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Abstract
An edge of a k-connected graph is said to be k-contractible if the contrac-
tion of the edge results in a k-connected graph. A k-connected graph with
no k-contractible edge is called contraction-critically k-connected. For
k > 9%, we prove that if G is a graph such that both G and its complement
G are contraction-critically k-connected, then |V (G)| < k°/3/3 + 3k%/2.

1 Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops and
no multiple edges.

Let k be an integer with & > 2. An edge e of a k-connected graph G is said
to be k-contractible if the contraction of e results in a k-connected graph. If a
k-connected graph G does not have a k-contractible edge, then G is said to be
contraction-critically k-connected. For a graph G, we let G denote the complement
of G.

It is known that for & = 2,3, the complete graph of order £ + 1 is the only
contraction-critically k-connected graph (Tutte [4]), and a characterization of con-
traction-critically 4-connected graphs was obtained by Fontet [2] and independently
by Martinov [3]. For k > 5, J. Akiyama et al. [1] considered graphs G for which both
G and G are contraction-critically k-connected, and proved that such graphs have
order less than k%3 +4k%2. Also in [1], for each k with k > 2-10°, a graph G of order
greater than 3k%%/32 — 13k*3/64 such that both G and G are contraction-critically
k-connected was constructed. Thus the exponent 5/3 in the upper bound is best
possible. The purpose of this paper is to improve the coefficient 1 of the term £%/3
to 1/3 which, as we shall explain below, is likely to be best possible.

Theqrem Let k be an integer with k > 92, and let G be a graph such that both G
and G are contraction-critically k-connected. Then

[V(G)| < k*3/3 + 3k32.
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Judging from the argument in the proof of the Theorem (see Section 3), it is likely
that there exist graphs G for which equality holds asymptotically in both Subcase II-
(i) and Subcase II-(ii), i.e., graphs G such that | X| = k/3+o(k), | Z| = k*/3/d+o(k*/?)
and [W| = k%3/3 + o(k®?), where X, Z and W are as in the proof of the Theorem
(though we have been unable to construct such graphs). Thus we make the following
conjecture.

Conjecture. Let ny denote the mazimum order of a graph G such that both G and
G are contraction-critically k-connected. Then we have ny, = k°/3/3 + o(k*/?).

We conclude this section with some more definitions. Let G = (V(G), E(G))
be a graph. For © € V(G), we let Ng(z) denote the neighborhood of z and, for
S C V(G), we let Ng(S) = (UgesNg(z)) — S. A subset S of V(G) is said to be a
cutset of G if G — S is not connected. A cutset .S is said to be an i-cutset if |S| = 1.
For S C V(G), we let G[S] denote the subgraph induced by S'in G. For A, B C V(G)
with AN B =0, we let Eg(A, B) denote the set of edges of G joining a vertex in A
and a vertex in B. For A C V(@) and an edge e = uv of G with u,v € V(G) — A,
we say that A covers e in G if u,v € Ng(A). A vertex x is often identified with the
set {z}; for example, if B is a subset of V(G) with = ¢ B, then we write Eg(z, B)
for Eg({z}, B).

Let now G be a k-connected graph of order at least k£ + 2. A nonempty subset
A of V(G) is called a k-fragment of G if [Ng(A)| =k and V(G) — A — Ng(A) # 0.
Thus if A is a k-fragment and if we let A" = V(G) — A — Ng(A), then Ng(A) is a
k-cutset and A is also a k-fragment with Ng(A') = Ne(A). Note also that an edge
e of G is k-contractible if and only if e is not covered by any of the k-fragments of

G.

2 Preliminary Results

Throughout the rest of this paper, let £ be an integer with £ > 4. The first three
lemmas are proved in [1; Lemmas 2.1 through 2.3].

Lemma 2.1. Let G be a k-connected graph of order at least k+2. Let Ay, Ag, -+, A
be k-fragments of G, and set L = A; U Ay U ---U A;. Then for each z € L,
|Ea(2,V(G) — L)| < k.

Lemma 2.2. Let G be a contraction-critically k-connected graph of order at least k+
2. Choose k-fragments Ay, Ay, - -, A, covering all edges of G so that (|A1,|As],-- -, |4,])
18 lexicographically minimum. Let 1 < i < j < p. Then the following hold.

(i) Wehave AiNnA; =0 orA; C A;.

For a real number z, we let (g) =z(z—1)/2.



CONTRACTION-CRITICALLY k-CONNECTED GRAPHS 107

Lemma 2.3. Let G, Ay, Ay,--+ Ay be as in Lemma 2.2. Let 1 < s < p, and set
L=AUAyU---UA,. Let m denote the number of those edges of G — L which are

covered by some A; (1 <1i<s). Then m < |L| (é)

We now prove a numerical result.

Lemma 2.4. Let p be an integer with 1 < p < k. Letly,--- ,l; be integers such that
E—p <l <kforechl<j<t, andwritely +---+1 = (k—p)t+X. Then

(5) -+ (5) s (5) +e=nm (*57).

Proof. For each 1 < i < ¢, write [; = k — p+ pz; (0 < z; < 1). Since (;U) is a

convex function, we have <Z£> < x; é +(1—ay) k ; MY for each 1 <4 < t. Hence
I k k- k k-
Srase (3) < Szt (5)+a-20 (V51D = v (§) - (54

O

We need the following refinements of Lemma 2.3.

Lemma 2.5. Let G, Ay, - ,As, L be as in Lemma 2.3, and let X, W be subsets
of V(G — L) such that XUW =V(G—L), XNW =0, and 1 < |X| < k. Let X
be an integer with 0 < X < |X||L|, and suppose that |E¢(L,X)| > |L||X| — X. Let
m denote the number of those edges in E(G[W]) which are covered by some A; with

t<i<s mhenm < Ovix (3) + (el - v (F ),

Proof. Let A;,A;,,---,A;, be maximal members among A;, Ay,--- , A;. Then by
Lemma 2.2 (i), A;, N A;, = 0 for any h,j with h # j. Also L = Ujcj<;A;;, and
hence ¢ < |L|. Now if an edge e of G[W] is covered by A; (1 < i < s), then letting
J be the index such that A; C A;;, we see that e is covered by A;. Thus m is
equal to the number of edges of E[W] covered by some A; . For each 1 < j <, let
l; = |Ng(A;;) — X|. Then for each j, the number of edges of G[WW] covered by A;; is

|Na(Ai) N W\ _ (4
2 —\2

at most - Hencem <37 iy <12]> On the other hand, for

each j, we have [; = k—|Ng(A;;)NX| because A;; is a k-fragment, and hence k—|X|
lj < k. Wiite 30, lj = (B — |X|)t + N. Then by Lemma 2.4, dicj<t (lj>

2
: k : kE—1X] .
(N/1X)) <2> +(t—=X/|X]) 9 . Further for each j, |X| —[Ng(A;) N X]|
|Na(Ai))NX| < |Eg(Ay;, X)| = |4 || X|—=|Ec(A;;, X)|, and hence [; = k—|Ng(A;; )N
X1 = (k= [X|)+ (X~ [Ne(Ag )N X1) < (k= |X|) 4[4 1|~ | Ea(As,, X)]. Therefore
Digceli S (k= [XDE+ 37 (144 1X] = [Ea(Ay, X)|) = (B = [ X))t + (|L][X] -
|Ec(L, X)|). Since |L||X|—|Eg(L, X)| < A by assumption, this implies >, ., l; <

kE —|X|)t + A, and hence X' < \. Since b= X < K , this clealy implies
2 2

IN

IA

IN
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o ()= i) (F7T) < v (5) +emavn (F7,). sinee
lj
2

o) (5) + =10 (57,5 < oy (5) +az=an (7)), o

Lemma 2.6. Let G, Ay, -+ ,As, L be as in Lemma 2.3, and let W be a subset of
V(G — L). Let X be an integer, and suppose that |Eq(L,W)| < X. Let m denote the
number of those edges in E(G[W]) which are covered by some A; with 1 < i < s.
Then m < (A/k) (é)

t < |L|, we now obtainm < 37, ., ) < (\/I1X)) <§>+(t—/\'/|X|) (k _2|X|> <

Proof. Let A;, A, - - ,A; be as in the proof of Lemma 2.5. Then m is equal
to the number of edges of G[W] covered by some A;. For each 1 < j < t, let
l; = |[Ng(A;;) N W|. Then for each j, the number of edges of G[W] covered by

J

Aij is at most 12] . On the other hand, 0 < I; < k for each j, and Zlgjgtlj <

Yoi<j<t [Ea(Aiy, W)| = [Eg(L,W)| < A. Consequently, applying Lemma 2.4 with
i = k, we obtain m < ¥, (g) < (\/k) (’5) 0

Lemma 2.7. Let G, Ay,--- ,A,, L be as in Lemma 2.3, and let Z, W be subsets of
V(G—L) such that ZONW = 0. Let m denote the number of those edges in Eg(Z, W)
which are covered by some A; with 1 <1 <s. Then m < |L|k?/4.

Proof. Let A;,, A;,, -+, A;, be as in the proof of Lemma 2.5. Then ¢t < |L|, and m
is equal to the number of edges in Eg(Z, W) covered by some A;;. For each j, the
number of edges in Eg(Z, W) covered by A;; is at most |[Ng(A;;)NZ||Na(As; ) NW| <
|Ng(Ai;) N Z|(k — |[Na(Ai; N Z)|) < k*/4. Hence m < th*/4 < |L|k*/4. O

The following lemma is proved in [1; Lemma 2.4]

Lemma 2.8. Let G be a graph with |V(G)| > 3k such that both G and G are
contraction-critically k-connected. Let A be a k-fragment of G and set A = V(G) -
A—Ng(A), let B be a k-fragment of G and set B' = V(G)— B— Ng(B), and suppose
that |A'| > |A| and |B'| > |B|. Then ANB = 0).

3 Proof of the Theorem

Let k, G be as in the Theorem. We may assume |V (G)| > 3k. Choose k-fragments
Ay, Ay, -+ Ay, of G covering all edges of G so that (|A;],|As|,-- - |A4,|) is lexicograph-
ically minimum. Simillarly choose k-fragments By, Bo, - - - B, of G covering all edges
of G so that (|Bi|,|Bs|,---|B,]|) is lexicographically minimum. Set X = Uj<;<pA;,
Y = Uicj<,Bj. By Lemma 2.8, X NY = 0. The following claim is proved in [1;
Claim 2.6].

Claim 3.1. |X| < 2k or |Y] < 2k.
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By symmetry, we may assume |X| < 2k. Let r (0 < r < ¢) be the index such that
|B;| < k32 forall 1 < j <rand |B;| > k*?forallr+1< j <q. Set Z=U<j<,B;
and W = V(G) — X — Z. The following three claims are proved in [1; Claims 2.7
through 2.9].

Claim 3.2. B’I'+1 g B’l‘+2 g te g .Bq

Claim 3.3. If r < q, then the number of those edges of G[W] which are covered by
some B; withr + 1 < j < q is at most k(|(By — By+1) NW| 4+ k/2).

Claim 3.4. |Z| < 2k%% + k.
Write | X| = ak, |Z| = Bk*3. Since | X| < 2k by assumption, a < 2.
Case . 0 < 5 < 1/9.

By Claim 3.3, the number of edges of G[W] covered by some B; with7+1 < j < ¢
is at most k(|W| + k/2) (note that this is true even if 7 = ¢). Also, applying
Lemma 2.3 to G, we see from the the assumption of Case I that the number of

edges of G[W] covered by some B; with 1 < j < r is at most |Z| (é) <|Z|k?*/2 <
E'%/3/18. Hence |E(G[W])| < E(|W| + k/2) + k'%/3/18. On the other hand, since
|X| < 2k, |[E(GIW])] < |X] <é> < k% by Lemma 2.3. Consequently <|V2V|) =

|E(GIW)|+|E(G[W])| < k(IW|+ k/2) + k°/3/18 + k3. That is to say, |IW|* — (1 +
2k)|[W| — k*/3/9 — 2k3 — k? < 0, which implies |W| < k°/3/3 + 3k*® — 2k (note
that (k%3/3 + 3k*3 — 2k)? — (1 + 2k)(k%/3/3 + 3k*3 — 2k) — k*9/3/9 — 2k° — k? =
TES3 — 18K/ 4 Tk? — k°/3 /3 — 3k + 2k > 0). Therefore |V(G)| = |W|+|Z|+|X]| <
(K513 )3 + 3k*3 — 2k) + k¥ /9 + 2k < k°/3/3 4 3k3/? by the assumption of Case 1.

Case II. 5 > 1/9.
Since k > 9%, we have |Z| > k*/3/9 > F.
Subcase II-(i). 0 < a < 1, > 3a/4.

Applying Lemma 2.1 to G, we get |Eg(Z,W)| < k|Z|. On the other hand,
|Ec(Z,W)| < k*X|/4 by Lemma 2.7. Consequently |Z||W| = |Eg(Z,W)|+|Ec(Z, W)
< k|Z| + k*|X|/4. Since 8 > 3a/4 by the assumption of Subcase II-(i), this im-
plies [W| < k + k2| X|/(42]) = k + k*3a/(4B) < k + k°/3/3. Therefore |V (G)| =
W] +1|Z] + |X]| < (k+k73/3) + (2k*% + k) + k < k°/3/3 + 3k*? by Claim 3.4 and
the assumption of Subcase II-(i).

Subcase II-(ii). 0 <a <1, 8 < 3a/4.

By Claim 3.3, the number of edges of G[W] covered by some B; with 7 + 1 <
Jj < g is at most k(JW]| + k/2). By Lemma 2.1, |Eg(X,Z)| < k|X|, and hence
|Eq(Z,X)| > |Z||X]| — k| X]|. Also recall that we have k£ < |Z| by the assumption
of Case II. Thus applying Lemma 2.5 to G’ with L = Z and A = k|X|, we see
that the number of edges of G[W] covered by some B; with 1 < j < r is at most
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k (§>+(ﬁk“/3—k) <(1 _20‘)]”) < k*/2+(BKY? —k)(1—a)?k? /2. Hence |E(G[W])|

)
k(W) + k/2) + k3/2 + (BEY® — k)(1 — @)%k?/2. On the other hand, |E(G[W])|
’ )

<
<
k 3 W] 5

ak{, | <ak /2 by Lemma 2.3. Consequently 5 )= |[E(GIW))|+ |E(GIW])| <
(W |+ k/2) + k3/2 + (BEY® — k)(1 — @)%k /2 + ak®/2; that is to say, |W|* — (1 +
2k)|[W| = B(1—a)?k'% — (3a—a?)k* —k? < 0. Since B(1—a)? < 3a(l-a)?/4 < 1/9
and 3a—a? < 2 by the assumption of Subcase I1-(ii), this implies |[W|?—(1+2k)|W |-
E'0/3 /9 —2k3 —k? < 0. Asin Case I, this implies [W| < k%/3/3+3k*/® —2k. Therefore
V(G)| = |W|+ 2|+ |X| < (K%3)3+ 3kY? — 2k) + (2K + k) + k < k%3 /3 + 332,
Subcase II-(iii). 1 < a < 2.

By Claim 3.3, the number of edges of G[W] covered by some B; with7+1 < j < ¢
is at most k(|W|[+£/2). By Lemma 2.1, |Eg(X, Z)| < k|X], and hence |Eg(Z, X)| >
|Z||X| — k| X|. Applying Lemma 2.1 to G, we also obtain |Eg(Z, X UW)| < k|Z|.
Hence |Eo(Z, W) < K|Z| — (1Z1X] - KX|) = ¥ — (X| — £)(|2] - k). Since
|Z| > k by the assumption of Case IT and |X| > k by the assumption of Subcase
I1-(iii), this implies |Eg(Z, W)| < k*. Thus applying Lemma 2.6 to G with L = Z
and A = k%, we see that the number of edges of G[W] covered by some B; with

1 < j < risat most k (é) < k*/2. Hence |E(GIW])| < k(|W|+ k/2) + k3/2.

On the other hand, |E(G[W])| < ak (g) < ak?®/2 by Lemma 2.3. Consequently
|V2V|> — \B(GIW])| + |E(GIW])| < k(W] + k/2) + k*/2 + ak?/2; that is to say,

W2 — (1 +2K)[W] — (1 + a)k® — k* < 0. Since a < 2, this implies |[W|? — (1 +
2k)[W| — 3k* — k? < 0, and hence |W| < 2k*?% — 3k (note that (2k%/% — 3k)? —
(1 4+ 2k)(2k%/2 — 3k) — 3k® — k? = k* — 16k°/2 + 14k — 2k%/? + 3k > 0). Therefore
V(G| = |W|+|Z|+ |X]| < (2k*?% — 3k) + (2k*/% + k) + 2k < k%/3/3 + 3k*/2. This
completes the proof of the Theorem.
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