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Abstract

The Steiner system ¥ = S(12,6,5) admits a unique lax projective embed-
ding f in PG(V), V = V(6,3). The embedding f induces a full projective
embedding e of the dual A of ¥ in the dual PG(V*) of PG(V'). The affine
expansion Af,(A) of A to AG(V™) (also called linear representation of A
in AG(V™)) is a flag-transitive geometry with diagram and orders as fol-

lows:
0 Af 1 AfT c* 3 4 5
2 3 2 1 1 1

Its collinearity graph is the minimal distance graph of the 6-dimensional
ternary Golay code. We shall prove that Af,(A) is the unique flag-
transitive geometry with diagrams and orders as above. The {0,1,2,3,4}-
residues of Af,(A) can also be obtained as affine expansions from the dual
of S(11,5,4) and are related to the 5-dimensional ternary Golay code.
We shall characterize them too by their diagram and orders. Finally, the
{0,1,2,3}-residues of Af,(A) are isomorphic to the affine expansion of
the dual of the classical inversive plane of order 3. A characterization
will also be given for these expansions, in the same style as for Af,(A).

1 Introduction and main results

In this paper we consider geometries belonging to the following diagram of rank
n + 3 > 4, where the integers 0,1, ...,n 4+ 2 are the types, ¢ — 1,¢,¢ — 1,1,...,1 are
finite orders, the labels Af and Af* stands for the class of affine planes and the class
of dual affine planes and ¢* denotes the class of dual circular spaces:

0 Af 1 AfT o c* n+1 n+2

Y ™y Py PP Y °

3
q—1 q q—1 1 1 1

(Af.Af*.c)
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(We follow [18] for the definition of geometry; in particular, all geometries are resid-
ually connected, by definition.) If ' is a geometry for the above diagram, then the
residues of the 0O-elements of I' are dually isomorphic to n-point extensions of dual
affine planes. We recall that 1-point extensions of affine planes are called inversive
planes. It is well known that an affine plane of order ¢ > 3 does not admit any
n-point extension for n > 2 (see [18, Theorem 7.24]). AG(2,13) is the unique affine
plane of order ¢ > 3 that might possibly admit a 2-point extension [18, Theorem
7.24], but no such extension has been discovered so far. Anyhow, that extension,
if it existed, would not be flag-transitive (Delandtsheer [10]; see also [11]). The
affine plane AG(2,3) of order 3 admits no n-point extension for n > 3, but it ad-
mits a unique 3-point extension and a unique 2-point extension, namely the Steiner
systems S(12,6,5) and S(11,5,4) for Mis and My respectively. Finally, AG(2,2)
admits an n-point extension for any n, obtained as a truncation from the (n + 2)-
dimensional symplex. Thus, the following are the only possibilities for Af.Af*.c*™ if
flag-transitivity is assumed:

A Af* c*
(Af.Af*c) o fg A :
qg-1 q qg-1 1
Af 1+ AfT o3 4
AfAf .C?) e . : 3 s
(Af.Af ) 2 3 2 1 1
Af 1+ AfT o3 4 5
AfAf ) e . A : : 5
(Af.A1 ) 2 3 2 1 1 1
(C.C*(n-o-l)) 0 ¢ L ¢ 2 3 el 2
1 2 1 1 1 1
A *
(Note that I;fﬁ = IL% and IC—T = I—I)

The geometries belonging to diagram c.c*"*Y with orders 1,2,1,...,1 have been
classified by Ceccherini and Pasini [5, Theorem 3.5] (see also Huybrechts and Pasini
[16]): all of them are homomorphic images of truncated Coxeter complexes. So, we
will assume ¢ > 2 in this paper.

Geometries for Af.Af*.c* can be obtained as follows. Given an ovoid O of PG(V),
V = V(4,q), let Z = Z(O) be the inversive plane of points and secant planes of
O, but regarded as a 3-dimensional matroid with the secant lines of O as lines.
By applying a correlation of PG(V) (a polarity, for instance), we obtain a (full)
projective embedding e : 7% — PG(V*) of the dual Z* of 7 in the dual PG(V*) of
PG(V). The affine expansion Af,(Z*) of T* by e is the geometry of rank 4 defined
as follows (see Subsection 2.1):

Take {0,1,2,3} as the set of types. The 0-elements of Af,(Z*) are the points of
AG(4,q). For 1 <4 < 3 and an i-dimensional affine subspace X of AG(4,q), let X*°
be the point, line or plane at infinity of X (according to whether i is 1, 2 or 3). We
take X as an i-element of Af,(Z*) if and only if X*° is an element of the image e(Z*)
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of Z*. The incidence relation of Af,(Z*) is inherited from AG(4,q).

Af,(Z*) is a residually connected geometry belonging to diagram Af.Af*.c*.
Clearly, Af,(Z*) is flag-transitive if and only if 7 is flag-transitive. It is well known
that Z = Z(O) is flag-transitive if and only if O is classical (see Delandtsheer [11];
also [9]). Suppose that O is classical (which is always the case when ¢ is odd).
Then the stabilizer Go = PI'O~(4,q) of O in PI'L(4,q) induces on Z its full auto-
morphism group. Accordingly, denoted by T' the translation group of AG(4,q), we
have Aut(Af,(Z*)) = T:TO~(4,q) (< AT'L(4, q); the symbol : stands for split exten-
sion, as in [6]). Moreover, every flag-transitive subgroup of Aut(Af,(Z*)) contains
T:S07(4,q) (Delandtsheer [11]).

We recall that if Z is classical then, up to automorphisms of PG(V), Z admits a
unique embedding as Z(O) in PG(V') with O a classical ovoid. Accordingly, the em-
bedding e : Z* — PG(V*) is uniquely determined up to automorphisms of PG(V*).
We call it the natural embedding of Z*.

As shown by Coxeter [7], the Steiner systems ¥; := S(11,5,4) and X, :=
5(12,6,5) also admit embeddings in PG(V;) and PG(V3) respectively, where V; :=
V(5,3) and V, := V(6,3) (see Section 2 for more details). These embeddings are
uniquely determined up to automorphisms of PG(V;) and PG(V2) (Theorem 2.2).
We call them the natural embeddings of ¥ and 3.

For i = 1,2, let f; : ¥; — PG(V;) be the natural embedding of ¥; and A; be
the dual of ¥;. By composing f; with a correlation of PG(V;) we obtain a projective
embedding e; : A; — PG(V;*), which we call the natural embeding of A;. We can
define the affine expansion Af,,(A;) of A; by e; in the same way as we have done
for Af,(Z*). Thus, we obtain flag-transitive geometries of rank 4 and 5, belonging to
the diagrams Af. Af*.c*? and Af.Af*.c*® and with orders 2,3,2,1,1and 2,3,2,1,1,1
respectively. Their automorphism groups are as follows:

Aut(Af,, (A1) = 3%(2 x Myy),  Aut(Af,,(Ag)) = 3%(2 My,).

(The symbol ' stands for non-split extension, as in [6].) Aut(Af,,(A,)) is the full
automorphism group of the 6-dimensional ternary Golay code Cg(3) (see Section 2
for more details). Clearly, the translation subgroup T' of AG(6,3) is the maximal
normal 3-subgroup of Aut(Af,,(A,)). Its elements may be regarded as the words of
Cs(3). The parallelism relation of AG(6,3) induces an equivalence relation on the set
of 1-elements of Af,,(A,). The words of Cg(3) of weight 6 correspond to the elements
of T that elementwise stabilize a parallel class of 1-elements of Af,,(A,).

We are now ready to state our main theorem. For the sake of uniformity, we
denote by X, the inversive plane of order 3 arising from a quadric of PG(V;), where
Vo = V(4,3). The dual of Xy will be denoted by Ag and eq is the natural embedding
of Ag in PG(Vf).

THEOREM 1 (1) Let T be a flag-transitive geometry belonging to diagram
Af.Af*.c* with orders 2,3,2,1. Then T = Af, (Ag), where Ag and eq are as above.
(2) Let T be a flag-transitive geometry belonging to diagram Af.Af*.c*® with orders
2,3,2,1,1. Then I’ = Af, (A;) where Ay is the dual of 1 = S(11,5,4) and e; is the

natural embedding of A;.
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(3) Let T be a flag-transitive geometry belonging to diagram Af.Af*.c*® with orders
2,3,2,1,1,1. ThenT = Af, (A,) where Ay is the dual of £y = S(12,6,5) and ey is
the natural embedding of A,.

Theorem 1 will be proved in Section 5. In Section 2 we shall discuss the natu-
ral embeddings of X;, A;, ¥y and A,. Section 3 contains a survey of examples
and properties of Af.Af*-geometries, to be used in Section 4, where we will study
Af.Af*.c*-geometries, eventually focusing on the flag-transitive case. Claim (1) of
Theorem 1 will be obtained as a corollary from the final theorem of Section 4. The
results of Section 4 may be regarded as contributions to a possible proof of the
following conjecture:

Conjecture 1 Every flag-transitive Af.Af*.c*-geometry is the affine expansion of
the dual of a classical inversive plane by its natural projective embedding.

For the sake of completeness, we also mention the following theorem, proved in [20],
where a two-sided extension of the Af.Af*-diagram is considered.

THEOREM 2 No flag-transitive geometry exists with diagram and orders as fol-
lows:

c 1 Af o Af" 3 c*
2 3 2

— @O
—

The next is plausible:

Conjecture 2 No flag-transitive geometry exists with diagram as follows, where ¢ >
2:

The restriction g > 2 is essential in the above conjecture. Indeed, there exists at
least one flag-transitive geometry for the above diagram with ¢ = 2. It is obtained
by truncating a Coxeter complex of type Eg.

2 Embeddings of S(11,5,4) and S(12,6,5) and their duals

2.1 Preliminaries

Embeddings and affine expansion have already been mentioned in Section 1, but
we shall fix these notions more formally here. A general theory of embeddings and
expansions is developed in [19], but we do not need it in this paper. The definitions
we shall state are special cases of those of [19].

Let ¥ be a geometry belonging to a string diagram of rank n, with the integers
0,1,...,mn — 1 as types, labelling the nodes of the diagram in increasing order from
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left to right, as usual. To make things easier, we also assume that ¥ satisfies the
Intersection Property IP (see [18, Chapter 6]). We denote the set of 0-elements of
Y by P and, for an element x of ¥, we denote by P(z) the set of 0-elements of X
incident to x.

For a vector space V, let f : P — PG(V) be an injective mapping from P to the
set of points of the projective geometry PG(V') of linear subspaces of V' such that
f(P) spans PG(V). For an element & of ¥ of type t(z) > 0, let f(z) := (f(P(z)))
be the span of f(P(z)) in PG(V). In this way, f is extended to a mapping from the
whole of ¥ to the set of subspaces of PG(V'). Assume the following:

(E1) f(z) is a line for every 1-element x of T’;

(E2) for p € P and an element z of ¥ of type t(z) > 0, we have f(p) € f(z) only if
p € P(z).

Then we call f a projective embedding of ¥. Note that when ¢(z) = 1 the set f(P(z))
might not be a line of PG(V) (even if it spans a line, by (E1)). That is, f(P(z))
might be properly contained in f(z) = (f(P(x))). If f(P(z)) = f(z) for every 1-
element = of I" then we say that the embedding f is full. Following Van Maldeghem
[22], if f is non-full then we say it is laz. Property (E2) on f and IP on ¥ imply the
following:

(E3) For any two elements z,y of ¥ of type t(z), t(y) > 0, we have f(z) C f(y) if and
only if z and y are incident in ¥ and #(z) < #(y). In particular, f(z) = f(y)
only if z = y.

Affine expansions. The affine expansion Afy(X) of £ by f is defined as follows:
Take {0,1,...,n} as type-set for Af;(X). The 0-elements of Af;(X) are the points of
the affine geometry AG(V). Regarding PG(V') as the geometry at infinity of AG(V),
the 1-elements of Afy(X) are the lines L of AG(V') with point at infinity L® € e(P).
For i > 1, the i-elements of Af;(X) are the affine subspaces X of AG(V') with space at
infinity X* = f(z) for an (¢—1)-element = of £. The incidence relation is the natural
one, namely inclusion. The structure Afy(X) is indeed a geometry (in particular, it is
residually connected [19]) and the residues of its 0-elements are isomorphic to X. In
view of (E1), the lower residues of the 2-elements of Afy(X) are nets. In particular,
when f is full those residues are affine planes.

Remark. A number of authors (as De Clerck and Van Maldeghem [8], for instance)
call affine expansions linear representations.

Isomorphisms of embeddings. Given two embeddings f : ¥ — PG(V) and
g:X = PGW),if g = hf for an isomorphism h from PG(V) to PG(W) then we
say that f and g are isomorphic and we write f = ¢g. Given a class C of projective
embeddings of X, if f = g for any two embeddings f,g € C, then we say that C
contains a unique embedding. (This is a linguistic abuse, but it is harmless.)
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2.2 The natural projective embeddings of S(11,5,4) and S(12,6,5) and
their duals

For i =0,1,2, let ¥; be the Steiner system S(10 +¢,4+14,3 + 1), regarded as (3 +1)-
dimensional matroid. So, ¥y is the unique inversive plane of order 3, ¥; is the Steiner
system for Mi; and ¥, that for Mi,. We take {0, 1,2}, {0,1,2,3} and {0,1,2,3,4}
as sets of types for Yo, ¥; and Xs:

Af

0 1 2

E [ @ ®
(o) : s :
0 1 c 2 Af 3

E [ @ @ ®
(%) 1 1 2 3
=) 5 . A W
2 1 1 1 2 3

For i =0, 1,2, we denote by A; the dual of ¥;. Namely, 4A; is the same thing as %;,
except that types are permuted as follows:

2 ¢ 1 Af o 3 2 c 1 Af o
e e e, [ . . .,
1 2 3 1 1 2 3
; ; 2o Ay
1 1 1 2 3

The above diagrams are usually drawn as follows:
g Ay < 1 g AL @ s ;
3 2 1 3 2 1 1
g A @ s : ]
3 2 1 1 1

As recalled in the introduction of this paper, £y admits a lax embedding in PG(3, 3).
As shown by Coxeter [7], the Steiner systems X; and ¥, also admit lax embeddings
in PG(4,3) and PG(5, 3) respectively. We shall describe these embeddings here. In
view of this, we need to recall some properties of the 6-dimensional ternary Golay
code Cq(3) and its dual C§(3). We refer to [6, page 31] (also [3, 11.3]) for a description
of Cg(3). We warn that Cg(3) is called ‘extended ternary Golay code’ in [3], but simply
‘ternary Golay code’ in [6]. In this paper we follow [6].

We recall that the code C' := Cy(3), regarded as a linear subspace of V = V/(12,3),
is 6-dimensional and the non-zero vectors of C have weight 6, 9 and 12 with respect
to B. (We recall that the weight of a vector v = (\;)%; of V(n,¢) is the number of
entries \; # 0 and the set S(v) := {i € {1,2,...,n}|\; # 0} is called the support of
v.) For every i = 1,2,...,12, let C; be the set of vectors v € C with i € S(v). It is
well known that C; is a hyperplane of C' (see [3], where C; is called ‘perfect ternary
Golay code’). Thus, we get 24 non-zero vectors of the dual C* of C, partioned in
12 pairs of mutually opposite vectors. (These vectors are the 24 words of weight 1
of the cocode C* = C{(3)). Accordingly, we have obtained a set S of 12 points of
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PG(V), where V := C* 2 V(6,3). As the non-zero vectors of C' have weight 6, 9 or
12, the set S satisfies the following property:

(*) every hyperplane of PG(V') meets S in 6, 3 or 0 points.

Moreover, for every subset X of {1,2,...,12} of size 5, there is exactly one 1-
dimensional linear subspace {0,v,—v} of C (= V*, dual space of V' = C*) such
that S(v) N X = (. Therefore,

(%) any five points of S span a hyperplane of PG(V).

For every point p € S, let w, be one of the two vectors w € V such that (w) = p. Then
C'is the kernel of the linear transformation ¢ : V — V = C* mapping v = (\;)2, €
V to ¢(v) = Ypes Apw, € V. The usual definition of C;(3) as the quotient V/C' of
V by C = C4(3) is implicit in the natural isomorphism from V/V* = V/Ker(p) to
V = Im(p).

Turning to X5 and with S as above, we can take S as the set of 0-elements of 3.
The lines, planes, 3-spaces and hyperplanes of PG(5,3) that meet S in 2, 3, 4 and,
respectively, 6 points will be taken as elements of type 1, 2, 3 and 4. Thus, we obtain
a lax embedding f» : ¥3 — PG(V) = PG(5,3). Clearly, fy induces lax embeddings
fi : 1 = PG(4,3) and fy : B9 — PG(3,3). The latter embedding is the unique
embedding of the inversive plane ¥y in PG(3, 3).

Fori=0,1,2,let V; = V(4+14,3) be the underlying vector space of the projective
space PG(V;) = PG(3 4+ i,3) in which X; is embedded by f; and let V;* be its dual.
(In particular, V5 and V5" are the spaces previously called V' and V*.) The embedding
fi : 8y = PG(V;) induces a full embedding e; of A; in PG(V;*) and we can consider
the affine expansion Af, (A;). As noticed in the introduction of this paper, Af,, (A;)
belongs to Af.Af*.c**V) with orders 2,3,1,...,1 and it is flag-transitive. Moreover,

Aut(Af, (Ay)) = 34TO(4,3),
Aut(Af,, (A1) = 3%(2 x My),
Aut(Af,,(Ay)) = 35:(2My,).

Clearly, Af, (Ap) is a residue of Af,, (A1) and the latter is a residue of Af,,(A,). The
collinearity graph of Af,,(A,) is the minimal distance graph of Cg(3). That is, two
vectors vy, vy € Cg(3) are collinear as points of Af,,(A,) if and only if v; — vy has
weight 6. Similarly, the collinearity graph of Af,,(A;) is the minimal distance graph
of the 5-dimensional ternary Golay code C5(3) (‘perfect Golay code’ in [3]) and the
collinearity graph of Af. (A) is the minimal distance graph of the code C4(3) (called
the ‘truncated Golay code’ in [3]).

Remark. We can also consider the affine expansions Afy (¥y), Af,(X,) and
Afy,(3,). Their diagrams are as follows:

c 2 Af
2 1 2 3

(Affo (EO))
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A
(AL, (22)) d

Af

—e= @
—eN e
—ew e
e oew
wWeu we

(Af(2) e

In particular, the point-line geometry of 0- and 1-elements of Afy, (2,) is a well known
near-hexagon, discovered by Shult and Yanushka [21] and characterized by Brouwer
[2] (see also [3, 11.3.A]). Its collinearity graph is the coset graph of Cg(3). Similarly,
the collinearity graphs of Afy, (X;) and Afy, () are the coset graphs of C5(3) and
C4(3), respectively.

2.3 Uniqueness of the embeddings fy, fi, f>

We keep the notation of the previous subsection. For ¢ = 0,1,2, let P; be the set
of 0-elements of ¥;. The lax embeddings fy, fi1, f2 satisfy the following properties
(compare (%) and (*x) of the previous subsection):

(S0) every triple of points of fo(Fy) spans a plane of PG(V;) and every plane of
PG(Vp) meets fo(FPp) in either 1 or 4 points. (That is, fo(Fp) is an ovoid.)

(S1) every quadruple of points of f;(P;) spans a hyperplane of PG(V;) and every
hyperplane of PG(V;) meets f;(P;) in either 2 or 5 points.

(S2) any five points fo(P,) span a hyperpane of PG(V2) and every hyperplane of
PG(V;) meets fy(Py) in either 0, 3 or 6 points.

Lemma 2.1 Fori=0,1,2, let f be an embedding of ¥; in PG(V;). Then f satisfies
(Si).

Proof. We shall only prove the lemma for ¢ = 2, leaving the remaining cases to the
reader.

In view of (E3), for j = 0,1,2,3,4 the embedding f maps the j-elements of X,
onto j-dimensional subspaces of PG(V3). As any five O-elements of 3y are contained
in a unique 4-element, any five points of f(P) span a hyperplane of PG(V2). On the
other hand, every quadruple of O-elements of ¥, is contained in four 4-elements, the
latters are mapped by f onto four hyperplanes of ¥, and each of these hyperplanes
meets f(P,) in six points. Therefore, if a hyperplane of PG(V3) contains four points
of f(P,), then it meets f(P) in six points.

Every triple X of points of f(P,) is contained in 13 hyperplanes of PG(V3). As
every triple of 0-elements of ¥, is contained in exactly twelve 4-elements, exactly
one of those hyperplanes meets f(P) in 3 points. It follows that PG(Vz) contains
exactly (132) = 220 hyperplanes that meet f(P,) in 3 points. Every point p € f(P)
is contained in (3% — 1)/2 = 121 hyperplanes. As every O-element of ¥, belongs to
exactly 66 elements of type 4, eaxctly 66 of those 121 hyperplanes meet f(P;) in 6

points. Moreover, p is contained in (121) = 55 triples of points of f(P,) and each of
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these triples is contained in exactly one hyperplane meeting f(P,) in 3 points. As
66 + 55 = 121, every hyperplane containing p meets f(P) in either 6 or 3 points. O

In the next theorem the word ‘unique’ means ‘unique up to isomorphisms’, as stated
at the end of Subsection 2.1.

Theorem 2.2 Fori=0,1,2, ¥, admits a unique projective embedding in PG(V;).

Proof. Given f; as in the previous subsection, put f := f; and let g : ¥, = PG(V;)
be another embedding of ¥;. We shall prove the following:

(A) g = hf for an automorphism h of PG(V).

It is well known that (A) holds true when ¢ = 0. So, in order to prove (A) for i =1
and ¢ = 2 we only must prove the following, where i € {1,2}:

(Bi) if (A) holds for i — 1, then (A) holds for i too.

We shall only prove (B2). Claim (B1) can be proved by a similar but easier argument,
which we leave for the reader.

In view of (E3) and Lemma 2.1, the images ¥y := f(£,) and &, := g(Z,) of ¥,
by f and g are isomorphic to ¥s. Accordingly, there exist an abstract isomorphism
w: Xy = X, Let P;:= f(P) and P, := g(P,) be the sets of O-elements of X
and Xy, Py = {ay,...,a12} and P, = {by, ..., b12} say. We may assume to have chosen
indices in such a way that w(a;) = b; for i = 1,2,...,7, but w(a;) might be different
from b; when i > 7. Put A = {ai,as,...,a7} and B = {by, b, ..., b7} = w(A).

(1) |JAN H| = 6 for exactly one hyperplane H.

(Proof of (1).) |HN A| < 6 for every hyperplane H. If |[ANH| = |[ANH'| = 6 for two
hyperplanes H and H', then |[AN H N H'| > 5, which forces H = H'. Suppose that
|AN H| < 6 for every hyperplane H. Then distinct 5-subsets of A are contained in
distinct hyperplanes. Let S5(A) be the family of 5-subsets of A and, for X € S5(A),
let Hx be the hyperplane containing X and ay be the point of Hx N(P;\ A). For two
distinct 5-subsets X,Y € S5(A), we have ax = ay only if |[X NY| = 3. Moreover,
it is not difficult to see that, given X,V € S5(A) with | X N'Y| = 3, there exists
exactly one Z € S5(A) such that |[X N Z| = |Y N Z| = 3. Therefore, the function
a sending X € S5(A) to a(X) = ax has fibers of size at most 3. Consequently,
the image Im(a) of a contains at least |S5(A)|/3 = 21/3 = 7 elements. However,
Im(a) C Py\ A and |P;\ A| = 5. We have reached a contradiction. Claim (1) is
proved.

We may assume to have chosen indices in such a way that {ai,...,a¢} is the
unique 6-subset of A contained in a hyperplane. Clearly, we may also assume that
a; = by = p, say. For i = 2,..12, let L; be the line of PG(V3) through p and
a;, and M; be the line through p and b;. Thus (Ls, ..., L1s) and (M, ..., M;s) yield
embeddings of ¥; in the star of p. Both these embeddings satisfy (S1). Therefore,
by (A) for ¢ = 1, there exists an automorphism of PG(V5) that fixes p and maps
{M,, ..., Mo} onto {Ls, ..., L1s}. So,
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(2) We may also assume that b; € L; for i = 2,3, ..., 12.

As US_,L; is contained in a hyperplane, {bi,...,bs} is the unique 6-subset of B
contained in a hyperplane (compare (1)). Let L be the line through a¢ and ar,
let ag be one of the two points of L \ {aes,ar} and put A’ = {p,as...,as,ag, ar}.
Then |H N A'| < 5 for every hyperplane H of PG(Vz). Accordingly, we can take
(p, as, ..., a5, ag,az) as a coordinate system, where p, as, ..., as, ag form the basis and
a7 is the unit point. Similarly, denoted by M the line through b¢ and b; and chosen
a point by € M \ {bs,br}, the sequence (p, b, ..., b5, b5, by) is a coordinate system,
where (p, b, ..., bs, b)) is the basis and b7 is the unit point. Consequently, there exists
a linear mapping h of V5 fixing p and sending b; to a; for ¢ = 2,3,4,5,7 and by to
ag. Clearly, h maps M onto L and stabilizes the hyperplane Hy := (L1, Lo, ..., Ls)
(which is the unique hyperplane meeting A in 6 points). However, bs = M N Hy and
ag — LN Ho. Hence h(bg) = Qag-

(3) We may assume that b; = a; for i = 1,2,...,7 and b; € L; for i = 8,9, ..., 12.

(Proof of (3).) Modulo applying a linear transformation h as in the previous para-
graph, we may assume that b; = a; for ¢« = 1,2,...,7. If h induces the identity
mapping on the star of p, then we are done. Otherwise, h induces a non-trivial
homology h, on the star of p. The center of h,, is the line L; and the axis of h,, is the
set of lines of Hy through p. However, in this case, we can consider the non-trivial
homology hg of PG(V;) with center a; and axis Hy. The composition hoh induces
the identity on the star of p and maps bs, b3, ..., by on as, as, ..., a7 respectively. Claim
(3) is proved.

We now turn back to the isomorphism w : ¥y — ¥, considered at the beginning
of the proof. Modulo composing w with the linear transformations considered in the
previous paragraphs, w stabilizes a; = b; for i = 1,2,..,7.

(4) w(a;) =b; for 1 =8,7,...,12.

(Proof of (4).) Let m be the projection of PG(Vz2) \ {p} onto the star of p. By
claim (3), 7 maps both ¥; and ¥, onto a copy ¥, of ¥; with {L,, L3, ..., L12} as
the point-set. It is also clear that there exist a unique automorphism w, of X, such
that 7w = w,m. As w fixes a; = b; for i = 1,2,..,7, w, fixes six points of X, namely
Ly, Ls, ..., L7. This forces w, to be the identity. Hence w(a;) = b; for i = 8,9, ..., 12,
as claimed in (4).

The next claim finishes the proof of (B2).

(5) by =a; fori=1,2,..,12.

(Proof of (5).) In view of (3), we only must prove that b; = a; for ¢ > 7. The set
A\ {p} contains 6 subsets of size 5. Just one of them is contained in Hy. So, denoted
by X the set of 5-subsets of A that are not contained in Hy, we have |X| = 5. Given
X € X, let Hx be the hyperplane of PG(V2) spanned by X. Then Hy contains
exactly one of the points ag,ag, ...,a12 and exactly one of bg, by, ..., b12. Moreover,
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p & Hy, as Hy # Hy and Hj is the unique hyperplane of PG(V2) that contains six
points of A. For a given X € X, two indices i(X), j(X) € {8,9, ..., 12} are uniquely
determined such that a;x) and bj(x) are the points of (HxNPs)\Aand (HxNF,)\ A
respectively. (Recall that A = {a1,as, ..., a7} = {b1, bs, ..., by} = B, by claim (3).) We
have w(X) = X by claim (4). Hence Hx = w(Hx). Consequently, bjx) = w(aix))-
Therefore j(X) = i(X) = k, say, by (4). Accordingly, {bs,ar} C Hx N L;. However,
Hx meets Ly in precisely one point, as p ¢ Hy. Therefore b, = aj. On the other
hand, the function mapping X € X onto i(X) (= j(X)) is a bijection from X" to
{8,9,...,12}. Therefore, b, = a;, for every k = 8,9, ..., 12. |

Corollary 2.3 Fori=0,1,2, A; admits a unique projective embedding in PG(V;*).
O

3 A survey of Af.Af*-geometries

An Af.Af*-geometry of order s is a geometry with diagram and orders as follows:

Af Af
(Af.AfY) . . .
s—1 S s—1
points lines planes

The elements of an Af.Af*-geometry are called points, lines and planes, as indicated
in the above picture. The diameter of an Af.Af*-geometry is the diameter of its
collinearity graph. In this paper we are only interested in finite Af.Af*-geometries.
Accordingly, s is assumed to be finite. Note that the finiteness of s implies the
finiteness of the geometry, as it follows from the next proposition.

Proposition 3.1 (Del Fra and Pasini [12, 4.7]) Every Af.Af*-geometry has diam-
eter d < 2. O

A few classes of Af.Af*-geometries are described in the next three subsections. We
will turn to general properties of Af.Af*-geometries in Subsection 3.4.

3.1 Bi-affine geometries and their quotients

Bi-affine geometries can be defined for any rank n > 3, but we are only interested
in the rank 3 case here. Given a prime power ¢, a bi-affine geometry of order ¢ (and
rank 3) is the induced subgeometry X(pg, 7o) of a projective geometry ¥ = PG(3,q)
obtained by removing a distinguished point py of ¥ (called the pole at infinity of
Y (po,mo)), a distinguished plane mo of ¥ (called the plane at infinity of X(po, mo)), all
lines and planes of ¥ through py and all points and lines of 9. We say that X(po, 7o)
is of flag-type or non-flag-type according to whether py € 7y or py & 7.

Clearly, X(po, 7o) is an Af. Af*-geometry of order ¢ and it is flag-transitive, with
automorphism group isomorphic to the stabilizer of py and 7 in PT'L(4, ¢) = Aut(X).
The subgroup Autyi, (X(po, m0)) of Aut(X(po, mo)) induced by the stabilizer of py and
mo in PGL(4, q) also acts flag-transitively on X(pg, mo). For the rest of this subsection
Z stands for the center of Autyy, (X(po, mo))-
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Flag-transitive quotients of X(pg,m) are obtained by factorizing by subgroups
of Z. The quotient X(po,mo)/Z is the minimal one. In the flag-type case (namely
po € mo) the group Z has order ¢ and is induced by the group of all elations of ¥ with
axis mp and center py. In this case the minimal quotient X(pg,7)/Z is isomorphic
to the canonical gluing of two copies of AG(2,q) (see the next subsection). On the
other hand, if py & mo then Z has order ¢ — 1 and X(po, m)/Z is isomorphic to the
anti-flag geometry of the projective plane my = PG(2,q) (see Subsection 3.3).

Bi-affine geometries are simply connected, as it follows from Proposition 3.3 of
Subsection 3.4. Accordingly, all quotients of X(pg, 7o) are obtained by factorizing
by suitable subgroups of Aut(X(pg,mo)) (see [18, Theorem 12.56]). Moreover, if
X < Aut(X(po,m)) defines a quotient of X(pg, 7o), then no two collinear points of
Y (po, mo) belong to the same orbit of X and, if two planes of X(po, m) belong to the
same orbit of X, then they meet trivially in ¥(po, mo). It follows that X, regarded as
a subgroup of Aut(X), fixes all lines through py and all points of my. Namely, X < Z.
So, we have proved the following:

Proposition 3.2 All quotients of X(pg, mo) are obtained by factorizing by subgroups
of the center Z of Auty,(X(po,mo)). In particular, all quotients of X(po,m) are
flag-transitive. a

The following is also worth to be mentioned. Suppose that py € mp. Then, regard-
ing m as the plane at infinity of AG(3,q), X(po, ™) is the induced subgeometry of
AG(3, ) obtained by removing all lines with pg as the point at infinity and every plane
the line at infinity of which contains py. In other words, X(pg, 7o) is the affine ex-
pansion of the punctured projective plane obtained by removing from my & PG(2, q)
a point pg and all lines through it.

We finish this survey of bi-affine geometries with a remark on collinearity graphs.
The collinearity graph of X(py, m) is a complete (g2 + £(gq + 1))-partite graph, with
classes of size ¢ — ¢, where ¢ stands for 0 or 1 according to whether py belongs to g
or not. Clearly, given a subgroup X < Z of order A = |X|, the collinearity graph
of the quotient X(pg, my)/X is a complete (¢*> + £(g + 1))-partite graph with classes
of size (¢ — €)/A. In particular, when X = Z that graph is a complete graph with
q* +¢e(q+ 1) vertices.

3.2 Gluings

Gluings have been introduced by Del Fra, Pasini and Shpectorov [13], in view of a
classification of Af.A, ».Af*-geometries. Later, a general theory of gluings has been
developed by Buekenhout, Huybrechts and Pasini [4]. However, we will only consider
gluings of two affine planes in this paper.

Given two affine planes A; and A of the same order s, with lines at infinity .A$°
and A$° and a bijection a from A to A, the gluing Gla (A1, A2) of A; with Ay by
a is the Af.Af*-geometry defined as follows: the points of A; and A, are taken as
points and planes, respectively; the lines of Gl,(.A;, Ay) are the pairs (L, L) of lines
of A; and Aj such that a(L$°) = L, where L is the point at infinity of L;. Every
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point of Gl,(A;, As) is declared to be incident with all planes. A point p; (a plane ps)
and a line (L;, Ly) of Gl,(A;,.As) are incident precisely when p; € Ly (respectively,
p2 € Ly). When A; = Ay = AG(2,q) and « is induced by an isomorphism from A,
to A, then the gluing Gl,(A;, As) is said to be canonical.

Up to isomorphism, there is only one canonical gluing of two copies of AG(2,q).
That gluing is flag-transitive and it is isomorphic to the minimal quotient of a bi-
affine geometry of order ¢ and flag-type (Del Fra, Pasini and Shpectorov [13]; see
also Del Fra and Pasini [12, 2.1]).

More generally, every canonical gluing of two copies of the same flag-transitive
affine plane is flag-transitive. Many flag-transitive non-canonical gluings also exist.
A classification of flag-transitive non-canonical gluings of two copies of AG(2,q) has
been obtained by Baumeister and Stroth [1].

3.3 Anti-flag geometries

Given a projective plane P of order s, let A(P) be the geometry of rank 3 defined
as follows: the points and the planes of A(P) are the points and the lines of P,
whereas the lines of A(P) are the flags of P. We say that a point p and a line L of
P are incident in A(P) when p ¢ L. A flag (p1, L1) and a point p, (a line Ly) of P
are incident in A(P) precisely when p, € L; but p, # p; (respectively, p1 € Lo but
Ly # Ly). It is not difficult to see that A(P) is an Af.Af*-geometry of order s. We
call it the anti-flag geometry of P. (Note that the point-plane flags of A(P) are just
the anti-flags of P.)

When P is classical, then A(P) is isomorphic to the minimal quotient of the
bi-affine geometry of non-flag-type (Del Fra, Pasini and Shpectorov [13]; also Del
Fra and Pasini [12, 2.1]). In view of Kantor [15], an anti-flag geometry A(P) is
flag-transitive if and only if P is classical.

3.4 A few properties of Af.Af*-geometries

All Af.Af*-geometries obtained as gluings are flat, namely all points are incident to
all planes. In a flat Af.Af*-geometry of order s, every pair of points is incident with
exactly s common lines. A similar situation occurs in anti-flag geometries: if A is
an anti-flag geometry of order s, then A has diameter d = 1 and every pair of points
of A is incident with s — 1 common lines. A situation completely different from the
above is described below:

(LL) no two distinct points are incident with two common lines.
This property characterizes bi-affine geometries. Indeed:

Proposition 3.3 (Levefre & Van Nypelseer [17]) An Af.Af*-geometry is bi-affine
if and only if it satisfies (LL). O

In the general case, the following holds:
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Proposition 3.4 (Del Fra and Pasini [12, 4.6]) Let A be an Af.Af*-geometry of fi-
nite order s. Then there exists a positive integer A < s such that:

(1) if p1 and py are distinct collinear points, then there are exactly A lines incident
with both p; and ps;

(2) ifly andly are distinct lines with at least two points in common (whence A > 1),
then Iy and ly have exactly \ points in common;

(3) if m and my are distinct planes with at least one line in common, then there
are exactly A lines incident with both m, and my;

(4) if Iy and ly are distinct lines incident with at least two common planes (hence
A > 1), then ly and ly are incident with exactly X common planes.

Moreover, X divides s(s — 1). O

We call A the index of the Af. Af*-geometry A. Clearly, A = 1 if and only if A satisfies
(LL), namely A is bi-affine (Proposition 3.3). Opposite situations are considered in
the next proposition:

Proposition 3.5 (Del Fra and Pasini [12, 4.14, 5.1]) Let A be an Af.Af*-geometry
of finite order s and index \. Then:

(1) A has diameter d =1 if and only if s —1 < A <s

(2) A is flat if and only if A = s. |

Proposition 3.6 (Del Fra and Pasini [12, 5.4, 5.6]) Let A be a flag-transitive
Af.Af*-geometry of order s and index \ € {s — 1, s}.
(1) If \=s then A is a gluing of two affine planes.
(2) Ifx=s—1 then A is an anti-flag geometry. O

Turning back to the case of diameter d = 2, we mention the following:

Proposition 3.7 (Del Fra and Pasini [12, 4.15]) Let A be an Af.Af*-geometry of
diameter d = 2 and G(A) be its collmearz’ty graph. Then G(A) is a complete n-
partite graph, for a suitable integer n > s*. Moreover, A|C| < q for every class C of
the n-partition of G(A). O

3.5 Classical and nearly classical Af.Af*-geometries

We say that an Af.Af"-geometry A of prime power order ¢ is classical if A =
A/X for a bi-affine geometry A = X(py, ) and a subgroup X of the center of
Autyin (X(po, mo))-

Let A be an Af.Af*-geometry of order s and index A. For ¢ € {0,1}, we say
that A is nearly classical of e-type if s is a prime power, A divides s — ¢, (s* — )/A
is the number of points as well as the number of planes of A and the collinearity
graph of A is a complete (s? +¢&(s+1))-partite graph with all classes of size (s —¢)/A
(possibly, a complete graph with s? + £(s + 1) vertices, when A = s — ¢). In short,
A has the same parameters as a classical Af.Af*-geometry. For instance, if s is a
prime power, all flat Af.Af*-geometries of order s are nearly classical of O-type and
all anti-flag geometries of order s are nearly classical of 1-type, but not all of these
geometries are classical.
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4 c-extensions of Af.Af*-geometries

This section is devoted to Af.Af*.c*-geometries, but we prefer to focus on their
duals. So, troughout this section I is a geometry with diagram as follows and orders
1,g —1,q,q — 1, where ¢ is a prime power, say ¢ = p" for a prime p and a positive
integer n.

g ¢ 1 A s AF

AfAF*
(c.AfAf) e

Note that, given a 0-element x of I, the elements of I incident to = of type 1, 2 and 3
are respectively the points, lines and planes of the Af.Af*-geometry Res(z). On the
other hand, the residues of the 3-elements of I' are c. A f*-geometries. As recalled in
the introduction of this paper, every c.A f*-geometry is an inversive plane. Therefore
the residues of the 3-elements of I' are inversive planes.

Given a l-element e and a 0-element x of I, if x is incident with e then we say
that = belongs e, also that e lies on z, or that it passes through z. We denote by G(I")
the collinearity graph of I', where the elements of type 0 and 1 are taken as points
and lines, respectively. The adjacency relation of G(I') will be denoted by ~. When
we say that two O-elements x,y are adjacent (or that they have distance d(z,y) = 2)
we mean that they are adjacent (respectively, at distance 2) in G(T'). Given a 0-
element x, we denote by z* the set of O-elements adjacent with z or equal to z. The
multiplicity u(z,y) of an edge {x,y} of G(T') is the number of 1-elements that are
incident with {z,y}. We say that I" admits uniform multiplicity p if p(x,y) = p for
every edge {z,y} of G(I).

We denote by S(I') be the point-line geometry with the 3-elements of I' as points
and the 2-elements as lines. We also denote the collinearity graph of S(I') by G*(T')
and its adjacency relation by ~*.

Given a type ¢ and an element x of type t(z) # i, we denote by o;(x) the set of
i-elements incident with z. Also, o;(z,y) := 0:(z) N o;(y).

Lemma 4.1 Assume the following:

(A1) fore € {0,1} and a given divisor A of q— ¢, Res(zx) is nearly classical of -type
and index X\, for every 0-element x of I';

(A2) T admits uniform multiplicity .

Then all the following hold:

(Bl) ¢ = 0 and A = 1, namely Res(z) is isomorphic to the bi-affine geometry of
order q and flag-type, for every 0-element x.

(B2) p divides q and is smaller than q.

(B3) G(I') is a complete (¢*+1)-partite graph with classes of size q/p. (In particular,
if w = q then G(T') is a complete graph with ¢> + 1 vertices.) Accordingly, if N;
s the number of i-elements of I', then
No=(¢*+Va/u, Ny =(*+1)¢"/2n, No=(¢*+1)¢*/p, Ns=q*/p.
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(B4) For any three distinct O-elements x,y, 2 with y,z € zt and for any choice of
e € o1(z,y) and f € o1(x,2), e and f are coplanar as points of Res(z) if and
only if y ~ z.

(B5) The graph G*(T') has diameter d* < 2.
Proof. Let k be the valency of G(T'). Clearly,

(1) k= (¢* = &)/uA.

Note also that, given two 0-elements z,y, the p elements of o1(z,y) form a coclique
in the collinearity graph of the Af.Af*-geometry Res(z). Each of the maximal
cocliques of the collinearity graph of Res(x) is partitioned in (¢ — €)/p cocliques as
above. Hence u divides (¢ — €)/A, namely

(2) Ap divides g —e.
We shall now prove the following:

(3) the graph G(I') has diameter d < 2 and, if d = 2 and z,y are O-elements at
distance 2, then |zt Nyt| = (¢® —¢)/ = k.

Suppose d > 2. Given two O-elements z,y at distance 2, pick z € z+ ny*t. If
€1 € o1(z,z) and ey € 0y(y,2) with e; # e, then e; and ey belong to the same
maximal coclique of the collinearity graph of Res(z). Therefore, given e € o1(z) and
regarded e, ej, ey as points of Res(z), e is collinear with e; in Res(z) if and only if
it is collinear with es. As the common neighbourhood of two non-collinear points of
Res(z) has size (¢® — q)/A, we obtain that

(%) et Nzt 0yt > (¢* = q)/ M

With e as above, suppose that e is coplanar with e; and e, in Res(z). Let u be the
0-element of e different from 2 and v a 0-element adjacent with y but at distance
2 from u. Let fi € 01(y,u) and fo € 01(y,v). As d(z,v) =2, f; and f» belong to
the same maximal coclique of the collinearity graph of Res(y). On the other hand,
the O-elements 2,y and u are incident with a common 2-element. Hence f; and f»
are collinear as points of Res(y). Therefore a3(fi1, fa) # 0. So, at least (¢> — ¢)/A\u
elements of 2% N y* belong to v*. This implies that d = 2.

The equality |2+ N y*| = k remains to be proved. With z,e and u as above,
let fi € o1(u,2) and fo € o1(u,y). Let f € o1(u) be such that f, regarded as a
point of Res(u), is not collinear with e. Then f is collinear with either of f; and fs.
Therefore the O-element of f different from w belongs to x* Ny N ut, but not to
2. As the maximal coclique of Res(u) containing e contains (¢ —€)/A — 1 points of
Res(u) different from e, |(u* Nzt Ny*)\ 2| > (¢ — €)/Au — 1. By this inequality
and (), | Ny* > (¢ — @)/ A+ (q — £)/ A = (¢° — &)/ M. However, (¢* — &)/ A
is just the valency of G(T'), by (1). Therefore |z* Ny*| = (¢* — ¢)/Au. Claim (3) is
proved.
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(4) Suppose that G(I') has diameter d = 2. Then e =0, A =1, u < g and G(I') is
a complete (¢2 + 1)-partite graph with all classes of size g/p.

(Proof of (4).) By (3), the number of common neighbours of two 0-elements at
distance 2 is equal to the valency of G(I'). Hence G(I') is a complete N-partite
graph, for some positive integer N. Moreover, G(I') is regular. Hence all classes
of G(T') have the same size, say h. So, [ has Ny := h + (¢* — €)/Au 0-elements
and h divides (¢* — £)/Au. Given two adjacent O-elements x,y and a l-element
e € o1(z,y), the l-elements on z that contain O-elements in the same class as y
belong to the maximal coclique of Res(z) containing e. Hence h < (g — €)/Ap,
namely hdp < g —e. Also, Ay < ¢ — ¢ as h > 1 (note that d = 2, by assumption).
Clearly, Ny(¢* —¢)/A = N3(¢®+1). Accordingly, ¢>+1 divides (¢® —)(¢®> —e +hAu).
This forces ¢>+1 to divide (q+¢)(g+c—hAu) = ¢*+2qe+&? — (g+¢)hAu. Therefore,
¢® + 1 divides (g + €)h A + 1 — 2ge — €%, Assume first ¢ = 1. Then ¢* + 1 divides
(¢ + 1)hAu — 2q. However, this contradicts the inequality hAu < g. Therefore ¢ = 0.
Hence ¢ +1 divides ghAp+1. This implies that kA = q. As h > 1, we have Ay < q.
Also, Ny = q(¢* + 1)/ M.

The equality A = 1 remains to be proved. Since G(I') is a complete (¢>+1)-partite
graph with classes of size ¢/A\u and ' has multiplicity u, we obtain that

40 2
N, - T+
2021

By counting {1, 2}-flags in two ways, we obtain that N;(¢® + ¢) = N, (q;rl). Hence

47,2
N, = L@+
A2

However, we can also compute N, by counting {0,2}-flags. In this way, recalling that
Ny = q(q® + 1)/ and that (¢3/A\)((¢® — ¢)/\)/a(q — 1) is the number of 2-elements
on a given 0-element of I', we obtain that

4(.2
N, = L@+
A

Comparing the two expressions obtained for N, we see that A = 1. All claims of (4)
are proved.

(5) Suppose that G(I') has diameter d = 1. Then e =0, A=1, u = g and I is
flat, namely every O-element of I" is incident with all 3-elements (hence I' has
q% + 1 elements of type 0 and ¢* elements of type 3).

(Proof of (5).) As d = 1, I has exactly Ny = 1+ (¢* — £)A\u 0O-elements. As
No(q® — €)/X = N3(1 + ¢*), we obtain that

q3—6)q3—6

1
(+)\p A
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This forces 1+ ¢* to divide 2¢ge +&*— Au(g+¢) — 1. If e = 0, then A\u is a divisor of ¢
and the fact that 1+ ¢? divides 2ge + &2 — Au(q +¢) — 1 forces A\ = ¢. On the other
hand, if ¢ = 1 then Ay divides ¢—1 and 2ge+e? — Au(g+¢) —1 = 2g— Au(g+1). It is
not difficult to see that, for any divisor § of ¢ — 1, 1+ ¢? does not divide 2g—6(g+1).
So, A = g and ¢ = 0. Therefore I' has ¢? + 1 elements of type 0 and g3/ elements
of type 3. Hence I is flat.

Counting {0, 1}-flags in two ways, one can see that I has Ny = ¢*(¢® + 1)/2) =
q*(q? 4+ 1)p/2 elements of type 1. As every l-element is in g2 + ¢ elements of type 2
and every 2-element contains (g+ 1)g/2 elements of type 1, the number of 2-elements
of T'is Ny = ¢3(¢* + 1)/\. However, we can compute that number also by counting
the number of {0,2}-flags in two ways, thus obtaining that

2 AP/ =q/N)
(@ +1) q(g—1)

As Ny = ¢3(¢* + 1)/, the above implies A = 1. All claims contained in (5) are
proved.

=Ny(¢g+1).

(6) u < ¢ (hence d = 2).

(Proof of (6).) Suppose to the contrary that 4 = ¢. By (4) and (5), ' is flat.
Hence I' has exactly ¢ elements of type 3. For a pair {a,3} of 3-elements, let
v(a,B) := |oa(a, B)|. Suppose that oz(a,3) # 0. Let X,Y € oy(cr, ) be incident
with a common 0-element, say z. As A = 1, Res(z) is a bi-affine geometry. The 2-
elements X and Y are lines of that bi-affine geometry. However, they are contained
in two distinct planes of Res(z), namely « and 5. This is impossible, unless X = Y.
Therefore, if X # Y then 0o(X,Y) = 0. Accordingly, os(a, 3) is a set of mutually
disjoint blocks of the inversive plane Res(«). Every block of Res(«) has ¢+ 1 points
and Res(a) has ¢>+1 points. Hence v(a, 3)(g+1) < ¢*+1. This forces v(a, §) < ¢—1.
As Res(a) contains (g% + 1)g elements of type 2 and each of them is in ¢ — 1 elements
of type 3 different from «, the number of neighbours of a in G*(I') is at least (¢*>+1)q.
Accordingly, T admits at least 1 + (¢ + 1)g = ¢®* + ¢ + 1 > ¢* elements of type 3.
This is a contradiction, since I' contains exactly ¢ elements of type 3. Hence u < g,
as claimed in (6).

Claims (B1)-(B4) of the lemma follow from (1)-(6). Claim (B5) remains to be
proved. Given two 3-elements o and 3 of I, let 2 € oo(ar) and y € oo(8). G(I') is
a complete (¢* + 1)-partite graph, by (B3). Hence we can choose = and y in such a
way that x ~ y. Let e € o1(z,y). Then |o3(e)| = ¢>. By (B1), Res(z) is a bi-affine
geometry of flag-type. In the bi-affine geometry Res(z), but with 3- and 2-elements
regarded as points and lines, we see that « is collinear with at least ¢> — 1 points of
Res(x). Hence « is adjacent in G*(T') with at least ¢> — 1 elements of o3(e). Similarly,
3 is adjacent with at least ¢ — 1 elements of o3(e). As ¢*> — 2 > 0, at least one of
the 3-elements on e is adjacent with either of a and 3. Therefore, d* < 2. O

Lemma 4.2 Under the hypotheses of Lemma 4.1, we have p = 1 if and only S(T')
1 a semi-linear space.
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Proof. Suppose that S(I') is a semi-linear space. Then no two 3-elements are
incident with the same pair of distinct 2-elements. It follows that I' admits at least
N3 =1+ (¢®+1)g(q— 1) elements of type 3. However, Ny = ¢*/u by (B3) of Lemma
4.1. Hence 1+ (¢* +1)q(¢—1) < ¢*/p. If p > 1, the previous inequality implies that
¢*> + 1 < ¢, which is impossible. Hence p = 1.

Conversely, let y = 1. We recall that, by (B1) of Lemma 4.1, Res(z) = A for
a given bi-affine geometry A of flag-type, for every 0O-element z. In particular, the
Intersection Property holds in Res(z). This fact and the hypothesis ;1 = 1, combined
with Lemma 7.25 of [18], imply that I' satisfies the Intersection Property. Hence
S(T) is semi-linear. O

In the next lemma, A(T) is the point-line geometry obtained from S(I') by keeping
all points and lines of S(I') but adding the maximal cocliques of the collinearity
graph of Res(z) as additional lines, where x ranges in the set of 0-elements of ' and
the 3- and 2-elements of I incident with z are regarded as points and lines of Res(z).
The lines of A(T") defined in this latter way will be called new lines, whereas the lines
of §(T') will be called old lines of A(T).

Lemma 4.3 Under the hypotheses of Lemma 4.1, suppose that u = 1. Then I’
satisfies the Intersection Property, G*(I') has diameter d* = 2 and A(T) is a linear
space with ¢* points and the same parameters as AG(4,q), namely q points on each
line and ¢ + ¢> + ¢ + 1 lines on each point.

Proof. As remarked in the second part of the proof of Lemma 4.2, T" satisfies the
Intersection Property (IP for short) and Res(z) = A for a given bi-affine geometry
A of flag-type, for every 0-element z. With Ny, N7, N, and Nj as in (B3) of Lemma
4.1, the hypothesis y = 1 implies the following:

(1) No=(¢>+1)q, N =(a*>+1)¢*/2, Ny=(¢®+1)¢* and N; = ¢*.
(2) The graph G*(T') has valency k = (¢* + 1)q(q — 1).

(Proof of (2).) Given a 3-element «, the inversive plane Res(«) contains exactly
(¢®+1)q elements of type 2. Each of these 2-elements is incident with ¢ — 1 elements
of type 3 different from «. As IP holds in I', no two 3-elements are incident with the
same pair of distinct 2-elements. Hence k = (¢*> + 1)g(g — 1), as claimed in (2).

As 1+ (¢* +1)g(qg — 1) < ¢* = N3, G*(T') is not a complete graph. Hence G*(I")
has diameter d* = 2, by (B5) of Lemma 4.1.

(3) Given two 3-elements o and 3, if a ~* § then |oo(a, 8)| = ¢ + 1, otherwise
loo(er, B)] = 1.

(Proof of (3).) Suppose first that a ~* § and let A be the 2-element of o9(c, 5). By
IP, A is unique and oo(e, 8) = 00(A). Hence |og(a, 5)| = ¢ + 1, as |oo(A4)] = ¢+ 1.
Property IP also implies that, if |og(c, 8)] > 1, then a ~* f5.
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We now pick a 3-element a. By (2), « is adjacent with & = (¢* + 1)g(q — 1)
elements of type 3. Let h be the number of 3-elements § such that o and 3 have
exactly one O-element in common. We have |oy(a)] = ¢® + 1 and, if 2 € oy(«), then
the bi-affine geometry Res(x) (which is of flag-type, by (B1) of Lemma 4.1) contains
exactly ¢—1 elements of type 3 non-adjacent with o in G*(I"). In view of the previous
paragraph, these 3-elements have distance 2 from « in G*(I'). Also, none of them
can be contributed by two different 0-elements of a. Therefore, h = (¢> + 1)(¢ — 1).
Hence

kth=(+1aq-1)+ (@ +Dg-1)=("+ 1" -1)=¢" -1

As ¢* is the number of 3-elements of I' (see Lemma 4.1, (B3)), every 3-element at
distance 2 from « in G*(T') shares a 0-element with a. Claim (3) is proved.

By claim (3) and the definition of A(T"), any two 3-elements of I" are collinear
in A(T"). Moreover, if |og(c,5)| > 1, then a ~* 5. Hence A(T') is a linear space.
Clearly, it has the same parameters as AG(4,q). a

Lemma 4.4 Assume the following:

(A1) for every 0-element x of I', the Af.Af*-geometry Res(z) is nearly classical;
(A2) Aut(T") is flag-transitive.

Then:

(B1) For every 0-element z, Res(x) is isomorphic to the bi-affine geometry of flag-
type and order q.

(B2) T satisfies the Intersection Property. In particular, it admits uniform multi-
plicity = 1.
(B3) G(I') is a complete (¢* + 1)-partite graph with all classes of size q.

(B4) Let H be kernel of the action of Aut(L') on the set of classes of the (¢* + 1)-
partition of G(T'). Then |H| = q*y for a divisor v of ¢ — 1 (possibly, v = 1)
and H admits a normal subgroup T of order ¢* acting regularly on the set of
3-elements of T.

Proof. As Aut(I') is flag-transitive and Res(xz) is nearly classical for every 0-element
x, I satisfies the hypotheses of Lemma 4.1. In particular, it admits uniform multi-
plicity p. Therefore, by Lemma 4.1, Res(z) = A where A is the bi-affine geometry
of flag-type and order ¢, as claimed in (B1).

Henceforth, given an element = of I', we denote by G, its stabilizer in G := Aut(I")
and by K, the elementwise stabilizer of Res(z) in G,. So, G./K, is the group
induced by G, in Res(z). If z,y, z, ... are elements of I', we put G,, := G, N G,
Gey,. =G, NGy NG, etc. By Delandtsheer [11] (see also [9] and [10]) we have the
following:

(1) For every 3-element o of I', Res(a) is isomorphic to the inversive plane associ-
ated with the elliptic quadric Q3 (¢), and PSL(2,¢%) < Go/Ks < PTL(2,¢%).



A TOWER OF GEOMETRIES 203

Consequently,

(2) PSL(2,q9) < Gaa/Ks < PTL(2,q) Z, for every {2,3}-flag {A, o}, where Z,
is a cyclic group of order n. (Recall that, according to the conventions stated
at the beginning of this section, n is the exponent of ¢ = p™ as a power of p.)

3) p=1

(Proof of (3).) Given two 3-elements « and 8 with o ~* 3, put v := |o3(c, B)]-
No two elements A, B € o3(«,3) can have any 0-element in common. Indeed, if
x € 0¢(A,B), then A and B are distinct lines of the bi-affine geometry Res(z)
contained in two distinct planes a, 8 of Res(z), which is impossible. Since no two
elements of o3(a, §) have any 0-element in common, v < ¢ — 1. Given A € o3(a, §),
we have:

(L) |Ga,A : Ga,b’,A| <qg- 1.

(Indeed g — 1 is the number of 3-elements on A different from a.) However, it is
well known that PSL(2,¢) does not admit any proper subgroup of index less than ¢
(see Huppert [14]). Hence Claim (2) and (7) force the group X := Gup,4Ka/K, to
contain a copy L of PSL(2,q). On the other hand, |Ga5: Gap,al < v < ¢g—1. Hence
X has index at most v in YV := G, K,/ K,. Therefore the subgroup L = PSL(2,q)
of X has index at most v in Y, where ¢ is the index of L in X. In view of claim
(2), 6 < (g —1)n?/0, where § := |Gaa: Gapal Asv <qg-—1,

(i) Y :L| < (g—1)*n*/6.

Consequently, Y does not contain PSL(2,¢*). On the other hand, L is maximal in
PSL(2,¢%). Hence
(44i) Y NPSL(2,¢*) = L.

By (i) and (4i1), Y is a subgroup of the stabilizer PI'L(2,q) Z,, of A in PT'L(2,¢*) =
Aut(Res(a)). Therefore Y stabilizes A. The same conclusion holds if we replace A
with any other element of o3(c, ). Hence Y stabilizes every element of o3(a, ). As
L <Y, the same holds for L. However, L = PSL(2,q) stabilizes exactly one block
of the inversive plane Res(a) = Z(0O). In order to avoid a contradiction, we must
conclude that v = 1, namely |os(a, 5)] = 1. So, S(T') is a semi-linear space. By
Lemma 4.2, p=1.

As p =1, we obtain (B3) from Lemma 4.1 and T" satisfies the Intersection Prop-
erty IP (as remarked in the proof of Lemma 4.3). As p = 1, every l-element is
uniquely determined by its pair of O-elements. If z,y are the two 0-elements of a
l-element e, we write e = zy.

(4) K, =1 for every O-element .

(Proof of (4).) K, stabilizes all O-elements of G(I") except possibly those that belong
to the same class as z. Therefore, and since u = 1, given y € z*, K, K, /K, is seen to
stabilize all points of the biaffine geometry Res(y), except possibly those that belong
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to a distinguished maximal coclique of the collinearity graph of Res(y). Clearly, this
forces K, K, /K, to fix all points of Res(y). Hence K, < K,. By symmetry, K, < K.
Therefore, K, = K,,. The connectedness of G(I') now implies that K, = 1.

With « as above, we have Aut(Res(z)) = [U;:(Z,-1 X PGL(2,q))]|Z,, where U, is
a group of order ¢°, isomorphic to the multiplicative group formed by the following
matrices:

1 ry To t
0 1 0 S1
0 0 1 Sy 3 (7"177'2781,527t € GF(q))
00 0 1

The center Z(U,) of U, is elementary abelian of order ¢ and U, /Z(U,) is elementary
abelian of order ¢*. It is not difficult to see that every flag-transitive subgroup of
Aut(Res(z)) contains U, and a complement L, = SL(2,q) of U,. By (6), G, acts
faithfully in Res(z). Therefore,

(5) Up:Ly < Gy < [Upi(Zy—y X GL(2,4))| Z0.

Let C, be the set of maximal cocliques of the collinearity graph of Res(z) and H, be
the elementwise stabilizer of C,. Put T, := U, NT,. The following is straightforward:

(6) H, is a Frobenius group with T, as the Frobenius kernel and cyclic complements
of order a divisor of ¢ — 1. Moreover:

(6.1) T, is elementary abelian of order ¢® and acts regularly on the set of planes of
Res(z).
(6.2) Z(U,) is contained in T, and acts regularly on each member of C,.

(6.3) Every complement C of T, in H, stabilizes a unique plane a¢ of Res(z). The
group C fixes a¢ elementwise and acts semi-regularly on the set of points of
Res(z) not in a¢ and on the set of planes of Res(z) different from ac. Every
plane of Res(x) is stabilized by a unique complement of T,.

(6.4) For a point e of Res(z), put H,, := H, N G, and T, := T, N G.. Then
T, = Tye x Z(U,) and H,, = T,.:C for a complement C of T,. The set of
points of Res(xz) fixed by T, . is the union of ¢ members of C, and meets every
plane of Res(z) in a line.

Let H be the elementwise stabilizer of the set of classes of the (¢* + 1)-partition
of G(T'). Clearly, H, = H N G, for every O-element z. Hence H contains every
complement C of T, in H,. Put v := |C|. We recall that v is a divisor of ¢ — 1.

(7) H has order ¢*y and acts transitively on every class of the (¢? + 1)-partition of
g(r).

(Proof of (7).) T, < H for every O-element z. As T, contains Z(U,), which acts
regularly on every member of C,, H is transitive on every class of G(I'), except
possibly the class containing . However, z is an arbitrary 0-element of I'. Hence H
is transitive on every class of G(T'). Therefore |H| = ¢*, since |H,| = ¢>y and every
class of G(T) has size ¢. Claim (7) is proved.
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(8) H admits a normal subgroup T of order ¢* and H = T:C for any complement
C of T, in H, and every O-element x. Accordingly, T' = O,(H).

(Proof of (8).) Let T be a Sylow p-subgroup of H. We have |T| = ¢* by (7).
Moreover, T' contains 7, for some 0O-element z. Let y be a 0-element adjacent to
z. By (6.4), |T, N T,| = ¢*. Therefore (T, T,) has order at least ¢*. Suppose first
that we can choose y in such a way that 7, < T. Then, as (T, T,)| > ¢* = |7},
we have T = (T}, T,). Pick a 3-element o € o3(x,y) and put C := G, N H. Then
C € G, for every z € oy(«). In particular, C < H, N Hy. In view of (6.3), C'is a
complement of T, in H, as well as a complement of T}, in H,. Hence C' normalizes
either of T, and T,. Consequently, C' normalizes 7. Hence T' is normal in H and
we have H = T'C. Suppose now that T}, £ T for every O-element y € z*. Then,
given o € o3(x), no conjugate of T’ contains two subgroups T}, and T, for two distinct
y,z € og(c). Therefore T admits at least ¢> + 1 conjugates in H. However, this is
impossible, as |H : T| =y < ¢ — 1. Claim (8) is proved.

(9) The subgroup T' = O,(H) acts regularly on the set of 3-elements of I.

Indeed, T has order ¢*, which is the number of 3-elements of ', and TN G, = 1 for
every 3-element «, by (6). Claim (9) finishes the proof of the lemma. |

Theorem 4.5 Assume the following:

(A) for every 0-element x of T', the Af.Af*-geometry Res(x) is nearly classical;
(B) Aut(T) is flag-transitive;
(C) g is prime.

Then T is isomorphic to the dual of the affine expansion Af.(Z*) of the dual Z* of a
classical inversive plane I, where e is the projective embedding of Z* in PG(3,q).

Proof. We have ;4 = 1 by Lemma 4.4. We keep the notation used in the proof of
Lemma 4.4. In particular, T}, C' and T are defined as in claims (6) and (8) of that
proof. We first prove that 7' is elementary abelian.

(1) T, < T for any O-element x.

Indeed, as T is a p group, Ny (1) > T,. However, |T : T,| = ¢, which is assumed to
be prime. Hence Ny (T,) =T.

(2) T is elementary abelian.

Indeed, by (1) and the commutativity of T, and T, the commutator subgroup 1"
of T is contained in T, N T}, for any two adjacent O-elements = and y. Therefore
T' < T, for any O-element z. This forces T' = 1. Moreover, T = (T}, T,) and T, and
T, are elementary abelian. Therefore T is elementary abelian.



206 ANTONIO PASINI

(3) T, =T, for any two non-adjacent 0-elements = and y.

Indeed, denoted by X be the class of the (¢> + 1)-partition of G(I') containing =, 7T,
acts trivially on X \ {«}, since every orbit of T, has order at least ¢ (which is prime),
whereas | X \ {z}| =¢— 1L

In view of (3), given a 3-element o and a O-element z, T, = T} for a unique
0-element z, of a. Therefore

(4) {Tz}ze(r)o = {Tﬂv}arn’:'tfo(a)7

where (I')o stands for the set of 0-elements of I'. For every = € o¢(a), let S, be the
family of subgroups of T} of order ¢. In view of claim (6.4) of the proof of Lemma
4.4, Z(U,) is the unique member of S, that acts semi-regularly on the point-set of
Res(z), whereas each the remaining members of S, fixes all points of a line of Res(z)
contained in « and moves each of the remaining ¢*> — ¢ points of Res(x) beloning to
a. We call Z(U,) a special subgroup of T.

(5) T= Uono(a)Tz-

(Proof of (5).) With S, defined as above, we have |S;| = ¢* + ¢ + 1, since T} is
elementary abelian of order ¢®. The special subgroup of T}, is the unique member of
S, that is not contained in T}, for any y € oo(c) \ {z}. Each of the ¢* + ¢ remaining
members of S, is contained in T}, for ¢ choices of y in gg(ar)\ {x}. Therefore Uyecqo(a)Sa
contains exactly (¢2+1)+(¢>+1)(¢*+4q)/(¢+1) = ¢* +¢*+q+1 subgroups. However,
as ¢ is prime, ¢® +¢%+q+1 is just the number of subgroups of 7' of order q. Equality
(5) follows.

We now turn to A(T"), which is a linear space by Lemma 4.3 (indeed p = 1).
We denote the point-set of A(I') by P. Namely, P is the set of 3-elements of T'.
By Lemma 4.4, T acts regularly on P. Thus, given a point o € P, a bijection 7 is
established from T to P, sending every t € T to the image a! of o by ¢t. Moreover
T, being elementary abelian of order ¢*, can be regarded as the additive group of
V=V(4,q).

(6) 7 induces an isomorphism from the affine space AG(V) = AG(4,q) to A(T).

To see this, we only must prove that, for every 1-dimensional linear subspace S of
V, the orbit a® of a by S is a line of A(T'). By (5), S < T}, for at least one 0-element
z of @. Turning to Res(z), we easily see that claim (6) holds true (compare (6.4) of
the proof of Lemma 4.4). The following is implicit in the proof of claim (5):

(7) For a 1-dimensional linear space S of V, the line 7(S) of A(T") is new if and
only if S, regarded as a subgroup of T, is special.

As remarked in the proof of claim (5), ¢> + 1 is the number of special subgroups of
T. Therefore,

(8) A(T) contains (¢ + 1)¢® new lines, forming ¢ + 1 bundles of parallel lines.
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We say that a new line L belongs to a 0-element z if all points of L, regarded as
3-elements of I, are incident with z. The following is clear:

(9) every bundle of parallel new lines of A(T") is contained in exactly one 0-element
x and each such element contains exactly one bundle of parallel new lines.

In particular, every new line on the distinguished point a belongs to a unique 0-
element of a and each of these 0-elements contains exactly one new line through a.
Accordingly, the action of G, on the set of new lines through « is isomorphic to its
action on og(a). Let As(T) be A(T) enriched with its planes and 3-subspaces.

(10) No three new lines on « are coplanar in As(T).

(Proof of (10).) Suppose the contrary. Then, by (8), (9) and claim (1) of the proof
of Lemma 4.4, every plane of /Tg(F) on « contains 0, 1 or s new lines, where either
s=qg+1lors=2+(¢—1)/2 = (g+3)/2. Therefore, the ¢+ 1 new lines on « form
a linear space with all lines of size s. It is easily seen that no such linear space can
exist. Claim (10) is proved.

The residue of o in /Alg(l“) is a 3-dimensional projective space. We shall denote
it by P,. In view of (11), the new lines on « form an ovoid O* in P,. As ¢ is prime,
the ovoid O* is classical and the set O := g¢(«) is its dual. It is now clear that I’
is isomorphic to the dual of the affine expansion of the dual of the inversive plane
Z(O) associated to O. O

The next Corollary is claim (1) of Theorem 1.

Corollary 4.6 Assume q = 3 and suppose that Aut(T) is flag-transitive. Then T is
isomorphic to the dual of the affine expansion Af,(T*) of the dual T* of the inversive
plane I of order 3, where e is the projective embedding of Z* in PG(3,3).

Proof. As I' is flag-transitive, I' has uniform multiplicity u. If we prove that the
residues of the 0-elements of I' are nearly classical, then the conclusion follows from
Theorem 4.5. Let A = Res(z) for a 0-element « of I and A be the index of A. By
Proposition 3.4, A € {1,2,3}. Hence A is nearly classical, by propositions 3.3 and
3.6. (In fact, A is classical.) O

5 Proof of Theorem 1

As claim (1) of Theorem 1 has been settled by Corollary 4.6, we only must prove
claims (2) and (3) of that theorem. So, in this section we consider a flag-transitive
Af.Af*.c*"-geometry with n = 2 and orders 2, 3, 2, 1, 1 or n = 3 and orders 2,
3, 2,1, 1, 1. However, we prefer to focus on the dual of such a geometry. Thus,
henceforth I' is a flag-transitive geometry of rank n + 3 with diagram, orders and
types as follows:
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o) 0 1 3 Af g Ar g
1 1 2 3 2

=3 3 ! 2 ¢ 3 AT 4 A3
1 1 1 2 3 2

For an element ¢ of T and a type ¢ = 0,1,...,n — 1 we denote by o;(x) the set of
i-elements incident with z. We also put o;(z,y) := o;(x) N oy(y) and o4(z,y,2) =
O'Z(.Z‘) n O'l(y) n O'Z‘(Z).

As in Section 4, G(T) is the collinearity graph of I' where the elements of type 0
and 1 are taken as points and lines respectively, and ~ is the adjacency relation of
G(T'). As I is assumed to be flag-transitive, all edges of G(I') are incident with the
same number p of l-elements, namely p = |o1(z,y)| for every edge {z,y} of G(T').
We call p the multiplicity of T.

We denote by S(I') the point-line geometry with the (n + 2)-elements of I' as
points and the (n + 1)-elements as lines. G*(I') is the collinearity graph of S(T')
and ~* is the adjacency relation of G*(T'). For an edge {«, 3} of G*(T'), we put
(@,6) = lomsa(, B)]

For the rest of this section G is a given flag-transitive subgroup of Aut(T"). For
an element z of ', G, is the stabilizer of z in G and K is the elementwise stabilizer
of Res(z) (compare the notation used in the proof of Lemma 4.4).

5.1 The case of n =2
In this subsection, n = 2. So, I has rank n + 3 = 5. By Delandtsheer [11],

Lemma 5.1 Let « be a 4-element of T'. Then Res(a) is isomorphic to the Steiner
system S(11,5,4) for the Mathieu group My, where the points, duads, triples and
blocks correspond to the elements of Res(a) of type 0, 1, 2 and 3, respectively. Fur-
thermore, Go/ K, = Aut(Res(a)) = M. O

Moreover, by Corollary 4.6,

Lemma 5.2 The residues of the 0-elements of T' are isomorphic to the dual of the
affine expansion Af,(T*) of the dual I* of the classical inversive plane I or order 3,
where e is the projective embedding of Z* in PG(3,3). |

Lemma 5.3 = 1.

Proof. Let {z,y} be an edge of G(I'). The p elements of oy(z,y) form a coclique
of the graph G(Res(x)). Moreover, given a maximal coclique C' of G(Res(z)), the
relation ’being incident to the same pair of 0-elements’ defined on the set of 1-elements
of I' induces an equivalence relation on C and all classes of that induced equivalence
relation have size p. On the other hand, by Lemma 5.2, the maximal cocliques of
G(Res(z)) have size 3. Hence p € {1, 3}.
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Suppose ¢ = 3. Then every 4-element incident with z is also incident with one
of the three elements of oy(z,y). Hence o4(z) = 04(y). By the connectedness of
G(T), all 4-elements are incident with all 0-elements, namely I is flat. Consequently,
denoted by N; the number of i-elements of I', we have:

No=11, Ny =Ny-10-3/2=3-5-11, Ny =N,-33/3=3%-5-11,
N3 = No(32+3)/10 =2-3*-11, N, =3%

Let {a, 5} be an edge of G*(I'). By Lemma 5.2, the residues of the 0-elements of I'
satisfy the Intersection Property (IP). Therefore,

(1) o0(A, B) =0 for any two distinct 3-elements A, B € o3(c, ).
Consequently:
(2) p*(a,B) < 2.

For i = 1,2, let S;(a) be the set of 4-elements /5 adjacent with o in G*(I") and such
that pu*(a, 5) = i. By the flag-transitivity of I, the number |o4(A) N S;(a)| does not
depend on the choice of the 3-element A € o3(a). We must examine the following
three cases:

Case 1. |o4(A) N Si(a)] = 2 and 04(A) N Sz (a) = 0.
Case 2. |o4(A) N Si(a)] = |oa(A) N Sa(a)] = 1.
Case 3. |o4(A) N Sz ()] = 2 and 04(A) N Si(a) = 0.

(3) Cases 1 and 2 are impossible.

(Proof of (3).) In Case 1, |Si(a)| = 2|os(cr)|. However, |o3(a)| = 66, which is the
number of blocks of S(11,5,4) (compare Lemma 5.1). So, |S(a)| = 2-66 > 81 = Nj.
This is a contradiction.

Suppose we have Case 2. Let § and «y be the 4-elements of Si(a) N o4(A) and
Sa(a) N o4(A), respectively. By replacing o with v, we have a € Sa(y) N os(A).
Hence 3 € Si(7y) No4(A), since Case 2 also occurs for the flag {A4,~} (recall that I’
is flag-transitive). However, o,y € S1(58) No4a(A). This is a contradiction with the
fact that, since I is flag-transitive, Case 2 also occurs for the flag {A,5}. Claim (3)
is proved.

So, Case 3 holds. Given a 3-element A € o3(a), let § and v be the two 4-elements
of 04(A) \ {a}. One of the following occurs:

Case 3.1. o3(a, B) = o3(a, 7).

Case 3.2. o3(a, B) # o3(a, 7).

We shall prove that neither of the above two cases is possible, thus finishing
the proof of the lemma. By Lemma 5.1, we have G, /K, = Sym(5), acting 2-
transitively as PGL(2,5) on the complement og(a) \ og(A) of the block o¢(A) of
Res(a), which has size 6. On the other hand, G, a stabilizes the pair {5,v} =
04(A) \ {a}. In Case 3.1 we have o3(a,B) = o3(a,v) = {A,B} and G, a/K,
stabilizes B. As oy(B) is disjoint from og(«) (by (1)) and |og(B)| = 5, G4.4 cannot
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induce a transitive action on og(«) \ o¢(A), contrary to what we have said in the
previous paragraph. On the other hand, in Case 3.2 we have o3(a, 5) = {4, B}
and o3(a,v) = {A,C} where B # C and 0¢(A, B) = 0¢(A,C) = 0. Therefore
G, stabilizes 0g(B,C) C oo(a) \ 0o(A). Consequently, it cannot act transitively
on og(a) \ 0o(A). In any case, we have obtained a contradiction. Hence Case 3 is
impossible, too. O

Corollary 5.4 T satisfies the Intersection Property (IP). In particular, S(T') is a
semi-linear space.

Proof. This follows from Lemmas 5.2 and 5.3 via [18, Lemma 7.25]. O

Given an edge {z,y} of G(I'), we denote by zy the l-element of oy(z,y) (unique
by lemma 5.3). Note that, in view of property IP (which holds in I' by Corollary
5.4), given a 0-element z and two edges {z,y} and {z,z} of G(T') on x, we have
oa2(xy) Nog(xz) = o9(x,y,z). The next lemma can be proved by arguments similar
to those used to prove claims (B3) and (B4) of Lemma 4.1. We leave the details for
the reader.

Lemma 5.5 The graph G(T) is a complete 11-partite graph with classes of size 3.
Accordingly, if N; is the number of i-elements of T' (i = 0,1,2,3,4), then

Ny=3-11, Ny =32-5-11, N, =3*.5-11, N;=2-3°-11, N, =35

Moreover:

(1) for every 4-element a, og(t) meets each class of the 11-partition of G(T);

(2) for every O-element & and any two edges {z,y}, {z,z} of G(T) on x, we have
oa(z,y,2) # 0 if and only if y and z are adjacent in G(T'). O

We define the point-line geometry A(T") as follows: The points of A(T) are those of
S(T). The lines of A(L") are the lines of S(I') and the new lines of the affine space
A(Res(z)), for any 0-element x of I'. The latter lines will be called new lines of A(T’),
whereas the lines of S(I') are the old lines of A(T").

Lemma 5.6 For every new line L of A(T), we have |[LNoy(e)| > 1 for exactly one
1-element e. Moreover, if e is the 1-element such that |LNoy(e)| > 1, then L C o4(e).

Proof. A l-element e with L C o4(e) exists by definition. Let |L Noy(f)| > 1 for
a l-element f. We shall prove that f = e. Suppose to the contrary that f # e.
Then, by IP, 04(f) N L C 04(X) for an element X of type 2 or 3, incident with both
e and f. In particular, |L N oy(Y)| > 1 for a 2-element Y € oy(e). However, by
definition, L is a new line of A(Res(z)) for a 0-element x. With no loss, we may
assume ¢ € op(e). By the definition of A(Res(x)), no new line of A(Res(x)) meets
04(Y’) in two elements, for any Y € oy(z). We have reached a contradiction. O

We can now imitate the proof of Lemma 4.3, obtaining the following:
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Corollary 5.7 The geometry A(L') is a linear space with 3° points and the same
parameters as AG(5,3). O

The next lemma can be proved by an argument similar to that exploited for claim
(4) in the proof of Lemma 4.4.

Lemma 5.8 K, =1 for every 0-element x. O

Let H be the elementwise stabilizer of the set of classes of the 11-partition of G(T').
For a 0-element z, we set H, := H N G,. The structure of H, is clear by Lemmas
5.8 and 5.2: H, is a Frobenius group with elementary abelian Kernel T}, of order 3*
and complement C' of size |C| < 2. We can now imitate the arguments used to prove
claims (7)-(9) of the proof of Lemma 4.4 and (2), (3) of the proof of Theorem 4.5,
obtaining the following:

Lemma 5.9 We have H = T:C where T < H is elementary abelian of order 3% and

C is a complement of T, in G, for a 0-element x of I'. In particular, T = O3(H)

and |C| < 2. Moreover:

(1) H acts transitively on every class of the 11-partition of G(T').

(2) The subgroup T = O,(H) acts regularly on the set of 4-elements of T', whereas C
stabilizes a 4-element.

(3) T =(T,,T,) for any two adjacent 0-elements = and y.

(4) T, = T for any two non-adjacent 0-elements x andy. Consequently, {T}eer), =
{T:}eeoo(a) for every 4-element o, where (T')g stands for the set of 0-elements
of . a

For a 0-element  we denote by S, the family of minimal subgroups of 7, namely
subgroups of order 3. Given a 4-element «, for every € oo(a) we put S =
Useoo(a)Sz (= User)oSz, by (3) of Lemma 5.9). By definition, every line of A(T')
through « belongs to A(Res(x)) for a suitable € op(«). Hence every such line is
stabilized by a member of S (uniquely determined, as T is regular on the point-set
of A(T')). On the other hand, 3* + 3% + 32 + 3 + 1 is the number of lines of A(T)
through . Hence S is the family of all 3-subgroups of T, since 3* +3% + 32 +3 +1
is also the number of minimal subgroups of T'. The following is now clear:

Lemma 5.10 We have A(T) = AG(V), where V. = V(5,3) and T is the additive
group of V. a

We are now ready to finish the proof of claim (2) of Theorem 1. The isomorphism
A(l') =2 AG(V) induces an embedding e of the dual Res(a)* of Res(a) in the pro-
jective geometry PG(V'), where PG(V) is regarded as the projective space of lines
and planes of A(I") through the distinguished point .. Accordingly, I is the affine
expansion of Res(a)* embedded in PG(V) via e.
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5.2 The case of n =3
Assume n = 3. By Delandtsheer [11],

Lemma 5.11 Let « be a 5-element of T'. Then Res(«) is isomorphic to the Steiner
system S(12,6,5) for the Mathieu group Mis, where the points, duads, triples and
blocks correspond to the elements of Res(a) of type 0, 1, 2 and 3, respectively. Fur-
thermore, Go/ K, = Aut(Res(av)) = M;s. O

Moreover, by claim (2) of Theorem 1,

Lemma 5.12 Let « be a 0-element of T'. Then Res(x) is isomorphic to the dual of
the affine expansion Af,(A) of the dual A of ¥ = S(12,5,4), where e is the (unique)
embedding of A in PG(4,3). ]

With A and e as above, we have Aut(Af.(A)) = 3%:(2 x My;) and 3%:Mj; is the
minimal flag-transitive automorphism group of Af,(A). Therefore,

Corollary 5.13 We have 3°:My; < G,/K, < 3%:(2 x My,) for every 0-element x of
T. O

The geometry Af,(A) can be recovered from its point-line system S(Af,(A)). Ac-
cordingly, the residue Res(z) of a 0-element x can be recovered from the semi-linear
space S(Res(z)) of 5- and 4-elements incident with z. Consequently:

Corollary 5.14 We have Aut(S(Res(z))) = Aut(Res(z)) = 3%:(2 x Myy) for every
0-element x of T. a

Lemma 5.15 = 1.

Proof. We have p € {1,3}, as in the proof of Lemma 5.3. Suppose u = 3. Then I’
is flat, as in the proof of Lemma 5.3. Consequently, denoted by IV; the number of
i-elements of I', we have:

No=12, Ny =Ny-11-3/2=2-32-11, N, =N,-10-3/3 =22-32.5-11,
Ny=N,-33/4=3.5-11, N; = N3(32+3)/15=2%-3°-11, N; = 3%.

Let {«,3} be an edge of the graph G*(T'). As in the proof of Lemma 5.3, we
obtain that oo(A, B) = @ for any two distinct 4-elements A, B € o4(«,8). Hence
w(a,B) < 2. For i = 1,2, let Si(a) be the set of 5-elements § adjacent with «
in G*(I') and such that p*(o,8) = i. By the flag-transitivity of I', the number
|os(A) N S;(«)] does not depend on the choice of the 4-element A € o3(«). One of
the following occurs:

Case 1. |o5(A) N S1(a)] =2 and o5(A) N Sy(a) = 0.

Case 2. |o5(A) N S1(a)] = |os(A) N Sa(a)] = 1.

Case 3. |o5(A) N S2(a)| = 2 and o5(A) N Si(a) = 0.

Cases 1 and 2 can be ruled out by arguments similar to those used in the proof
of Lemma 5.3 for the cases analogous to these. So, Case 3 holds. Given a 4-element
A € 04(a), let B and v be the two 5-elements of 05(A) \ {a}. Let B and C be the
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elements different from A in o4(«, 8) and o4(a, v) respectively. Then og(A)Noo(B) =
oo(A) Nay(C) = 0. Tt follows that oo(B) = 0o(C), whence B = C. Accordingly,
for every 5-element «, the sets o5(A) for A € o4(a) bijectively correspond to the
partition of the design Res(«) in two disjoint hexads. Therefore,

(1) For any two 4-elements A and B, we have 05(A) = 05(B) if and only if 05(A)N
o5(B) # 0 and {oo(A), 00(B)} is a partition of the set of 0-elements of T'.

If 05(A) = 05(B) for two 4-elements A and B, then we write A = B. Clearly, = is
an equivalence relation on the set of 4-elements of I and all classes of = have size 2.
Moreover, by (1), for every 0-element z, o4(x) meets every class of = in at most one
element. On the other hand, |o4(z)| = 66 = N4/2. Therefore,

(2) For every 0-element z, o4(x) meets every class of = in exactly one element.

We define a semi-linear space S(I') on the set of 5-elements of I by taking the classes
of = as lines, with the convention that such a class {4, B} and a 5-element « are
incident precisely when « € 05(A) = 05(B). Claim (2) implies the following:

(3) S(I') = S(Res(z)) for every O-element z.

Let U be the elementwise stabilizer of S(T'). Then (3) and Corollaries 5.13 and 5.14
imply the following:

(4) 35:M11 S G/U S 35:(2 X Mll)-
(56) UNG, = K, =1 for every 0-element .

(Proof of (5).) We have UNG, < K, since UNG, stabilizes all elements of S(Res(z))
and Res(z) can be recovered from S(Res(z)). The equality K, = 1 remains to be
proved. Clearly, K, fixes all 0-elements. Given a 0O-element y # z, Lemma 5.12
implies that G(Res(y)) is a complete 11-partite graph with all classes of size 3. One
of those classes, say C, contains the three elements of oy(z,y). The group K, K, /K,
fixes all classes of the 11-partition of G(Res(y)) and all elements of Res(y) incident
with any of the 1-elements of C'. This forces K, K,/ K, to be trivial. Hence K, < K.
By symmetry, K, = K. Finally K, = 1, since y is an arbitrary 0-element of I'. Claim
(5) is proved.

By (5), G, acts faithfully in Res(z) and G contains a semi-direct product G =
U:G,. By (4) and Corollary 5.13 and 5.14, G has index at most 2 in G. Moreover,
U < G, for every 5-element a. It follows that G, = U:G, 4 for © € go(a). On the
other hand, G, induces My on og(«), by Lemma 5.11. This does not fit with the
description of G, as U:G, 4 (recall that G, 4 is isomorphic to either M; or 2 x M;).
We have reached a final contradiction. O

The proof now can be continued as in the case of n = 2. We only recall its main
steps, leaving all proofs for the reader:
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Corollary 5.16 I' satisfies the Intersection Property (IP). In particular, S(T') is a
semi-linear space. O

Lemma 5.17 The graph G(I') is a complete 12-partite graph with classes of size 3.
Accordingly, if N; is the number of i-elements of I (i = 0,1,2,3,4), then

No=12-3=2%.3% N;=2-3%.11, N,=2%.33.5.11,
N3 =3%-5-11, Ny=22-3%-11, N;=3°

Moreover:

(1)  for every 5-element a, oo(cv) meets each class of the 12-partition of G(T');

(2)  for every 0-element x and two edges {z,y}, {z,z} of G(I') on x, we have
o2(z,y,2) # 0 if and only if y and z are adjacent in G(T'). |
The point-line geometry A(T') is defined as in the case of n = 2: The points of A(L")
are those of S(I'). The lines of A(I") are the lines of S(I') and the new lines of the

affine space A(Res(z)), for any 0-element « of I. The latter lines are the new lines
of A(T"), whereas the lines of S(T") are the old lines of A(T).

Lemma 5.18 For every new line L of A(T'), we have |L Nos(e)| > 1 for exactly
one 2-element e. Moreover, if e is the 2-element such that |L N os(e)| > 1, then

L C os(e). O
Corollary 5.19 A(T) is a linear space with 3% points and the same parameters as
AG(6,3). O
Lemma 5.20 K, =1 for every 0-element x. a

Let H be the elementwise stabilizer of the set of classes of the 12-partition of G(T').
For a 0-element x, we set H, := H N G,. Then H, is a Frobenius group with
elementary abelian Kernel T}, of order 3° and complement C of size |C| < 2.

Lemma 5.21 We have H = T:C where T < H is elementary abelian of order 3¢ and

C is a complement of T, in G, for a 0-element x of I'. In particular, T = O3(H)

and |C| < 2. Moreover:

(1) H acts transitively on every class of the 12-partition of G(T').

(2) The subgroup T = O,(H) acts regularly on the set of 5-elements of T', whereas C
stabilizes a 5-element.

(3) T =(Ty,T,) for any two adjacent 0-elements x and y.

(4) T, = T for any two non-adjacent 0-elements x andy. Consequently, {T;}eer), =
{T2}aeoo(a) for every 5-element o, where (T')g stands for the set of 0-elements

of . a
Lemma 5.22 We have A(l') = AG(V), where V = V(6,3) and T is the additive
group of V. a

The isomorphism A(I') = AG(V) induces an embedding e of the dual Res(a)* of
Res(a) in the projective geometry PG(V'), where PG(V') is regarded as the projective
space of lines and planes of A(I") through the distinguished point «. Accordingly, I’
is the affine expansion of Res(a)* embedded in PG(V) via the embedding e. This
finishes the proof of Theorem 1.
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