Ay). For the coordinate corresponding to ¢; the vector Ay, is 1
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there and the vector Ay is O there. Hence in the sum there is an n which is —1. On
the coordinate for ¢, there a 1 for each Ay and a O for each ),,. Hence in the sum
there is a —n which is 1. On any other hne there is one coordinate with a 1 and one
with a —1 since any line intersects ¢; and ¢, exactly once. So on the second set of
coordinates the vector is 1y, — 1y,

Hence we have

(18) Xn:A(piaP;) = 1“(617[2),

where the points incident with ¢; not incident with ¢» are {pi,ps,...,pn} and the
points incident with ¢5 not incident with ¢; are {p},p},...,0}}

Theorem 2.8 The code C(IT) = (A({y,0s) | 1,05 € L).

Proof. The previous discussion shows that it is a subset and then noticing that
the dimension is again n% +n we see that the two codes are equal. a

3 Minimum Weights

In this section we shall determine the minimum weights of the codes C(II), D(II), E(II)
and C(II)*. We begin with a few necessary lemmas.

Lemma 3.1 Vectors of the form (x,,\,) are in C(I1)*.

Proof. We only need to show it is orthogonal to each generator. If p # p’ then

(19) [(Xps Ap)s (Xp = Xps Ap = Ap)] = 1+ = 0.
If p # p1,p, then
(20) [(XP’ )‘p)’ (Xpl — Xpa>» )\Pl - )‘pz)} =0+1-1=0.

Lemma 3.2 Vectors of the form (ug, —n¢) are in C(I1)*.

For any line ¢ € L, we have

(21) [(Ml7 _774)’ (ﬂll = My Ty — 77[1)] =1-1= )
O£ 0,0,

(22) [(Mla _772)’ (Mll = Mg ey — 77[1)] =n+1l=

if { =/, and

(23) [(Ml7 _77[)’ (Mll = Mgy Ty — 77[1)] =-n—-1=0

it ¢ =0,. a
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Lemma 3.3 If v is a vector in C(II) and { is exterior to Suppp(v) then v, = 0.
Proof. We know [y, —1¢),v] = 0 but [(ge, —1¢),v] = vy and therefore v, = 0.

Theorem 3.4 Let II be a projective plane of order n, then the minimum weight of
C(II) is 2n + 2.

Proof. The generators have weight 2n+ 2 so the minimum weight is at most 2n + 2.

Assume there exists a vector with weight less than 2n+2, i.e. |Supp(v)| < 2n+2.
Denote by Suppp(v) and Supp,(v) the supports on the coordinates corresponding
to points and lines respectively. For any line ¢ € L, we have (ug, —1,) € C(I1)* by
Lemma 3.2.

Assume v, # 0 for p € P, i.e. p € Suppp(v) and assume [ is tangent to Suppp(v)
at p. Then we have

[v, g — ne] = vy — v = 0.

Hence v, = v;. Therefore if ¢ is tangent to Suppp(v) then v, # 0. At this point the
proof is similar to the binary case given in [4]. Specifically, assume |Suppp(v)| = a
then at each point in Suppp(v) there are at least n 4+ 2 — a lines tangent. Hence
|Suppe(v)| > a(n + 2 — a) and therefore |Supp(v)] > a(n + 3 — a) giving that
2(n+1)—a(n+3—a)=(a—2)(a— (n+1)) <0.

Thus the minimum weight of C(II) = 2n + 2. O

Lemma 3.5 Let II be a projective plane of order n, then the minimum weight of
D(II) is greater than or equal to 2n.

Proof. Assume the weight of (v + iP + jL) € D(II) is less than 2n. Let b =
| Suppp (v+iP)|. Without loss of generality assume b < n. If £ is exterior to Suppp (v+
iP) then v, = —i for all p incident with ¢, since v, 4 ¢ must be 0.

We know [v, (g, —1¢)] = 0 since v € C(II). Also we have [v, (pg, —1¢)] = —(n +
1)i — v, = —wvy, therefore v, = (v + P), = 0. We have (v +¢P), = 0 for lines exterior
to Suppp(v +iP).

There are at most n + 1 + (b — 1)n lines through Suppp(v + iP), and so there
are at least n? +n+1— (n+ 1+ (b—1)n) =n(n + 1 — b) lines exterior. Therefore
(v+1iP + jL); # 0 for all exterior lines £.

Then Supp(v +iP+jL) > b+n*+n—bn=n?+n—>bln—1). When n > b we
have n? +n — b(n — 1) > 2n. Therefore the minimum weight of D(II) is at least 2n.

O

Theorem 3.6 Let II be a projective plane of order n, then the minimum weight of
D(II) is 2n if ¢ = 2.

Proof. The vector (xp, Ap)+ (e, —1¢) with p incident with ¢ has weight 2n if ¢ = 2.
Moreover, we have that [(x,, Ap), (e, —=17¢)] = 1 — 1 = 0 when p is incident with £.
Since there is only one self-orthogonal coset for the binary case we know this vector
is in D(II). O
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Theorem 3.7 Let Il be a projective plane of order n, then the minimum weight of
D) is2n+2 ifg=1 (mod4).

Proof. Forp=1 (mod 4) the self-orthogonal vector corresponding to the weight
2n vectors in the binary case would be of the form i(x,, Ap) + 7(pe, —1¢), where
i = v/—17, which has weight 2n + 2.

All that remains is to show that there are no vectors of weight 2n or 2n + 1
in D(II) when ¢ = 1 (mod 4). Assume there was a vector v of weight 2n, then
by the previous discussion its support would have to be n points on a line ¢ and
the n lines through the n + 1-st point on the line ¢. Let w be such a vector. Since
[w, (Xp — Xprs Ap — Ap)] = wp — wp = 0 for p,p’ in Suppp(w) we have that w, = wy
on Suppp(w). A similar argument shows the vector is constant on Suppg(w). Let
w, = a for p € Suppp(w) and w, = S for { € Suppp(w). Since the vector is self-
orthogonal we have that o> = —? and o = v/— 18 which gives that 8 # +a since
q # 2. Let p a point in Suppp(w) and p’ be a point not in Suppp(w). We have
that [w, (xp — Xp, Ap — Ay )] = a — (3 since exactly one line through p’ is exterior to
Suppp(w) in this situation. But aw — 3 # 0 giving a contradiction. Hence for p =1
(mod 4) there are no weight 2n vectors.

Assume there is a weight 2n + 1 vector w in D(II), then without loss of generality
we have that |Suppg(w)| > n+1. This implies that there is a b with b = |Suppp(w)| <
n and as before there are at least n®> + n — b(n — 1) exterior lines which must be
non-zero. This shows that the only case we need to consider is when |Suppp(w)| =n
and n exterior lines are non-zero and an additional line ¢ has w; non-zero. Let
{p1,p2,---,pn} be Suppp(w). The innerproduct is

[wv (Xpi — Xpj» )\Pi - )\Pj)} = Wp;, — Wy, + (wl - wl) =0.

If p; and p; are incident with ¢ then w,, = w,, for all p; on ¢. Notice that some p;
must be incident with ¢ since it is not exterior to Suppp(w).
Let p; be incident with ¢ and p; be not incident with ¢ then

[w, (Xp; — ijv)‘pi - )\Pj)} = wp, —wy, +we = 0.

Thus for all p; not incident with ¢, w is constant on those coordinates and w,, = wy,+
wy. As before we can show that for all m,m’ in Supp,—{¢} we have w,, = wyy = ¢ for
some . Since [w, L] = nd +w, = —d+w, = 0 we have that w, = —d. It can be shown
that if v = /=1 then either a(x,, \y) +va (e, —1¢)) or a(xy, Ap) + (=) (e, —n¢))
are in D(II). Let v be the vector that is in D(II). Then by the construction given
above there is a suitable choice of ¢; and €5 so that €;v + e;w is a vector of weight
less than 2n which is a contradiction. Hence there are no vectors of weight 2n+1. O

Theorem 3.8 Let Il be a projective plane of order n, then the minimum weight of
C(ID)* is n + 2.

Proof. The vector (x,,),) is in C(II)* by Lemma 3.1. The weight of (x,, ;) is
n + 2 and thus the minimum weight is at most n + 2.
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We shall now show the weight cannot be less than n+2. Let a = |Suppp(v)|. The
largest number of lines that intersect Suppp is (n+1)+n(a—1) which obviously occurs
when the points are collinear. There are at least n2+n+1—((n+1)+n(a—1)) =
n(n + 1 — a) lines exterior to Suppp(v). We have shown that vectors of the form
v+iP+jL, i,j # 0 have weight greater than or equal to 2n in the previous lemma
so we need only to consider vectors of the form v 4+ jL, j # 0 and v +iP, i # 0. We
shall show the case v + jL, the other case follows similarly.

If @ > n + 2 the weight of v + jL is greater than or equal ton + 2. If a < n + 2
then the weight of v + jL is at least a +n(n+ 1 —a). If @ < n + 1 then this weight
is greater than or equal to 2n. If a = n + 1 then the only way for the vector to have
weight n + 14 (n(n +1— (n+ 1)) = n + 1 is if the points are collinear and v, = 0
for ¢ € L. In this case, v = ;. Then

(e, (pe = fms N — 1)) = 1 # 0

which contradicts that v € C(IT)*.
If a =n+1 and Suppp(v) is not a line then there are at most

m+1)+nla—2)+n—-1
lines intersecting Suppp(v) with
n4n+l-(n+1)+nn+1-2)+n—-1)=1

line exterior. Then the weight of v is n + 2.
Therefore the weight of any vector in C(I1)* is at least n + 2. O

Corollary 3.9 The minimum weight vectors in C(I1)* are scalar multiples of (Xp, \p)
or (pue, —me) for some point p or some line £.

Proof. We showed that the sizes of the two supports (Suppp and Supp.) of a
minimum weight vector must be n and 1, and that the supports are either n points
on a line and a line with which they are collinear or n lines and a point with which
they are copunctual. If there were another vector v with the same support but not a
multiple of the vectors w described above then av + fw would have weight less than
n + 2 for proper choice of «, (3. O

Theorem 3.10 Let II be a projective plane of order n, ¢ = 3 (mod 4) a prime
dividing n + 1 then the minimum weight of E(II) is n + 4.

Proof. The vectors in E(II) consist of the vectors in C(II)* with a length 2 vector
adjoined. The minimum weight vectors given in Corollary 3.9 all have a weight 2
vector adjoined. Each other vector has at least a weight 1 vector adjoined except for
the vectors in C'(II) whose vectors have minimum weight 2n + 2. O
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4 Conclusion

The results of this paper are summarized in the following theorem.

Theorem 4.1 Let I1 be a projective plane of order n. If ¢ = 1 (mod 4) divides
n+ 1 then the code D(I) is an [2(n® +n +1),n% +n+1,2n + 2] self-dual code over
F,. If 2 divides n+1 then the code D(II) is an [2(n? +n+1),n% +n+1,2n] self-dual
code over Fy. If g =3 (mod 4) is a prime dividing n + 1 then the code C(II) is a
mazimal self-orthogonal [2(n* +n +1),n* +n+1,2n+ 2| code over F, and E(II) is
an 2(n® 4+ n +2),n* + n+2,n + 4] self-dual code over F,.

This theorem guarantees that every finite projective plane produces a self-dual
code.
Examples:

e The projective plane of order 4 produces a [42,21, 10] self-dual code over Fs.
e The projective plane of order 5 produces a [62, 31, 10] self-dual code over F,.
e The projective plane of order 5 produces a [64, 32, 9] self-dual code over F;.

e The projective plane of order 7 produces a [114, 57, 14] self-dual code over F,.
e The projective plane of order 8 produces a [148, 74, 12] self-dual code over Fs.
e The projective plane of order 9 produces a [182,91, 18] self-dual code over F,.
e The projective plane of order 9 produces a [182,91, 20] self-dual code over Fs.

e A putative projective plane of order 36 produces a [2666,1333,74] self-dual
code over F37. Notice that this putative plane would not produce a self-dual
code under the usual coding constructing from planes for any prime.
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