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Abstract

For a graph G and S C V(G), if G — S is acyclic, then S is said to be
a decycling set of G. The cardinality of the smallest decycling set of G
is called the decycling number of G and is denoted by ¢(G). We prove
in this paper that if G runs over the set of graphs with a fixed degree
sequence d, then the values ¢(G) completely cover a line segment [a, b]
of positive integers. Let R(d) be the class of all graphs having degree
sequence d. For an arbitrary graphic degree sequence d, two invariants

a :=min(¢,d) = min{d(G) : G € R(d)}

and
b:=max(¢,d) = max{¢(G) : G € R(d)},

arise naturally. For a regular graphic degree sequence d = r" := (r,7,...,
), where r is the vertex degree and n is the order of the graph, the exact
value of min(¢,r") and max(¢,r™) are found in all situations. As an
application, we can find all cubic graphs of order 2n having the smallest
decycling number.

1. Introduction

The problem of determining the minimum number of vertices whose removal elim-
inates all cycles in a graph G is difficult even for some simply defined graphs. For
a graph G, this minimum number is known as the decycling number of G, and is
denoted by ¢(G). The class of those graphs G of which ¢(G) = 0 consists of all
forests, and ¢(G) = 1 if and only if G has at least one cycle and a vertex is on all of
its cycles. It is also easy to see that ¢(K,) =n—2and K, ;, =p—11if p < g, where
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K, denotes the complete graph of order n and K, ; denotes the complete bipartite
graph with partite sets of cardinality p and gq. The exact values of decycling numbers
for many classes of graphs were obtained and cited in [1]. In the same paper, they
posed the following problems:

Problem 1. Which cubic graphs G with |G| = 2n satisfy ¢(G) = [*1]?
Problem 2. Which cubic planar graphs G with |G| = 2n satisfy ¢(G) = [*+1]?

Problem 1 has been answered in [2] by proving that for a random cubic graph
G of order n, ¢(G) = [% + 3] holds asymptotically almost surely, but no answer for
the second problem yet.

We prove in this paper that if G runs over the set of graphs with a fixed degree
sequence d, the values ¢(G) completely cover a line segment [a,b] of positive inte-
gers. Let R(d) be the class of all graphs having degree sequence d. For an arbitrary
graphic degree sequence d, two invariants

a :=min(¢,d) = min{d(G) : G € R(d)}

and

b := max(¢,d) = max{¢(G) : G € R(d)},

arise naturally. For a regular graphic degree sequence d = r" := (r,r,...,r) where
r is the vertex degree and n is the number of graph vertices, the exact values of
min(¢, ") and max(¢, ") are found in all situations. Finally we shall answer Prob-
lem 1.

In this paper we only consider finite simple graphs. For the most part, our
notation and terminology follows that of Bondy and Murty [3]. Let G = (V, E)
denote a graph with vertex set V' = V(@) and edge set E = E(G). Since we only
deal with finite and simple graphs, we will use the following notation and terminology
for a typical graph G. Let V(G) = {v1,vs,...,v,} and E(G) = {e1,eq,...,€n}. As
usual, we use |S| to denote the cardinality of a set S and therefore we define n = |V/|
to be the order of G and m = |E| the size of G. To simplify writing, we write e = uv
for the edge e that joins the vertex u to the vertex v. The degree of a vertex v of a
graph G is defined as dg(v) = |{e € E : ¢ = wv for some u € V}|. The maximum
degree of a graph G is usually denoted by A(G). Let S and T be disjoint subsets of
V(G) of a graph G. We denote by e(S,T) the number of edges in G that connect S
to T. If S C V(G), the graph G|s is the subgraph induced by S in G and denotes
e(S) the number of edges in the graph G|s. A graph G is said to be regular if all of
its vertices have the same degree. A 3-regular graph is called cubic graph.

Let G be a graph of order n and V(G) = {v1, vs,...,v,} be the vertex set of G.
The sequence (dg(v1),dg(v2), ... ,dg(vy,)) is called a degree sequence of G, and we
simply write (d(vy),d(vs),...,d(v,)) if the underline graph G is clear in the context.
A graph H of order n is said to have the same degree sequence as G if there is a
bijection f from V(G) to V(H) such that dg(v;) = dg(f(v;)) for all i =1,2,..., n.
A sequence d = (dy,ds, . ..,d,) of non-negative integers is a graphic degree sequence
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if it is a degree sequence of some graph G. In this case, G is called a realization of d.

An algorithm for determining whether or not a given sequence of non-negative
integers is graphic was independently obtained by [5] and [4]. We state their results
in the following theorem.

Theorem 1.1 Let d = (dy,ds,...,d,) be a non-increasing sequence of non-
negative integers and denote the sequence

(d2_]—7d3_]—a~-~add1+1_1add1+2a""dﬂ):d,'

Then d is graphic if and only if d’ is graphic.
O

Let G be a graph and ab,cd € E(G) be independent, where ac, bd ¢ E(G). Let
Gelabied) — (G — {ab, cd}) U {ac, bd}.

The operation o(a,b;c,d) is called a switching operation. It is easy to see that
the graph obtained from G by a switching has the same degree sequence as G. The
following theorem has been shown by [5] and [4].

Theorem 1.2 Let d = (dy,ds, . .., dy,) be a graphic degree sequence. If Gy and G
are any two realizations of d, then Gy can be obtained from Gy by a finite sequence
of switchings.

O

As a consequence of Theorem 1.2, we can define the graph R(d) of realizations of
d whose vertices are the graphs with degree sequence d; two vertices being adjacent
in the graph R(d) if one can be obtained from the other by a switching. Thus we
obtain the following theorem.

Theorem 1.3 The graph R(d) is connected.

2. Interpolation theorem

Let G be the class of all simple graphs, a function f : G — Z is called a graph
parameterif f(G) = f(H), whenever G = H. If f is a graph parameter and J C G,
f is called an interpolation graph parameter with respect to J if there exist integers
a and b such that

{f(G):GeT}=la,bl={k€Z:a<k<b}.

We have shown in [7, 8, 9] that the chromatic number ¥, the clique number w, and the
matching number a4 are interpolation graph parameters with respect to J = R(d).

If f is an interpolation graph parameter with respect to J, it is natural to write

min(f,J) = min{f(G) : G € J} and max(f,J) = max{f(G): G € J}.
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In the case where J = R(d) we simply write min(f,d) and max(f,d) for
min(f, R(d)) and max(f, R(d)) respectively.

Theorem 2.1 If G is a graph and o(a,b;c,d) is a switching on G, then
HG ) < 6(G) + 1

Proof. Let S be a decycling set of G with |S| = ¢(G). Let o(a,b;¢,d) = o be
a switching on G. We claim that (G — S)7 contains at most one cycle. If ab,cd €
E(G - S), then (G — S)° is well defined. Since G — S is a forest, there is at most
one path in G — S from a to c. If there is a path from a to ¢ in G — S, then the
path can be modified as the unique path from b to d. Thus the claim is true. If
one or both of ab, cd are not edges in G — S, then the claim is also true. Therefore
9(G7) < 6(G) + 1.
O

Corollary 2.2 If o is a switching on G, then |¢p(G) — ¢(G7)| < 1.

Proof. Since a switching is symmetric, we may assume that ¢(G) < ¢(G?). By
Theorem 2.1, ¢(G?) is either ¢(G) + 1 or ¢(G). In both cases we have
16(G) — (G < 1.

O

Theorem 2.3 For a given graphic degree sequence d, there exist integers a and
b such that there is a graph G with degree sequence d and ¢(G) = ¢ if and only if ¢
1s an integer satisfying a < ¢ < b.

Proof. The proof follows directly from Theorem 1.3 and Corollary 2.2.
O

Let d be a graphic degree sequence. We have already defined the graph R(d)
of realizations of d. The range of decycling numbers of R(d) can be defined as the
interval of integers specified by Theorem 2.3, i.e.,

o(d)={o(G) : GeR(d)} =[a,b]={ceZ : a<c<b}.

Naturally, we can call a the minimum decycling number for d, thus a := min(¢,d)
and b := max(¢p,d), the mazimum decycling number for d. We write d = ™ for
the sequence (r,r,...,r) of length n, where r is a non-negative integer and n is a
positive integer. By the definition of graphic degree sequence, d = r™ is graphic if
and only if rn = 0(mod 2) and n > r + 1. Moreover, R(r™) contains a disconnected
graph if and only if n > 2r + 2. It is easy to see that min(¢,0") = max(4,0") =0
and min(¢,1*") = max(¢,1**) = 0. When r = 2, we have min(¢,2") = 1 and
max(¢,2") = | ]. Because of this fact, from now on we will consider the cases when
r>3andn>r+ 1
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3. min(¢, ")

It was a remark in [1] that if G is a connected graph with maximum degree A, then
H(G) > W. Thus if G is a connected r-regular graph of order n, then

¢(G) Z m‘(TanJ)rZ.

In order to obtain the exact values of min(¢,r™) we first state some useful facts
arising from elementary arithmetic as follows:

1. Let n and 7 be integers, n >r > 3. Then r — 1 < % if and only if n > 2r.

2. Let n and r be integers, n > 2r and nr = 0 (mod 2). Then ";(f";)rz is an integer
if and only if n is even and n = 24 2(r — 1)g for some positive integers ¢, or n is odd

and n =7+ 1+ 2(r — 1)q for some positive integers gq.

Theorem 3.1

r—1 fr+1<n<2r-1,

min(¢o,r" 427
( )= { ";(T ";)r if n > 2r.

The proof of Theorem 3.1 follows from Lemmas 3.2, 3.3, 3.4, and 3.5.
O

If S is a decycling set of an r-regular graph G with E(G — S) = 0, then for any
veS, S—{v}isalso a decycling set of G. Thus for a minimum decycling set S of
an r-regular graph G, there exists v € V(G — S) such that d(g—g)(v) = 1. It follows
that min(¢,r™) > r — 1. With this observation, we will see that the lower bound
is precise when n < 2r. Moreover, the lower bound can be improved to % ,
otherwise.

Lemma 3.2 min(¢,r") =r— Lifr+1<n <2r—1.

Proof. In order to achieve the exact the value of min(¢, "), we now construct
an r-regular graph G of order n such that ¢(G) =r—1. Putn =7r+5,1<j<r-—1
It should be noted that an r-regular graph of order n = r + j exists if and only if j
is odd or both r and j are even.

Let X = {s1,82,...,8,—2} and Y = {t1,¢2,...,tj10}, where r < j + 2. Let
G be a graph with V(G) = X UY and E(G) = Ey U Ey U E;, where By =
{t1t27t2t3,.. .,tj+1tj+2,tj+2t1},E2 = {Sptq 01 S p S T — 2,1 S q S j+ 2}, and
E; = E(H), where H is an (r — j — 2)-regular graph on X. Note that an (r — j —2)-
regular graph of order r—2 exists if and only if an r-regular graph of order r+j exists.
It is clear that G is an r-regular graph of order n with a decycling set S = X U {¢,}
of cardinality » — 1. Hence S is minimum.

Suppose » = j + 1. In this particular case, we see that an r-regular graph of
order n = r + 7 = 2r — 1 exists if and only if j is odd and r is even. Let X =
{s1,82,...,8—2} and Y = {t1,¢2,...,t,41}. Let G be a graph with V(G) = X UY
and E(G) = E, U E, U By, where E, = {t:ts, tots, ..., totrs1, troats ),
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Ey={spty :1<p<r—-21<qg<r}— {31t2,52t3,...,s%t%}, and
E3 = {s1tp11, tatry1, Sotpyr, tatera, . ,t%trﬂ}. Thus G is an r-regular graph of order
2r — 1 with a decycling set S = X U{t, 41} of cardinality » — 1. Hence S is minimum.
The proof is complete.

O

Lemma 3.3 min(¢,r?") = r — 1, for all v > 3, and min(¢, r>"*1) = r, for all even
integers r > 4.

Proof. Let X and Y be disjoint sets, |X| = |Y| = r. The complete bipartite
graph G on the partite sets X and Y is an r-regular graph of order 2r. For each
x € X,put S =X —{z} and T = Y U {x} we see that S is a decycling set
of G, E(G|s) = 0 and G|r is a tree. Since |S| = r — 1, S is minimum. Thus
min(¢, r?") =r — 1.

For an even integer r > 4, let X = {s1,52,...,8,} and Y = {t1,¢2,...,t.} be
disjoint sets. An r-regular graph G whose V(G) = X UY U {v}, where v is a new
vertex not in X UY, and E(G) = Ey U E3 U E3, where By = {s,t,: 1 <p<r,1<

q < rp # q}, E; = {tita, tsta, ..., t,_1t,}, and Es = {vs, : 1 < p < r}. Since
|—(2r+1)7'—2(2r+1)+2

2(r—1) -| =T, min(¢7 T2T+1) =T
O
Lemma 3.4 Ifn > 2r and % is an integer, then min(¢,r™) = %
Proof. Case 1. Suppose n is even and n > 2r. Since ";(_TZij;Z =5 - 2(17_721)7

we write n = 2(r — 1)g + 2,¢q > 1. By induction on ¢, it is true when ¢ = 1, by
Lemma 3.3. Moreover, the graph G constructed in Lemma 3.3 has the property that
V(G)=SUT,E(G|s) =0, |S| =r —1, and G|z is a tree on r + 1 vertices.

Suppose there exists an r-regular graph Gy on n = 2(r — 1)g + 2 vertices with
V(Go) = SoUTy, SoNTy = 0,5 = {s1,52,...,8.} and Ty = {t1,t2,...,t;} where
a=(r—2)¢g+1and b = rq + 1. We suppose further that E(Gyls,) = 0, and
Golr, is a tree with d(t,) = 1. Let Sy = {ug,ua, ..., up—2} and 71 = {v1,09,...,0,}.
Now let G be a graph with V(G) = SUT, where S = So U S;,T = Ty U Ty, and
E(G) = E1 U EyU E3, where E} = E(Gy) — {satp}, Ba = {upv, : 1 <p<r—-2,1<
q < 1}, E3 = {tyv1,v1v9, ..., Up_10,, 08, }. It s clear that G is an r-regular graph
on 2(r — 1)(g + 1) + 2 vertices, E(G|s) = 0, and ¢(G) = (r — 2)(¢ + 1) + 1, where
S = Sy U 5. Moreover G|r is a tree and dgj, (t3) = 1.

Case 2. Suppose n is odd and 7 is even. Write n = 2(r — l)g+r +1,¢ > 1,
and consider when ¢ = 1. Let S = {s1,83,...,8,} and T = {t1,ts,...,t}, where
a=3%r—2and b = 3r+ 1. Let H be an (r — 2)-regular bipartite graph with
partite sets S and T' = {t1,ts,...,t,}. Since |S — {s.}| = r —3 = 3(} — 1),

S — {54} can be partitioned into § — 1 sets each of which contains 3 elements. Let

P={5,85,..., S%_l} be such a partition. Let K be a bipartite graph with partite
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sets S — {s,} and {t;_2,t;_1, %} such that E(K) is the union of all edges in 2- regular

bipartite graphs with partite sets {t;_,t,_1,%} and S;, for all 4 = 1,2,..., % — 1.
Finally let G be a graph with V(G) = SUT and E(G) = E(H)U E(K)U E;, where
E1 = {s4t1, Saty, tata, tats, ..., ta_1t. }. Therefore G is an r-regular graph on 3r — 1

vertices with ¢(G) = |S| = 3r — 2. Moreover G|y is a path with dg,(t,) = 1 and
E(G|s) = 0.

Suppose there exists an r-regular graph Go on 2(r — 1)g 4+ r + 1,q > 1, vertices
with V(Gg) = S() @] T07E(G0|SO) = 07 |So| = a = %’f‘ -2+ (q - 1)(7‘ - 2), and C;(()|T0
is a path tity...% of length b = 3r 4+ 1+ (¢ — 1)r. Let Sy = {u1,us,...,u,—} and
Ty = {v1,vs,...,v,}. We may assume that s,t, € Gy. Now let G be a graph with
V(G) = SoUSl UTOUT1 and E(G) = E1UE2UE37 where E1 = E(Go) _{Satb}7 E2 =
{upv, : 1 < p <r—21<¢q < r},and E3 = {s,0,, tyv1, 0102, 0903, . . ., Up_10; }.
It is clear that G is an r-regular graph on n = 2(r — 1)(¢ + 1) + » + 1 vertices,
E(Gls) =0, and|S| = ¢(G) = 3r — 2+ q(r — 2), where S = Sy U S;. Also note that
G — S =G|y =tity... tyv1va ... v, is a path and dg, (t1) = dg, (v.) = 1.

O

Let f(n,r) = ”;(3"1”] r>3and n > 2r. If ©- 2”1“)“2 is an integer, then it is
easy to show that

o fr) ifl1<i<r-—2,
f(n+2@,r)—{f(n+2(r_1) r) ifi=r-2.

Lemma 3.5 If n > 2r, then min(¢, r"*?) < min(¢,r") + 1.

Proof. For n > 2r we have constructed an r-regular graph G on n vertices
having minimum decycling set when n = 2r and n = 2r + 1 in Lemma 3.3. We have

also constructed an r-regular graph G on n vertices when "g(’f_"f)r 2 is an integer and
o(G) = ”;(_T{";f in Lemma 3.4. Moreover, such constructions give us decycling sets S

with E(G|s) = 0. Let G be an r-regular graph on n vertices with ¢(Gy) = min(¢,r").
We may further assume that V(Gy) = Sy U Ty where E(Gyls,) = 0, and Gylr, is a
forest. Since Gy is r-regular and |Sp| > r — 1, by Hall’s Theorem (See, e.g. [6]
page 227), there exists a set of r — 1 independent edges M, joining Sp to Tp. Let
G be a graph with V(G) = V(Gy) U {z,y} and E(G) = E, U Ey U E5, where
E, = E(Go) — My, Ey = {aty,xta, ..., xt,—1, $1Y, S2Y, - .., Sr—1y}, and E3 = {zy},
where My = {s1t1, sata, ..., Sp_1t,_1}, with s; € Sy and ¢; € Ty. Thus G is an r-regular
graph on n + 2 vertices with a decycling set So U {x}. Therefore ¢(G) < ¢(Gyp) + 1.

O

It is interesting to observe that the proof of Theorem 3.1 is now complete.
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4. max(p,r")

The problem of determining the decycling number of a graph is equivalent to finding
the greatest order of an induced forest and the sum of the two numbers equals the
order of the graph. Let FF C V(G) of a graph G. F is called an induced forest of G,
if G|F contains no cycle. For a graph G, we define, I(G) as:

I(G) := max{|F| : F is an induced forest in G}.

Observe that for a minimum decycling set S of a graph G, if v € S, then there exists
a connected component C' of G — S such that v is adjacent to at least two vertices
of C. Thus A(G|s) < A(G) — 2. With this observation, we find that if G is an
r-regular graph and S is a minimum decycling set of G, the graph G|s may not be
an (r —2)-regular graph. This causes a difficulty in finding max(¢, 7") if we consider
only the class of regular graphs. It is reasonable to enlarge the class of regular graphs
into the following class of graphs. Let A be a nonnegative integer and n be a positive
integer such that n > A + 1. Let G(A,n) be the class of all graphs of order n and
of maximum degree A. The (A, n)-graph is a graph having G(A, n) as its vertex set
and two such graphs being adjacent if one can be obtained from the other by either
adding or deleting an edge.

Lemma 4.1 The (A, n)-graph is connected.

Proof. For any graph G € G(A,n), f F=KiaU(n—A-1)K,and G# F, G
can be obtained from F' by a finite sequence of adding edges. The proof is complete.
O

Lemma 4.2 If G and Gy are adjacent in the (A,n)-graph, then
lp(G1) — B(G2)| < 1.

Proof. Without loss of generality we may assume that G5 is a graph obtained
from G; by adding an edge e. Thus ¢(G;) < ¢(Gs). On the other hand, if S is
a minimum decycling set of G, then G5 — S contains at most one cycle. Thus
#(G2) < |S|+ 1. Therefore ¢(G1) < ¢(G2) < ¢(G1) + 1. The proof is complete.

O

As a consequence of Theorems 4.1 and 4.2, we have the following corollary.

Corollary 4.3 For any class of graphs G(A,n), there exist integers a and b such
that there is a graph G € G(A,n) with ¢(G) = c if and only if ¢ is an integer
satisfying a < ¢ < b.

O

Note that the result of Corollary 4.3 is an interpolation theorem of ¢ with respect
to G(A,n), and it is easy to see that min(¢,G(A,n)) = 0, the graph F in the
proof of Lemma 4.1 is such a graph. In order to investigate the exact values of
max(¢, G(A,n)), we first give its upper bound.
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Lemma 4.4 If G is a graph of order n with mazimum degree A(G) = A > 1,
then ¢(G) < M1,

Proof. The theorem is trivial if A < 2. If A =3 and S is a minimum decycling

set of G, then for each v € S,dg|4(v) < 1. This means that both G|s and G — S are

decycling sets of G and hence |S| < § = "f+ U Suppose A > 4 and S is a minimum

decycling set of G. Thus A(G|s) < A(G) — 2. Since I(G) > I(G|s), it follows that

n—¢(G) > 18| — ¢(S) > S| — L3 Therefore $(G) < Mo,

O

Theorem 4.5 Let d = (dy,ds,...,dy),d1 > ds > ... > d, > 1 be a graphic
degree sequence and dy +1 < n < 2dy + 1. Then
(1) max(¢,d) = n — 2 if and only if R(d) = {K,} and
(2) if Ky & R(d), then max(¢,d) = n — 3 if and only if there exists a union of stars
as a realization of d, where d = (n—dp,n—dp1,...,n—dj).

Proof. (1) By Lemma 4.4, we have max(¢,d) < n — 2 and max(¢,d) =n — 2 if
and only if any induced subgraph of 3 vertices of G € R(d) forms a triangle. Thus
max(¢,d) = n — 2 if and only if R(d) = {K,}

(2) By (1), we have max(¢,d) < n — 3. If R(d) does not contain a union of stars
as its realization, then for every realization G of d, G must contain a Cs or P, as
an induced subgraph. Thus I(G) > 4 which is equivalent to max(¢,d) < n — 4.
Conversely, if G € R(d) and G is a union of stars, then any induced subgraph of 4
vertices of G must contain a triangle or Cy. Therefore max(¢,d) =n — 3.

O

Theorem 4.6 Let n = (A +1)g+1¢,0 <t < A. Then
(1) max(¢,G(A,n)) =n —2q, if t =0,
(2) max(¢,G(A,n))=n—2¢—1,ift=1, and
(3) max((b7 (A,n)) =n—-2¢—2,if2<t<A.
(

Proof. (1) By Lemma 4.4, max(¢,G(A, (A + 1)q)) < n — 2¢. It is easy to
see that the graph ¢Ka+1 € g( (A + 1)q) and ¢(qKat1) = n — 2q. Therefore
max(¢, G(A,n)) =n —2q, if t =0.

(2) By Lemma 4.4, max(¢, G(A, (A+1)g+1)) < n—2g—1. It is easy to see that the
graph ¢Ka1 UK € G(A, (A+1)g+1) and ¢(qKa4+1 UK;) = n — 2g — 1. Therefore
max(¢,G(A,n)) =n—2¢—1,if t = 1.

(3) Let n = (A+1)g+t¢,2 <t < A. Since ¢Ka+1UK; € G(A,n) and ¢(gKa+1UK;) =
n — 2¢ — 2, max(é, G(A,n)) > n — 2q — 2. We first consider the case ¢ = 1. Since
n=(A+1)g+t,2 <t < A, the minimum degree of G is t for all graphs G € G(A,n).
Thus G is not a union of stars and therefore max(¢, G(A,n)) =n — 4 for ¢ = 1.

Suppose ¢ > 2 and ¢ is the smallest integer such that max(¢, G(A, (A+1)g+1)) =
n —2q — 1. Let v be a vertex of G of degree A and let H be the graph obtained
from G by deleting the vertex v and its neighbors. It is clear that H has order
(A +1)(¢g — 1)+ ¢ and by minimality of ¢, there exists a minimum decycling set
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S of H of order at most n — 2(¢ — 1) — 2 = n — 2¢. Equivalently, |[H — S| > 2g.
Since (H — S)U {v} is an induced forest of G and |(H —S)U{v}| > 2¢+ 1, we have
|(H—-S)U{v}| =2¢+1. Put F = (V(H)-S)U{v} and D = G—F, thus D is a min-
imum decycling set of G with |D| = n — 2¢ — 1. Since v € V(G|r) and dg|,(v) = 0,
G|F contains at most 2q vertices of degree at least 1. Let T the subgraph of G|p
consisting of all nontrivial components. By being maximality of G|, V(T) # 0.
Thus 1 < |V(T)| < 2¢. Since |[D|=(A—-1)g+t—1,e(D,T) > 2(A-1)g+2(t - 1).
But % > A — 1, there exists a vertex f € T such that dg(f) > A. This
is a contradiction. The proof is complete.

O

Theorem 4.7 Forr >3, andr +1<n <2r+1,

(1) max(¢,r") =n —2, if and only if n =r + 1,
(2) max(¢,r") =n —3, if and only if n =1 + 2,
(3) max(¢,r") =n — 4, for all even integers n, r + 3 < n,
(4) max(p,r™) = n — 4, for all odd integersn, v +3 <n andn > f(j),
(5) max(¢,r™) =n — 5, for all odd integersn, r +3 <n and n < f(j),
where  f(j) = 5(j — 1) if j = 3(mod 4), and
FG)=1+3( —1) if j = 1(mod 4),

Proof. (1) and (2) follow directly from Theorem 4.5.

(3) From (1) and (2), we have max(¢,r") < n — 4 for all integers n = r + j,
3 < j <7+ 1. Suppose n is even and let G be an r-regular graph of order n such
that G is bipartite. Thus the induced subgraph of any 5 vertices of G must contain
a cycle in G. Thus ¢(G) = n — 4. Therefore max(¢, ") =n — 4,

(4) In [7], we have shown that if j is odd and j > 3, then there exists a (j —1)-regular
triangle-free graph of odd order n if and only if n > f(j), where f(j) = 3(j — 1)
if j = 3(mod4), and f(j) = 1+ 3(j — 1) if j = 1(mod 4). Note that if H is a
triangle-free graph of order at least 5 and for any subset K of H with |K| =5, then
E(H|k) <5. Thusif n > f(j) and H is a (j — 1)-regular triangle-free graph on n
vertices, then any induced subgraph of 5 vertices of H contains at most 5 edges in
H. Therefore ¢(H) > n — 4. Hence max(¢,r") = n — 4.

(5) If n < f(y) and j > 5, then any (j — 1)-regular graph H on n vertices must
contain a triangle. Let T = {u,v,w} be a set of 3 vertices of H which induces a
triangle. Since n < g(j — 1) and H is a (j — 1)-regular graph, there exist z,y € T
such that either Ny (z) N N (y) # 0 or there exist a € Ny(z) and b € Ng(y) such
that ab € E(H). In either case there are at least 5 vertices of V(H) induced a forest
in H. Thus I(H) > 5 and it is equivalent to ¢(H) < n — 5.

Finally, let X = {1,2,...,2,} and Y = {y1,¥2,...,;},t = %5+ Since n <
2(j —1),n is odd, and j > 5, there exists a (j — 1)-regular bipartite graph K with
the partite sets X and Y and {w;y; : i = 1,2,...,t} C E(K). Now choose H to
be a (j — 1)-regular graph with V(H) = V(K) U {v} and E(H) = E; U E,, where
E = E(K)—{aw; :i=12,...,5} and Ey = {va;,vy; : 1 = 1,2,...,%}. It is

? 2
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clear that H is a (j — 1)-regular graph on n vertices such that ¢(H) =n — 5.

Theorem 4.8 Forn > 2r +2 and r > 3, writen = (r + 1)g+t,q > 2 and

0<t<r. Then

(1) max(¢,r") =n—2q ift =0,

(2) max(¢,r") =n—2¢—1 ift =1,

(3) max(¢,r") =n—2¢—2 if2<t<r-—1,
(4) max(¢,r") =n—2¢—3 ift=r.

Proof. The proof of (1), (2) and (3) follows directly from Theorems 4.6 and 4.7.
(4) Note that max(¢,G(2,3q +2)) = ¢ and a graph G € G(2,3¢ + 2) with ¢(G) = ¢
if and only if G = (¢ — 1)C3 U C5 or (¢ — 2)C3 U 2C,. It should be also noted that
an r-regular graph of order (r + 1)g + r exists if and only if  is even. By Theorem
4.6, we have max(¢,r"+V47) < (r — 1)g + (r — 2). We first consider the case r = 4.
Suppose there is a 4-regular graph G of order 5¢ 4+ 4 and ¢(G) = 3¢ + 2. Let S be a
minimum decycling set of G such that |S| = 3¢ + 2. Put F = V(G) — S. Since for
each vertex v € S we have e({v}, F) > 2, e(S,F) > 2(3¢+2). If e(S,F) =2(3¢ + 2)
holds for every minimum decycling set S of G, then S is a 2-regular graph of order
3¢+ 2. In this case G| is either (¢ — 1)C3 U C5 or (¢ — 2)C3 U 2C,.

Let F; be an induced forest of S of order 2¢ + 2. Then F; is also a maximum
induced forest of G and G — F} is a 2-regular graph of order 3¢ + 2. It is clear that
Fy can be obtained from S by removing one vertex on each cycle. Since F} contains
an induced path of at least 3 vertices and there exists a vertex v € F adjacent to
exactly two vertices in the path, we can choose a maximum induced forest F5 of S of
order 2¢ + 2 in such a way that e({v}, F>) = 1. Thus F> U {v} is an induced forest of
G of order 2¢+ 3, this is a contradiction. If (S, F) > 2(3¢+2), then S € G(2,3¢+2)
and S is not regular. Therefore I(G) > I(S) > 2¢+3. A graph (¢—1)K; U H, where
H is a 4-regular graph of order 9 satisfying the condition in Theorem 4.7(5), has the
property that ¢((¢—1)KsUH) = 3(¢— 1) +4 = 3¢+ 1. Thus max(¢p, 4°+*) = 3¢+ 1.

Now suppose r > 6 and let G be an r-regular graph of order n = (r + 1)g+r and
#(G) = (r —1)g+ (r — 2). Let S be a minimum decycling set of G such that |S| =
(r—=1)g+(r—2). Put i = V(G)-S. If e(S, F1) = 2((r — 1)g+(r —2)), then S is an
(r—2)-regular graph of order (r—1)g+(r—2). By induction on r, I(S) > 2¢+3. Since
I(G) > I(S) > 2¢+ 3, we get a contradiction. Thus e(S, F1) > 2(n —2¢ —2). Since r
is even and e({v}, Fy) > 2 for all v € S, there exists v € S such that e({v}, F1) >4 or
there exist two vertices u,v € S such that e({u}, F1) > 3 and e({v}, F1) > 3. Thus
e(S, F1) > 2(r—1)g+2(r —2)+42. On the other hand by counting edges from S to Fi,
we find that e(S, F1) = 2(r —1)g+2(r—2)+2 and F} = (¢+1)K,. Pt Gy = G- F,
and G; = G-y — F;, for 2 <1 < % and F; is a maximum induced forest of G;_;.
If 2 +2 = I(G) = I(G1) = I(Gy) = ... = I(Gzs), then G2 has order 3¢ + 2,

2
maximum degree 2 and not regular. Thus /(G=2) > 2¢ + 3. This is a contradiction.
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Therefore min (7,7 *V947) > 2g+3. A graph (¢—1)K,.UH, where H is an r-regular
graph of order 2r + 1 satisfying the condition in Theorem 4.7(5), has the property
that ¢((¢— 1)K, 1 UH) = (r—1)(¢—1)+(2r+1-5) = (r—1)g+r—3 =n—2q—3.
Therefore max(¢, r"+V4+7) = n — 2¢ — 3.

O

5. Decycling number of cubic graphs

Let R(3?") be the class of cubic graphs of order 2n. As a consequence of the previous

sections we have the following result concerning the class of cubic graphs.
Theorem 5.1 For any integer n > 2, we have

n+1

min(¢, 3) = [ 1, and

my | M if n is even
max(g, 3 )_{ n—1 ifn is odd.

O

Thus, by Theorem 5.1, the range of decycling number can be obtained, namely

(,75(32") ={o(G) : Ge R(32")} = [min(¢, 32”),max(¢,32")].

For each ¢ € ¢(d), let R(d; ¢) denote the subgraph of the graph R(d) induced
by the vertices corresponding to graphs with decycling number ¢. We consider the
problem of determining the structure of induced subgraph R(d; ¢). In general, what
is the structure of R(d; ¢)? In particular, are these graphs connected? If R(d; c)
is connected, it must be possible to generate all realizations of d with decycling
number ¢ by beginning with one such realization and applying a suitable sequence of
switchings producing only graphs with decycling number c. In this section, we prove
that the induced subgraph R(3%"; [%]) is connected.

Let G € R(3%; [*1]) and S be a minimum decycling set of G. The structure
of R(3%"; [*1]), for n = 2,3, can be easily verified. From now on we will consider
when 2n > 8. Put F = V(G) — S. Thus, by counting edges in the graph G, we get
e(S)+e(S,F)+e(F)=3n,2|5| <e(S,F) <3|S| and e(S, F) = 3|S| — 2e(S). Since
|E(Glp)| < |F| -1, 2L —1 > e(F) =3n — 3[%2] 4 ¢(5). The following Lemma
is easily obtained.

Lemma 5.2 Let G € R(3*; ["]) and S be a minimum decycling set of G.
Put F=V(G)—S. Then
(1) e(S) =0, if n is odd and e(S) < 1, if n is even,
(2) if n is odd, then G|p is a tree,
(3) if n is even and e(S) = 1, then G| is a tree,
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(4) if n is even and e(S) =0, then G|p has 2 connected components.
O

Let F(n1,n2,n3) be the class of trees T having n; vertices of degree i, =1,2,3
and A(T) < 3. Thus for any T € F(ny,n2,n3) we have |V(T)| = ny + ny + na,
ny =n3+ 2, and n; > 2.

Lemma 5.3 Let n be an odd integer withn > 5 and N = 3"2—’1 Then there exists
G € R(3*; ™M) with a minimum decycling set S such that G — S € F(ny,nz, n3)
if and only if there exist nonnegative integers n;,i = 1,2,3, ny + ny + nzg = N,
2n, + ny = 3("27“), and ny > 2.

Proof. Suppose there is a cubic graph G of order 2n with ¢(G) = . Then by
Lemma 5.1, there exists a minimum decycling set S such that |S| = "}, e(S) =0,
and G — S is a tree of order N. Put F = V(G) — 5. Since A(G|r) < 3, we

define n;,i = 1,2,3 as the number of vertices of G|p of degree i. It is clear that
ny+mns+mn3 =N, 2n; +ny = "“ and n; > 2.

Conversely, suppose there exist nonnegative integers n;,i = 1,2,3, ny +ns+nz =
N, 2ny +ny = ", and n; > 2. We first consider n; = 2. Thus ny = 35,
ng = 0. Let T is a path of order N with V(T) = F; U F, where F} = {f1, f2} and
Fy ={fs, fa,..., fn} are the sets of vertices of T of degree 1 and of degree 2 of T,
respectively. Let G be a graph with V(G) = V(T)U S, where S = {s1, $2,..., snTJrl},

and E(G) = {s1f1,51f2, 51f3,82f1, 52f2, 524} U By, where

n—>5

2
Ey = U {s3+ifsi45: S3+if3i16, S3+if3i47}
=0
It is clear that G € R(3%"; ") and G — S € F(2,n2,0). Suppose n; > 3. Since
n} =ny; — 1, ny = ny + 2 and nj, = n3z — 1 satisfy the conditions of the theorem, by
induction on ny, there exists G' € R(3?"; “;') and a minimum decycling set .S such
that G' — S € F(n},ny,ny). Let F] ={f € G' = S :de—s(f) =i}, =1,2,3 be the
corresponding vertices in G’ — S of degree i. Since n), > 2, there exists v, w € Fj and
v # w. There exist s1,s2 € S such that vs;, wsy € E(G"). If 51 # s2, then the graph
G = G'7(wvws2) contains a maximum induced forest T with n, vertices of degree 1.
If 51 = s9 and us; ¢ E(G'), there exists s € S — {s;} such that us € E(G'). Thus
G'o(wsiv91) g g graph such that v and w have different neighbors in S. Finally, if
51 = 8y and us; € E(G"), there exists s € S — {s1} such that us € E(G’) and there
exists z € (G' — S) — {u,v,w} such that zs € E(G'). Thus G"(**1:%%) is a graph
such that v and w have different neighbors in S. Thus the proof is complete.
O

Lemma 5.4 Let n be an even integer with n > 4 and N = 37" — 1. Then
there exists G € R(3%™; 5+ 1) with a minimum decycling set S such that G — S €
F(ni1,na,n3) and e(S) = 1 if and only if there exist nonnegative integers n;, i = 1,2,3,

ny+ny+n3=N, 2n1+n2:37"+1, and ny > 2.

Proof. The proof follows from Lemma 5.2 and similar argument in Lemma 5.3. O
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Let n be an even integer with n > 4 and N = 37" — 1. For a set S of cardinality
2+1,agraph G € R(3*"; %+1) with the minimum decycling set S, G is called a cubic
graph of type 0 or Lif e(S) = 0 or (S) = 1, respectively. Let G € R(3*"; 2+1) be of
type 0. Then there exists a decycling set S of G such that |S| =% +1, E(G|s) =0,
and F = G — S is a forest containing two connected components. Thus there exist
f1, fa € V(F) such that dp(f1) < 1, dp(f2) < 1, and fi, f» are not in the same
components of F.. There must also exist s1, $; € S such that s; # s, and s f1, s2f> €
E(G). Thus G°(s1, f1;52, f2) € R(3*"; % + 1) having S a minimum decycling set
and G7(s1, f1; s2, f2) is of type 1. Thus the graphs of two types can be transformed
to each other by a suitable switching.

Lemma 5.5 Let n be an even integer withn > 4 and N = 37" — 1. Then there ex-
ists a cubic graph G of order 2n with minimum decycling set S such that |S| = § +1
and e(S) = 0 if and only if there exists a switching o such that G° € R(3*"; % +1)
with a minimum decycling set S and e(S) = 1.

O

Let n, N,nyi, no, n3 be integers satisfying conditions in Lemma 5.3. Let F(n1, n,
ng) be the class of trees T' having n, vertices of degree 7,7 = 1,2,3 and A(T) < 3.
We first consider in the case when n; = 2. Thus n3 = 0 and F(2,n,,0) contains
the path of N vertices. Let Py be the path fifo--- fx and let Sy = {s1,52,...,5:},
where ¢t = "T“ It is clear that there are cubic graphs obtained by joining 3t edges
from S to vertices in Py and such graphs are not unique. Now we will construct
a cubic graph of order 2n. When N = 4, it is easy to see that there is a unique
cubic graph G4 obtained in this way. That is V(G4) = Sy U V(P,) and E(Gy) =
{31f1751f2751f47S2f1752f3732f4}-

A cubic graph Gz of order 10 can be constructed by taking V(G7;) = S; U
V(P;) and E(G7) = (E(G4) — {safa}) U {s2f7,53f5, s3fs,s3f7}. Thus Gy is a cu-
bic graph of order 10 with ¢(G7) = 3. Similarly the graph Gy can be obtained from
Gr7 by extending the path P; to Pjg, removing the edge s3f; and inserting edges
S3f105 Safs, Safo, Safr0- In general, if ¢ > 4, then N = 3t — 2. We can construct the
cubic graph Gy obtained from G y_3 by extending the path Py_s to Py, removing
the edge s;_1 fnv_3 and inserting edges s;—1 fn, Stfn—2,S¢fn-1,Stfn-

Lemma 5.6 Let G be a cubic graph of order 2n, n is an odd integer, with ¢(G) =
"TH. If G has a path Py as a mazximum induced forest, where N = 3"2—_1, then Gy
can be obtained from G by a finite sequence of switchings o1, 02,...,0 such that for

alli=1,2,... k, G92% 45 a cubic graph with Py as its induced forest.

Proof. It is easy if N = 4. Let G be a cubic graph of order 2n with Py as
its induced forest. Put Py = fifa--- fy and S; = {s1,52,...,5} where t = "FL.
If s;fn & E(G), there are exactly 2 vertices in S which are adjacent to fy and
there are exactly 3 vertices in V(Py) which are adjacent to s;. Thus there exist
s; € S and f; € V(Py) such that s;fy,s.f; € E(G) and s;f; ¢ E(G). The graph
G' = GoUofiifns) has a common edge s;fy with Gy. If s;fxy_1 ¢ E(G"), there
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exists s € Sy such that sfy_; € G!. Put s = s,_;. Since Py is a path and ¢t > 3,
|N(si—1) N N(s;)] < 1. Thus there is a switching which transforms G* to G? such
that G2 has s;fv, s;fy_1 as common edges with Gy. By continuing in this way, we
can transform the graph G by a finite number of switchings o1, 0, ..., 0 to Gy such
that for all i =1,2,...,k, G7'92% is a cubic graph with Py as its induced forest.
O

Lemma 5.7 Let G be a cubic graph of order 2n, n is an odd integer, with ¢(G) =
"TH. If G does not have Py as its mazximum induced forest. Then a cubic graph Gy
can be obtained from G by a finite sequence of switchings 01,09, ...,0; such that for
all i =1,2,...,k, G"77 € R(3™; ") and G777 = Gy.

Proof. In the proof of Lemma 5.3 and Lemma 5.6 a sequence of suitable switch-
ings can be obtained in order to transform G into Gy.
O

Similar arguments can be made to obtain the same result for cubic graphs of
order 2n and n is even.

Combining the results in this section, we have the following theorem.

Theorem 5.8 The induced subgraph R(3*"; ["$1]) is connected.
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