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Abstract

A variation of the notion of the usual difference sets known as a “dif-
ference cover” is given and many constructions and nonexistence results
are presented. The subtle difference in the new definition leads to very
different results, although techniques employed mirror those used to in-
vestigate difference sets.

1 Introduction

Let G be any finite abelian group of order v. Let D = (1, za, ...... , @) be a multi-
set/list of elements from G (not neccessarily distinct elements). A difference of these
elements is called nontrivial if and only if it is of the form x; —x;, for i # j, otherwise
trivial. In particular the element 0 occurs exactly %k times as a trivial difference but
it can also be a nontrivial difference, if some of the elements of D are equal. With
this convention we give the following definition:

Definition 1.1 A multiset D = (x1,xa, ...... ,xy) 15 called a difference cover with pa-
rameters (v, k, \) if and only if every element z € G (including the identity element)
appears ezactly X times as a nontrivial difference i.e. z = x; — x;, (for i # j) of
elements of D.

The above notion of difference covers differs from that of difference sets or differ-
ence lists in the requirement that the nontrivial differences cover all the non identity
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elements of G constant number of times in the difference sets or difference lists but
in difference covers they cover all elements of G including identity constant num-
ber of times. (See (Beth, Jungnickel et al [3]) for difference sets and Arasu and
Ray-Chaudhuri [1] for difference lists).

Definition 1.2 If the group G is cyclic then we call the difference cover a cyclic
difference cover.

In the literature difference covers have been studied in a more general context,
where the list of differences is simply required to cover all elements of G (not nec-
essarily with constant number of times) e.g. See, ([7],[21].[9], [13], [10], [8], [14]). In
these papers the main object was to find minimal size k covering all of G as a list of
differences.

While our work is motivated by paper of (T. Bier [4]), in which the regularity
condition was introduced (i.e. the parameter \ was introduced), we were pleasantly
surprised when we came across the work of Buratti [5] in which he has introduced
the notion of a ‘difference multiset.” This concept coincides with what we call here
‘difference cover.” We wish to promote our nomenclature. Our reasons are two-
fold: (1) The words ‘multiset’ and ‘list’ are synonyms; hence the phrase ‘difference
multiset’ seems to bear the same meaning as the phrase ‘difference list.” But the
latter phrase has an altogether different connotation, in the area of algebraic design
theory. (2) The phrase ‘difference cover’ has been used by many authors earlier
and the ‘regularity’ condition forcing the ‘lambda’ parameter as constant, naturally
justifies our adopted terminology.

As discussed in Buratti [5], ‘difference covers’ and their ‘family’ analogs (so-called
strong difference families) have applications in the construction of balanced incom-
plete block designs (BIBD’s) and group divisible designs (GDD’s). We also wish to
mention, in passing, that some of our regular difference covers give rise to certain
class of self-dual codes over ‘small’ prime fields and some classes of ‘integer weighing
matrices.” Thus, in addition to their interesting and rich mathematical properties,
"difference covers’ have immediate applications to related areas in discrete mathe-
matics. The overlap of our results with those of Buratti [5] is very minimal. Buratti’s
methods are completely combinatorial, but we adhere to the use of group rings, char-
acter theory, and representaion theory. On the surface, it may appear that our results
follow directly from established results from the theory of difference sets; but there is
a lot of ‘subtlity’ involved here - the slight change in the definition (from ‘difference
set’ to 'difference cover’) makes the construction methods and nonexistence results
behave very differently in these two ‘related’ areas of study. We reiterate: although
we utilize tools from the theory of difference sets, the end results are very different.

In this paper we give some new constructions of difference covers and prove several
non-existence theorems. Our approach is using group rings and characters as in the
theory of abelian difference sets. Most of our non-existence proofs ‘mimic’ those of
difference sets. Difference covers can be studied for any finite groups but we restrict
our discussions to abelian groups. Some of our results carry over to non-abelian
groups as well.
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The following Theorems are due to Bier ( [4])

Theorem 1.3 For each positive integer m, there exits a difference cover with pa-
rameters (m(m + 1), m? m(m — 1)) in an abelian group.

Theorem 1.4 If there exits a cyclic (v, k,2) difference cover, then (v, k) = (3,3) or
(6,4).

Remark: The construction of Theorem 1.3 is straightforward, but the proof of
Theorem 1.4 is quite complicated.

We now give an example of a difference list which is not a difference cover. Take,
for instance G = Z; =< g > and D = 2+ g+ ¢> + ¢*. It is easy to check that D is
a difference list, but not a difference cover.

2 Preliminaries

Let R be a commutative ring with unity 1 and G a group. We let RG denote the
group ring of G over R. We identify each subset S of G with the group ring element
Yeest. For A = ¥,cqa,9 € RG and any integer t, we define AV = ¥ ;a.9".
With these notations “the difference cover” condition for a multiset D of G becomes

DDV = ke + \G (1)

in ZG. Let G be a finite abelian group of exponent m. A character x of G is a
homomorphism of G into the multiplicative group of complex mth roots of unity. It
is well known that the characters of G form a group G* (called the character group of
G) that is isomorphic to G. The identity element of G* is the principal character xq
that maps each element of G to 1. The characters of G can be extended by linearity

to the group ring Z[G]
(X ) = 3 aax(a).
zeCG zeG
Thus each character of G yields a ring homomorphism from Z[G] into the ring of
algebraic integers in the cyclotomic field obtained by adjoining a primitive mth root
of unity to the field @ of rational numbers. We let (,, denote the complex mth root
of unity e**/m,
It is easy to show that D is a (v, k, A) difference cover if and only if

B=k+Xv if x = xo

or={ | o @

Proposition 2.1 If D is a (v, k, \) difference cover in an abelian group then k(k —
1) =

Proof Apply xo to both sides of equation ( 1) above.
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Proposition 2.2 Let D be a (v, k, \) difference cover in an abelian group G. Let N
be any subgroup of G of order n. Let o : G — G /N be the canonical homomorphism.
Then o(D) is a (v/n, k, n) difference cover in G/N.

Proof Apply o to both sides of equation ( 1).

The following is a Bruck-Ryser-Chowla type theorem for difference covers. It
follows from adapting the proof of Theorem 2.1 in Lander [16], for example.

Theorem 2.3 (Bruck-Ryser-Chowla) Let D be a (v,k,\) difference cover in an
abelian group G.

1. Ifv is even then k is a perfect square.

2. If v is odd then there exist integers x,vy,z not all zero such that 2* = ky* +
(—1)D/2)2,

Remarks:
e Part 1 of Theorem 2.3 follows from equation (1) by applying a character of
order 2.

e Part 2 is essentially contained in Hall and Ryser [11].

Let G be an abelian group of order v and N any subgroup of order n. Let G/N =
{No, N1, ... ,Nm—1} be all the cosets of N in G, where m = v/n. For any subset S
of G define s; = |SN N;| for i =0,1,...,m — 1. The numbers (s, s1,...... , Sm—1) are
called the intersection numbers of S relative to V.

Proposition 2.4 Let D be a difference cover with parameters (v, k,\) in an abelian
group G of order v. Suppose H is any normal subgroup of G of order n and index
m. Let Hy, Ho, ...... , Hy be all the distinct cosets of H in G. Let s; = |D N H;| then
Ss;=kand Y s? =k+ \H|.

Proof Let D = (ay,as, ...... , ar) where all a; need not be distinct. Let 0 : G - G/H
be the natural homomorphism. Let o(D) = ¥ s,9; where all g;’s are distinct elements
in the quotient group G/H. Then obviously Y s; = k since D has size k. Also
0(D).o(D)™! = ke + A|H|G/H. Now comparing the coefficients of identity in G/H
we get Y82 =k + A\ H]|

Corollary 2.5 If we take H = {e} then we get the following result. If D =3 s;9;
with all g;’s distinct then Y. s; = k and Y 5% = k + A.

Corollary 2.6 Let D be a (v,k,\) difference cover in an abelian group G, then A
must be even.

Proof From Corollary 2.5 we get [s? — s;] = A and so A is even.

Let p be a prime and w be an integer. Write w = p*w’ where s > 0 and w' is
co-prime to p. Then p is said to be self conjugate modulo w if there is an interger r
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such that p” = —1 (mod w'). An integer m is said to be self conjugate modulo w if
all its prime divisors are. Self conjugacy is important because complex conjugation
fixes all the ideals dividing the ideal (m) in the ring of integers of the cyclotomic field
Q(¢y) if and only if m is self conjugate modulo w. This allows us to infer divisibility
information about the algebraic integer x(D) given similar information about the

algebraic integer x(D)x(D).

The following is similar to Lemma 1.2 of Arasu and Sehgal [2].

Proposition 2.7 Let D be a (v, k, \) difference cover in an abelian group G. Assume
there exists a prime p such that

1. p*"|k for some positive integer v, and
2. p is self conjugate modulo exponent of G

Then x(D) =0 (mod p") for all nonprincipal characters of G.

3 New Constructions

Proposition 3.1 There exists a difference cover with parameters (m(m — 1), m?,
m(m + 1)) in any abelian group of order m(m — 1).

Proof Let D = me + G. We assert that D is a difference cover with the required
parameters. We prove this statement using characters.

1. If x is a non principal character of G, then x(D) =m

2. If yy is the principal character then xo(D) = m +m? — m = m?.

The following is a different construction of a difference cover with the same pa-
rameters as in Proposition 3.1, when m is odd.

Proposition 3.2 Let G be an abelian group of order m(m — 1) with m odd, then
there exists a difference cover with parameters (m(m—1),m?*, m(m+1)) namely: Let
P be a subgroup of G of order m, H a subgroup of G of order m—1, K a subgroup of
H of order 2. Let K be generated by the involution k, then D = me+2Pk+P(H—K)
s a difference cover with the above parameters.

Proof If x is the principal character of G then x(D) = size of D = m?. For y a
non-principal character of G, the following cases arise:

1. x|P is non principal. Then x(D) =m
2. x|P is principal.

(a) If x|K is non principal then x(k) = —1,x(H) = 0, x(K) = 0so x(D) =
m—2m = —m



218 K. T. ARASU AND SURINDER SEHGAL

(b) x|K is principal. Then x cannot be principal on H. (For otherwise, x
will be principal on G). Hence x(D) = m + 2m + m(0 — 2) = m.

Proposition 3.3 Let E be a (v, k,\) difference set in an abelian group G. Suppose
k — X divides k. Let a = 2. Then D = aE is a (v,ak,a®)\) difference cover in G.

[y
Proof
DDV = G*EE7!
= aZ[(k — A+ A\G]
= a*[k/a+ \G]
= ak+ \a®’G

Since xo(D) = ak, the result follows.

Corollary 3.4 Let E be any (4t —1,2t,t) difference set in an abelian group G, then
D = 2F is a difference cover in G with parameters (4t — 1,4¢,4t).

Proof Follows immediately from Proposition 3.3.

Remarks: Corollary 3.4 provides many examples of difference covers since the re-
quired difference sets with Paley parameters (4¢ — 1, 2¢,¢) exist in abundance e.g. see
Beth et al. [3].

Proposition 3.5 If p" is congruent to 3 mod 4 and D is a skew Hadamard difference
set with parameters (p™, (p™ —1)/2, (p" — 3)/4) then E = 142D is a difference cover
with parameters (p™, p™, p" — 1)

Note: D is a skew Hadamard means D + D" + 1 = G in Z[G].

Proof

(1+2D)(1+2D)™" = 1+2(D+D")+4DD™"
14+2(G - 1) +4{(p" +1)/2 + (p" - 3)/4G]
= p"+Gp"-1).

Since xo(E) = 14 2x0(D) = p", the result follows.

Remark: The above construction works only for Skew Hadmard Payley difference
sets; as we can see from its proof, D must satisfy D + D(-) = G — 1. These have
been classified by Camion and Mann [6].

Remark: If D is a Payley difference set with parameters (p", (p" —1)/2, (p" — 3)/4)
with p" is congruent to 3 mod 4 then E = (a + bD) is a difference cover ifand only
ifa=1and b=2.
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Proof

EED

(a +bD)(a+ bD=Y)
a® +ab(G = 1)+ 0*[(p" + 1)/4 + (1" — 3)/4)G]

E is a difference cover if and only if EECY = (a + b(£52)) + uG for some integer
. Now compare the above two expressions of EE(~Y and obtain:

a+b(p" —1)/2=a’—ab+b*(p" +1)/4
a—0/2+p"(b/2—b*/4) =a® —ab+b*/4 = (a — b/2)*.

b b b
x2—a::p"(§—z), Wherew:a—§
1. If b = 1 then we get
111,

da—2+p" =4a®> —4da+1
p" =4a* —8a+3 = (2a —1)(2a — 3)
=>2a—3=1=a=2andb=1

22Ifb>2thena? —2<0=2(r-1)<0=0<z<1=0<a-2<1=

0
2a—b=¢1
2

If 2a — b =0, we get © = 0 and hence g = % showing b = 2 and hence a = 1.
If 2a — b = 1 the equation p*(% — %) = Z1p"(2b — b?) = —1, a contradiction . If

2a — b =2, then z = 1 and hence & = ¥ showing b = 0 and a = 1 (on b = 2 and
a=0).

Theorem 3.6 Let p" be any prime power congruent to 1 mod 4, then there exists a
difference cover with parameters (p™,p™,p™ — 1)

Proof Let E(resp. E' ) be the set of all nonzero squares (resp. nonsquares) in
the finite field of order p". Let D = 1+ 2FE, then we assert that D is a difference
cover with parameters (p", p", p" — 1). We know that E is a partial difference set (for
more on partial difference sets, see Ma [17]) with parameters (p*, (p" — 1)/2, (p" —
5)/4,(p" — 1)/4) and E = E=Y. So
DDV = 1+44E’+4E

= 1Al ~ /24 (" 5/ + (0"~ D/4)E ]+ 4B

= 1+4[(p" - 1)/2+ (0" - D/4E + ((p" — 1)/4)E]

= 1+2(p" - 1)+ (p" - 1)[E+E]

= 2" =241+ (" ~DE+E]=p"+ (" - 1)G
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Remark: If p is a prime congruent to 1 mod 4 and D is any difference cover with
parameters (p,p,p — 1) then D must be as in the above construction. We use the
following well-known result to prove this remark.

Result 3.7 (Ireland, Rosen [12], Chapter 6) Let p be a prime and A € X[H] be an
element in the integral group ring over the cyclic group H =< h > of order p. Then
X(A)x(A) = p for all complex characters x # xo if and only if there exists a suitable
translate Ag of A with
p—1
7. .
Ag=zH+ > ()1

=0
for some integer x. The integer x can be determined from the principal character
value xo(A) (we have xo(A) = xp). (Here (L) is the so called Legendre symbol: It

K
P
is 0, 1 or —1 depending on whetheri is 0, a square or a non-square modulo p.)

Theorem 3.8 If p is a prime, p = 1 mod 4 and D is any-difference cover with
parameters (p,p,p — 1), then D must be equal to 1 4+ 2E where E is the set of all
quadratic residues mod p. (See constructions as in Theorem 3.6)

Proof Let D = Y2} s,g'; then
p—1
Z $i =P
i=0
DDV =p+ (p-1)G

X(DDTY) =p ¥ x # xo
so by result 3.7, we see that

T when i = 0
s;=< z+1 when (fg) =1 (3)
z—1 when (;):—1

Thus = + (551)(z — 1) + (52)(w + 1) = X.0-g s; = p showing 2 = 1 and D = 1+ 2E
as asserted.

Lemma 3.9 If D is a (v, k, \) difference cover in an abelian group G and E = G—D
1s a difference cover in G then v = 2k.

Proof
EE®Y = (G - D)(G = DY) =0G — 2kG + k + \G (4)

By definition of difference cover,
EECY = (v — k) + \G (5)

Compare (4) and (5) to get the result.
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4 Nonexistence Results

Theorem 4.1 Suppose that there exists a (v, k,\) difference cover D in an abelian
group G. Assume that p*|k for some prime p. If plv and if the sylow p-subgroup of
G is cyclic, then p|A.

Proof Suppose that p|v and let S be the sylow p-subgroup of G of order p®, write
G = ST for some subgroup T of G. By Proposition 2.2, E = D, the image of D
under o : G — G/T is the canonical homomorphism, is a (p*, k,v/p*\) difference
cover in S. Since p is self conjugate modulo |S|, by Proposition 3.4, it follows that
X(E) = 0 (mod p), (since p*|k) for all nonprincipal characters x of S. So by Ma’s
Lemma, E = ps+ < g > y, where o(g) = p, g € S and z, y € ZS. Therefore
E(1 —g) =0 (mod p). Thus the coefficients of E satisfy:

api = apig' (mod p) foralli =0,...,p—1& j=0,1,...p* — 1 (6)
where E = Z?io apshi, S = (h). We have
S ap=kand Y ay; =k+ (v/p*)A (7)
J J
Use of (6) and (7) imply that p | p%/\ and hence p | \.

Proposition 4.2 If there e:vz'sts a (m,m,m — 1) difference cover in a cyclic group

of odd order m, then (M) =1 for all primes p.

Proof In view of Theorem 4.1, we can assume that m is squarefree, now we apply
Bruck-Ryser theorem to conclude that there exist integers x,y, z, not all zero, such
that

232 _ my2 + (_1) (m2—1)

(m —1)z* (8)
Now let p be any prime dividing m, we can assume without loss of generality,
that P not divides x (and hence p not divides z). So, (8) when read modulo p, gives

(M) = 1,as desired.
Remarks: Proposition 4.2 also holds in general abelian groups, if we assume that

for the prime p in question, the Sylow p-subgroup is cyclic.
Application: (21,21,20) difference covers do not exist.

(m—
Proof Follows from Proposition 4.2, by taking p = 3, since ((71) 23
—1.

Corollary 4.3 Cyclic difference covers with parameters (m?(m £ 1),m?,m ¥ 1) do
not exist.

Proof Immediate from Theorem 4.1.
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Corollary 4.4 (m?,m?* m? — 1) difference covers do not exist.
Proof Follows from Theorem 4.1.

Corollary 4.5 (m,mQ,t(m — 1)) cyclic difference covers do not exist for all t
dividing (m + 1).

Proof Follows from Theorem 4.1.

Remarks: Corollary 4.5 shows that the cyclic difference covers (m(m+1), m?, m(m—
1)), in Theorem 1.3, do not extend to parameters as given in corollary 4.5.

The following result is a straight forward generalitation of the so-called Mann’s
test (See Jungnickel and Pott [15]), for instance,

Theorem 4.6 (Jungnickel and Pott) Let D be a (v, k, X)-difference cover withv > k
in G. Furthermore, let uw # 1 be a divisor of v, let U be a normal subgroup of indezx u
of G, put H= G/U and assume that H is abelian and has exponent u*. Finally, let
p be a prime not dividing u* and assume that tp! = —1 mod u* for some numerical
G/U-multiplier t of D and a suitable non-negative integer f. Then the following
hold:

1. p does not divide the square-free part of k, say p* || k (where j > 0);
2. pP <w/u.

Application: (105,21,4) difference covers do not exist.

Proof Takep=3,|U| =15,H = Z;,u* =7,t =1, f = 3 in Theorem 4.6.

We finally wish to mention that Schmidt’s results in his recent work([18], [19])
(also see Chapter 6 of [3]), carry over to difference covers in a very straightforward
manner.

References

[1] K.T. Arasu and D.K. Ray-Chaudhuri, Multiplier theorem for a difference list,
Ars Combin. 22 (1986), 119-137.

[2] K.T. Arasu and S.K. Sehgal, Difference sets in abelian groups of p-rank two,
Designs, Codes Crypt. 5 (1995), 5-12.

[3] T. Beth, D. Jungnickel and H. Lenz, Design theory (2nd edition), Cambrige
University Press (1999).

[4] T. Bier(Personal Communication)

[6] M. Buratti, Old and new designs via difference multisets and strong difference
families, J. Combin. Des. 7 (1999), 406-425.



CYCLIC DIFFERENCE COVERS 223

[6] P. Camion and H.B. Mann, Antisymmetric difference sets, J. Number Th. 4
(1972), 266-268.

[7] C.J. Colbourn and A.C.H. Ling, Quorums from difference covers, Inform. Pro-
cess. Lett. 75 (2000), 9-12.

[8] D. Connolly, Integer difference covers which are not k-sum covers, for k = 6, 7,
Proc. Cambridge Philos. Soc. 74 (1973), 17-28.

[9] D.M. Connolly and J.H. Williamson, Difference-covers that are not k-sum-covers
II, Proc. Cambridge Philos. Soc. 75 (1974), 63-73.

[10] J.A. Haight, Difference covers which have small k-sums for any k, Mathematika
20 (1973), 109-118.

[11] M. Hall and H.J. Ryser, Cyclic Incidence Matrices, Canadian J. Math. 3 (1951),
495-502.

[12] K. Ireland and M. Rosen, “A Classical Introduction to Modern Number The-
ory”, Springer, New York (1982).

[13] T.H. Jackson and F. Rehman, Note on difference-covers that are not k-sum-
covers, Mathematika 21 (1974), 107-109.

[14] T.H. Jackson, J.H. Williamson and D.R. Woodall, Difference-covers that are
not k-sum-covers I, Proc. Cambridge Philos. Soc. 72 (1972), 425-438.

[15] D. Jungnickel and A. Pott, Two results on difference sets, Coll. Math. Soc. Janos
Bolyai 52 (1988), 325-330.

[16] E.S. Lander, Symmetric Designs: An algebraic approach, Cambridge University
Press, Cambridge, 1983.

[17] S.L. Ma, Polynomial addition sets, Ph.D. Thesis, University of Hong Kong,
1985.

[18] B.Schmidt, Cyclotomic integers of prescribed absolute value and the class group,
J. Number Theory 72 (1998), 269-281.

[19] B. Schmidt, Cyclotomic intergers and finite geometry, J. Amer. Math. Soc. 12
(1999), 929-952.

[20] R.J. Turyn, Character sums and difference sets, Pacific J.Math. 15 (1965), 319—
346.

[21] D. Wiedemann, Cyclic difference covers through 133, Proc. Twenty-third South-
eastern Internat. Conf. Combinatorics, Graph Theory, and Computing (Boca
Raton, FL, 1992). Congr. Numerantium 90 (1992), 181-185.

(Received 28 Sep 2003; revised 23 Apr 2004)



