A tower of geometries related to the ternary Golay codes #### Antonio Pasini Department of Mathematics University of Siena 53100 Siena Italy pasini@unisi.it #### Abstract The Steiner system $\Sigma = S(12,6,5)$ admits a unique lax projective embedding f in PG(V), V = V(6,3). The embedding f induces a full projective embedding e of the dual Δ of Σ in the dual $PG(V^*)$ of PG(V). The affine expansion $Af_e(\Delta)$ of Δ to $AG(V^*)$ (also called linear representation of Δ in $AG(V^*)$) is a flag-transitive geometry with diagram and orders as follows: Its collinearity graph is the minimal distance graph of the 6-dimensional ternary Golay code. We shall prove that $Af_e(\Delta)$ is the unique flagtransitive geometry with diagrams and orders as above. The $\{0,1,2,3,4\}$ -residues of $Af_e(\Delta)$ can also be obtained as affine expansions from the dual of S(11,5,4) and are related to the 5-dimensional ternary Golay code. We shall characterize them too by their diagram and orders. Finally, the $\{0,1,2,3\}$ -residues of $Af_e(\Delta)$ are isomorphic to the affine expansion of the dual of the classical inversive plane of order 3. A characterization will also be given for these expansions, in the same style as for $Af_e(\Delta)$. #### 1 Introduction and main results In this paper we consider geometries belonging to the following diagram of rank $n+3 \geq 4$, where the integers 0,1,...,n+2 are the types, q-1,q,q-1,1,...,1 are finite orders, the labels Af and Af^* stands for the class of affine planes and the class of dual affine planes and c^* denotes the class of dual circular spaces: $$(Af.Af^*.c^{*n}) \quad \ \ \underbrace{ \stackrel{0}{q-1} \quad \stackrel{Af}{q} \quad \stackrel{1}{q-1} \quad \stackrel{Af^*}{q} \quad \stackrel{2}{q-1} \quad \stackrel{c^*}{1} \quad \stackrel{3}{1} \cdots \stackrel{n+1}{\stackrel{n+2}{1}} }_{1} \cdots \stackrel{n+2}{\stackrel{n+1}{1}} \stackrel{n+2}{\stackrel$$ (We follow [18] for the definition of geometry; in particular, all geometries are residually connected, by definition.) If Γ is a geometry for the above diagram, then the residues of the 0-elements of Γ are dually isomorphic to n-point extensions of dual affine planes. We recall that 1-point extensions of affine planes are called inversive planes. It is well known that an affine plane of order q > 3 does not admit any n-point extension for n > 2 (see [18, Theorem 7.24]). AG(2, 13) is the unique affine plane of order q > 3 that might possibly admit a 2-point extension [18, Theorem 7.24], but no such extension has been discovered so far. Anyhow, that extension, if it existed, would not be flag-transitive (Delandtsheer [10]; see also [11]). The affine plane AG(2,3) of order 3 admits no n-point extension for n > 3, but it admits a unique 3-point extension and a unique 2-point extension, namely the Steiner systems S(12,6,5) and S(11,5,4) for M_{12} and M_{11} respectively. Finally, AG(2,2) admits an n-point extension for any n, obtained as a truncation from the (n+2)-dimensional symplex. Thus, the following are the only possibilities for $Af.Af^*.c^{*n}$ if flag-transitivity is assumed: The geometries belonging to diagram $c.c^{*(n+1)}$ with orders 1, 2, 1, ..., 1 have been classified by Ceccherini and Pasini [5, Theorem 3.5] (see also Huybrechts and Pasini [16]): all of them are homomorphic images of truncated Coxeter complexes. So, we will assume q > 2 in this paper. Geometries for $Af.Af^*.c^*$ can be obtained as follows. Given an ovoid O of PG(V), V = V(4,q), let $\mathcal{I} = \mathcal{I}(O)$ be the inversive plane of points and secant planes of O, but regarded as a 3-dimensional matroid with the secant lines of O as lines. By applying a correlation of PG(V) (a polarity, for instance), we obtain a (full) projective embedding $e: \mathcal{I}^* \to PG(V^*)$ of the dual \mathcal{I}^* of \mathcal{I} in the dual $PG(V^*)$ of PG(V). The affine expansion $Af_e(\mathcal{I}^*)$ of \mathcal{I}^* by e is the geometry of rank 4 defined as follows (see Subsection 2.1): Take $\{0,1,2,3\}$ as the set of types. The 0-elements of $Af_e(\mathcal{I}^*)$ are the points of AG(4,q). For $1 \leq i \leq 3$ and an *i*-dimensional affine subspace X of AG(4,q), let X^{∞} be the point, line or plane at infinity of X (according to whether i is 1, 2 or 3). We take X as an i-element of $Af_e(\mathcal{I}^*)$ if and only if X^{∞} is an element of the image $e(\mathcal{I}^*)$ of \mathcal{I}^* . The incidence relation of $\mathrm{Af}_e(\mathcal{I}^*)$ is inherited from AG(4,q). $Af_e(\mathcal{I}^*)$ is a residually connected geometry belonging to diagram $Af.Af^*.c^*$. Clearly, $Af_e(\mathcal{I}^*)$ is flag-transitive if and only if \mathcal{I} is flag-transitive. It is well known that $\mathcal{I} = \mathcal{I}(O)$ is flag-transitive if and only if O is classical (see Delandtsheer [11]; also [9]). Suppose that O is classical (which is always the case when q is odd). Then the stabilizer $G_O \cong P\Gamma O^-(4,q)$ of O in $P\Gamma L(4,q)$ induces on \mathcal{I} its full automorphism group. Accordingly, denoted by T the translation group of AG(4,q), we have $Aut(Af_e(\mathcal{I}^*)) \cong T:\Gamma O^-(4,q)$ ($< A\Gamma L(4,q)$; the symbol: stands for split extension, as in [6]). Moreover, every flag-transitive subgroup of $Aut(Af_e(\mathcal{I}^*))$ contains $T:SO^-(4,q)$ (Delandtsheer [11]). We recall that if \mathcal{I} is classical then, up to automorphisms of PG(V), \mathcal{I} admits a unique embedding as $\mathcal{I}(O)$ in PG(V) with O a classical ovoid. Accordingly, the embedding $e: \mathcal{I}^* \to PG(V^*)$ is uniquely determined up to automorphisms of $PG(V^*)$. We call it the *natural* embedding of \mathcal{I}^* . As shown by Coxeter [7], the Steiner systems $\Sigma_1 := S(11,5,4)$ and $\Sigma_2 := S(12,6,5)$ also admit embeddings in $PG(V_1)$ and $PG(V_2)$ respectively, where $V_1 := V(5,3)$ and $V_2 := V(6,3)$ (see Section 2 for more details). These embeddings are uniquely determined up to automorphisms of $PG(V_1)$ and $PG(V_2)$ (Theorem 2.2). We call them the *natural embeddings* of Σ_1 and Σ_2 . For i=1,2, let $f_i:\Sigma_i\to PG(V_i)$ be the natural embedding of Σ_i and Δ_i be the dual of Σ_i . By composing f_i with a correlation of $PG(V_i)$ we obtain a projective embedding $e_i:\Delta_i\to PG(V_i^*)$, which we call the natural embeding of Δ_i . We can define the affine expansion $\mathrm{Af}_{e_i}(\Delta_i)$ of Δ_i by e_i in the same way as we have done for $\mathrm{Af}_e(\mathcal{I}^*)$. Thus, we obtain flag-transitive geometries of rank 4 and 5, belonging to the diagrams $Af.Af^*.c^{*2}$ and $Af.Af^*.c^{*3}$ and with orders 2, 3, 2, 1, 1 and 2, 3, 2, 1, 1, 1 respectively. Their automorphism groups are as follows: $$\operatorname{Aut}(\operatorname{Af}_{e_1}(\Delta_1)) = 3^5 : (2 \times M_{11}), \quad \operatorname{Aut}(\operatorname{Af}_{e_2}(\Delta_2)) = 3^6 : (2 \cdot M_{12}).$$ (The symbol stands for non-split extension, as in [6].) Aut(Af_{e2}(Δ_2)) is the full automorphism group of the 6-dimensional ternary Golay code $C_6(3)$ (see Section 2 for more details). Clearly, the translation subgroup T of AG(6,3) is the maximal normal 3-subgroup of Aut(Af_{e2}(Δ_2)). Its elements may be regarded as the words of $C_6(3)$. The parallelism relation of AG(6,3) induces an equivalence relation on the set of 1-elements of Af_{e2}(Δ_2). The words of $C_6(3)$ of weight 6 correspond to the elements of T that elementwise stabilize a parallel class of 1-elements of Af_{e2}(Δ_2). We are now ready to state our main theorem. For the sake of uniformity, we denote by Σ_0 the inversive plane of order 3 arising from a quadric of $PG(V_0)$, where $V_0 = V(4,3)$. The dual of Σ_0 will be denoted by Δ_0 and e_0 is the natural embedding of Δ_0 in $PG(V_0^*)$. **THEOREM 1** (1) Let Γ be a flag-transitive geometry belonging to diagram $Af.Af^*.c^*$ with orders 2, 3, 2, 1. Then $\Gamma \cong Af_{e_0}(\Delta_0)$, where Δ_0 and e_0 are as above. (2) Let Γ be a flag-transitive geometry belonging to diagram $Af.Af^*.c^{*2}$ with orders 2, 3, 2, 1, 1. Then $\Gamma \cong Af_{e_1}(\Delta_1)$ where Δ_1 is the dual of $\Sigma_1 = S(11, 5, 4)$ and e_1 is the natural embedding of Δ_1 . (3) Let Γ be a flag-transitive geometry belonging to diagram $Af.Af^*.c^{*3}$ with orders 2, 3, 2, 1, 1, 1. Then $\Gamma \cong Af_{e_2}(\Delta_2)$ where Δ_2 is the dual of $\Sigma_2 = S(12, 6, 5)$ and e_2 is the natural embedding of Δ_2 . Theorem 1 will be proved in Section 5. In Section 2 we shall discuss the natural embeddings of Σ_1 , Δ_1 , Σ_2 and Δ_2 . Section 3 contains a survey of examples and properties of $Af.Af^*$ -geometries, to be used in Section 4, where we will study $Af.Af^*.c^*$ -geometries, eventually focusing on the flag-transitive case. Claim (1) of Theorem 1 will be obtained as a corollary from the final theorem of Section 4. The results of Section 4 may be regarded as contributions to a possible proof of the following conjecture: Conjecture 1 Every flag-transitive $Af.Af^*.c^*$ -geometry is the affine expansion of the dual of a classical inversive plane by its natural projective embedding. For the sake of completeness, we also mention the following theorem, proved in [20], where a two-sided extension of the $Af.Af^*$ -diagram is considered. **THEOREM 2** No flag-transitive geometry exists with diagram and orders as follows: The next is plausible: **Conjecture 2** No flag-transitive geometry exists with diagram as follows, where q > 2: The restriction q > 2 is essential in the above conjecture. Indeed, there exists at least one flag-transitive geometry for the above diagram with q = 2. It is obtained by truncating a Coxeter complex of type E_6 . # **2** Embeddings of
S(11,5,4) and S(12,6,5) and their duals #### 2.1 Preliminaries Embeddings and affine expansion have already been mentioned in Section 1, but we shall fix these notions more formally here. A general theory of embeddings and expansions is developed in [19], but we do not need it in this paper. The definitions we shall state are special cases of those of [19]. Let Σ be a geometry belonging to a string diagram of rank n, with the integers 0, 1, ..., n-1 as types, labelling the nodes of the diagram in increasing order from left to right, as usual. To make things easier, we also assume that Σ satisfies the Intersection Property IP (see [18, Chapter 6]). We denote the set of 0-elements of Σ by P and, for an element x of Σ , we denote by P(x) the set of 0-elements of Σ incident to x. For a vector space V, let $f: P \to PG(V)$ be an injective mapping from P to the set of points of the projective geometry PG(V) of linear subspaces of V such that f(P) spans PG(V). For an element x of Σ of type t(x) > 0, let $f(x) := \langle f(P(x)) \rangle$ be the span of f(P(x)) in PG(V). In this way, f is extended to a mapping from the whole of Σ to the set of subspaces of PG(V). Assume the following: - (E1) f(x) is a line for every 1-element x of Γ ; - (E2) for $p \in P$ and an element x of Σ of type t(x) > 0, we have $f(p) \in f(x)$ only if $p \in P(x)$. Then we call f a projective embedding of Σ . Note that when t(x) = 1 the set f(P(x)) might not be a line of PG(V) (even if it spans a line, by (E1)). That is, f(P(x)) might be properly contained in $f(x) = \langle f(P(x)) \rangle$. If f(P(x)) = f(x) for every 1-element x of Γ then we say that the embedding f is f(P(x)) = f(x) for an Aldeghem [22], if f is non-full then we say it is f(P(x)) = f(x) on f(P(x)) = f(x) and f(P(x)) = f(x) following: (E3) For any two elements x, y of Σ of type t(x), t(y) > 0, we have $f(x) \subseteq f(y)$ if and only if x and y are incident in Σ and $t(x) \le t(y)$. In particular, f(x) = f(y) only if x = y. Affine expansions. The affine expansion $\mathrm{Af}_f(\Sigma)$ of Σ by f is defined as follows: Take $\{0,1,...,n\}$ as type-set for $\mathrm{Af}_f(\Sigma)$. The 0-elements of $\mathrm{Af}_f(\Sigma)$ are the points of the affine geometry AG(V). Regarding PG(V) as the geometry at infinity of AG(V), the 1-elements of $\mathrm{Af}_f(\Sigma)$ are the lines L of AG(V) with point at infinity $L^\infty \in e(P)$. For i>1, the i-elements of $\mathrm{Af}_f(\Sigma)$ are the affine subspaces X of AG(V) with space at infinity $X^\infty = f(x)$ for an (i-1)-element x of Σ . The incidence relation is the natural one, namely inclusion. The structure $\mathrm{Af}_f(\Sigma)$ is indeed a geometry (in particular, it is residually connected [19]) and the residues of its 0-elements are isomorphic to Σ . In view of (E1), the lower residues of the 2-elements of $\mathrm{Af}_f(\Sigma)$ are nets. In particular, when f is full those residues are affine planes. **Remark.** A number of authors (as De Clerck and Van Maldeghem [8], for instance) call affine expansions *linear representations*. **Isomorphisms of embeddings.** Given two embeddings $f: \Sigma \to PG(V)$ and $g: \Sigma \to PG(W)$, if g = hf for an isomorphism h from PG(V) to PG(W) then we say that f and g are isomorphic and we write $f \cong g$. Given a class $\mathcal C$ of projective embeddings of Σ , if $f \cong g$ for any two embeddings $f, g \in \mathcal C$, then we say that $\mathcal C$ contains a unique embedding. (This is a linguistic abuse, but it is harmless.) # 2.2 The natural projective embeddings of S(11,5,4) and S(12,6,5) and their duals For i=0,1,2, let Σ_i be the Steiner system S(10+i,4+i,3+i), regarded as (3+i)-dimensional matroid. So, Σ_0 is the unique inversive plane of order 3, Σ_1 is the Steiner system for M_{11} and Σ_2 that for M_{12} . We take $\{0,1,2\}$, $\{0,1,2,3\}$ and $\{0,1,2,3,4\}$ as sets of types for Σ_0, Σ_1 and Σ_2 : For i = 0, 1, 2, we denote by Δ_i the dual of Σ_i . Namely, Δ_i is the same thing as Σ_i , except that types are permuted as follows: The above diagrams are usually drawn as follows: As recalled in the introduction of this paper, Σ_0 admits a lax embedding in PG(3,3). As shown by Coxeter [7], the Steiner systems Σ_1 and Σ_2 also admit lax embeddings in PG(4,3) and PG(5,3) respectively. We shall describe these embeddings here. In view of this, we need to recall some properties of the 6-dimensional ternary Golay code $C_6(3)$ and its dual $C_6^*(3)$. We refer to [6, page 31] (also [3, 11.3]) for a description of $C_6(3)$. We warn that $C_6(3)$ is called 'extended ternary Golay code' in [3], but simply 'ternary Golay code' in [6]. In this paper we follow [6]. We recall that the code $C := \mathcal{C}_6(3)$, regarded as a linear subspace of $\widehat{V} = V(12,3)$, is 6-dimensional and the non-zero vectors of C have weight 6, 9 and 12 with respect to B. (We recall that the weight of a vector $v = (\lambda_i)_{i=1}^n$ of V(n,q) is the number of entries $\lambda_i \neq 0$ and the set $S(v) := \{i \in \{1,2,...,n\} | \lambda_i \neq 0\}$ is called the support of v.) For every i = 1,2,...,12, let C_i be the set of vectors $v \in C$ with $i \notin S(v)$. It is well known that C_i is a hyperplane of C (see [3], where C_i is called 'perfect ternary Golay code'). Thus, we get 24 non-zero vectors of the dual C^* of C, partioned in 12 pairs of mutually opposite vectors. (These vectors are the 24 words of weight 1 of the cocode $C^* = \mathcal{C}_6^*(3)$). Accordingly, we have obtained a set S of 12 points of PG(V), where $V := C^* \cong V(6,3)$. As the non-zero vectors of C have weight 6, 9 or 12, the set S satisfies the following property: (*) every hyperplane of PG(V) meets S in 6, 3 or 0 points. Moreover, for every subset X of $\{1, 2, ..., 12\}$ of size 5, there is exactly one 1-dimensional linear subspace $\{0, v, -v\}$ of C (= V^* , dual space of $V = C^*$) such that $S(v) \cap X = \emptyset$. Therefore, (**) any five points of S span a hyperplane of PG(V). For every point $p \in S$, let w_p be one of the two vectors $w \in V$ such that $\langle w \rangle = p$. Then C is the kernel of the linear transformation $\varphi : \hat{V} \to V = C^*$ mapping $v = (\lambda_i)_{i=1}^{12} \in \hat{V}$ to $\varphi(v) = \sum_{p \in S} \lambda_p w_p \in V$. The usual definition of $C_6^*(3)$ as the quotient \hat{V}/C of \hat{V} by $C = C_6(3)$ is implicit in the natural isomorphism from $\hat{V}/V^* = \hat{V}/\mathrm{Ker}(\varphi)$ to $V = \mathrm{Im}(\varphi)$. Turning to Σ_2 and with S as above, we can take S as the set of 0-elements of Σ_2 . The lines, planes, 3-spaces and hyperplanes of PG(5,3) that meet S in 2, 3, 4 and, respectively, 6 points will be taken as elements of type 1, 2, 3 and 4. Thus, we obtain a lax embedding $f_2: \Sigma_2 \to PG(V) \cong PG(5,3)$. Clearly, f_2 induces lax embeddings $f_1: \Sigma_1 \to PG(4,3)$ and $f_0: \Sigma_0 \to PG(3,3)$. The latter embedding is the unique embedding of the inversive plane Σ_0 in PG(3,3). For i=0,1,2, let $V_i=V(4+i,3)$ be the underlying vector space of the projective space $PG(V_i)=PG(3+i,3)$ in which Σ_i is embedded by f_i and let V_i^* be its dual. (In particular, V_2 and V_2^* are the spaces previously called V and V^* .) The embedding $f_i:\Sigma_i\to PG(V_i)$ induces a full embedding e_i of Δ_i in $PG(V_i^*)$ and we can consider the affine expansion $\mathrm{Af}_{e_i}(\Delta_i)$. As noticed in the introduction of this paper, $\mathrm{Af}_{e_i}(\Delta_i)$ belongs to $Af.Af^*.c^{*(i+1)}$ with orders 2,3,1,...,1 and it is flag-transitive. Moreover, $$\begin{array}{lcl} \operatorname{Aut}(\operatorname{Af}_{e_0}(\Delta_0)) & = & 3^4{:}\Gamma O^-(4,3), \\ \operatorname{Aut}(\operatorname{Af}_{e_1}(\Delta_1)) & = & 3^5{:}(2\times M_{11}), \\ \operatorname{Aut}(\operatorname{Af}_{e_2}(\Delta_2)) & = & 3^6{:}(2{:}M_{11}). \end{array}$$ Clearly, $Af_{e_0}(\Delta_0)$ is a residue of $Af_{e_1}(\Delta_1)$ and the latter is a residue of $Af_{e_2}(\Delta_2)$. The collinearity graph of $Af_{e_2}(\Delta_2)$ is the minimal distance graph of $C_6(3)$. That is, two vectors $v_1, v_2 \in C_6(3)$ are collinear as points of $Af_{e_2}(\Delta_2)$ if and only if $v_1 - v_2$ has weight 6. Similarly, the collinearity graph of $Af_{e_1}(\Delta_1)$ is the minimal distance graph of the 5-dimensional ternary Golay code $C_5(3)$ ('perfect Golay code' in [3]) and the collinearity graph of $Af_{e_0}(\Delta_0)$ is the minimal distance graph of the code $C_4(3)$ (called the 'truncated Golay code' in [3]). **Remark.** We can also consider the affine expansions $Af_{f_0}(\Sigma_0)$, $Af_{f_1}(\Sigma_1)$ and $Af_{f_2}(\Sigma_2)$. Their diagrams are as follows: In particular, the point-line geometry of 0- and 1-elements of $Af_{f_2}(\Sigma_2)$ is a well known near-hexagon, discovered by Shult and Yanushka [21] and characterized by Brouwer [2] (see also [3, 11.3.A]). Its collinearity graph is the coset graph of $C_6(3)$. Similarly, the collinearity graphs of $Af_{f_1}(\Sigma_1)$ and $Af_{f_0}(\Sigma_0)$ are the coset graphs of $C_5(3)$ and $C_4(3)$, respectively. #### 2.3 Uniqueness of the embeddings f_0, f_1, f_2 We keep the notation of the previous subsection. For i = 0, 1, 2, let P_i be the set of 0-elements of Σ_i . The lax embeddings f_0, f_1, f_2 satisfy the following properties (compare (*) and (**) of the previous subsection): - (S0) every triple of points of $f_0(P_0)$ spans a plane of $PG(V_0)$ and every plane of $PG(V_0)$ meets $f_0(P_0)$ in either 1 or 4 points. (That is, $f_0(P_0)$ is an ovoid.) - (S1) every quadruple of points of $f_1(P_1)$ spans a hyperplane of $PG(V_1)$ and every hyperplane of $PG(V_1)$ meets $f_1(P_1)$ in either 2
or 5 points. - (S2) any five points $f_2(P_2)$ span a hyperpane of $PG(V_2)$ and every hyperplane of $PG(V_2)$ meets $f_2(P_2)$ in either 0, 3 or 6 points. **Lemma 2.1** For i = 0, 1, 2, let f be an embedding of Σ_i in $PG(V_i)$. Then f satisfies (Si). **Proof.** We shall only prove the lemma for i = 2, leaving the remaining cases to the reader. In view of (E3), for j = 0, 1, 2, 3, 4 the embedding f maps the j-elements of Σ_2 onto j-dimensional subspaces of $PG(V_2)$. As any five 0-elements of Σ_2 are contained in a unique 4-element, any five points of $f(P_2)$ span a hyperplane of $PG(V_2)$. On the other hand, every quadruple of 0-elements of Σ_2 is contained in four 4-elements, the latters are mapped by f onto four hyperplanes of Σ_2 and each of these hyperplanes meets $f(P_2)$ in six points. Therefore, if a hyperplane of $PG(V_2)$ contains four points of $f(P_2)$, then it meets $f(P_2)$ in six points. Every triple X of points of $f(P_2)$ is contained in 13 hyperplanes of $PG(V_2)$. As every triple of 0-elements of Σ_2 is contained in exactly twelve 4-elements, exactly one of those hyperplanes meets $f(P_2)$ in 3 points. It follows that $PG(V_2)$ contains exactly $\binom{12}{3} = 220$ hyperplanes that meet $f(P_2)$ in 3 points. Every point $p \in f(P_2)$ is contained in $(3^5 - 1)/2 = 121$ hyperplanes. As every 0-element of Σ_2 belongs to exactly 66 elements of type 4, exactly 66 of those 121 hyperplanes meet $f(P_2)$ in 6 points. Moreover, p is contained in $\binom{11}{2} = 55$ triples of points of $f(P_2)$ and each of these triples is contained in exactly one hyperplane meeting $f(P_2)$ in 3 points. As 66 + 55 = 121, every hyperplane containing p meets $f(P_2)$ in either 6 or 3 points. \square In the next theorem the word 'unique' means 'unique up to isomorphisms', as stated at the end of Subsection 2.1. **Theorem 2.2** For $i = 0, 1, 2, \Sigma_i$ admits a unique projective embedding in $PG(V_i)$. **Proof.** Given f_i as in the previous subsection, put $f := f_i$ and let $g : \Sigma_i \to PG(V_i)$ be another embedding of Σ_i . We shall prove the following: (A) g = hf for an automorphism h of $PG(V_i)$. It is well known that (A) holds true when i = 0. So, in order to prove (A) for i = 1 and i = 2 we only must prove the following, where $i \in \{1, 2\}$: (Bi) if (A) holds for i - 1, then (A) holds for i too. We shall only prove (B2). Claim (B1) can be proved by a similar but easier argument, which we leave for the reader. In view of (E3) and Lemma 2.1, the images $\Sigma_f := f(\Sigma_2)$ and $\Sigma_g := g(\Sigma_2)$ of Σ_2 by f and g are isomorphic to Σ_2 . Accordingly, there exist an abstract isomorphism $\omega : \Sigma_f \to \Sigma_g$. Let $P_f := f(P_2)$ and $P_g := g(P_2)$ be the sets of 0-elements of Σ_f and Σ_g , $P_f = \{a_1, ..., a_{12}\}$ and $P_g = \{b_1, ..., b_{12}\}$ say. We may assume to have chosen indices in such a way that $\omega(a_i) = b_i$ for i = 1, 2, ..., 7, but $\omega(a_i)$ might be different from b_i when i > 7. Put $A = \{a_1, a_2, ..., a_7\}$ and $B = \{b_1, b_2, ..., b_7\} = \omega(A)$. (1) $|A \cap H| = 6$ for exactly one hyperplane H. (Proof of (1).) $|H \cap A| \leq 6$ for every hyperplane H. If $|A \cap H| = |A \cap H'| = 6$ for two hyperplanes H and H', then $|A \cap H \cap H'| \geq 5$, which forces H = H'. Suppose that $|A \cap H| < 6$ for every hyperplane H. Then distinct 5-subsets of A are contained in distinct hyperplanes. Let $S_5(A)$ be the family of 5-subsets of A and, for $X \in S_5(A)$, let H_X be the hyperplane containing X and a_X be the point of $H_X \cap (P_f \setminus A)$. For two distinct 5-subsets $X, Y \in S_5(A)$, we have $a_X = a_Y$ only if $|X \cap Y| = 3$. Moreover, it is not difficult to see that, given $X, Y \in S_5(A)$ with $|X \cap Y| = 3$, there exists exactly one $Z \in S_5(A)$ such that $|X \cap Z| = |Y \cap Z| = 3$. Therefore, the function α sending $X \in S_5(A)$ to $\alpha(X) = a_X$ has fibers of size at most 3. Consequently, the image $Im(\alpha)$ of α contains at least $|S_5(A)|/3 = 21/3 = 7$ elements. However, $Im(\alpha) \subseteq P_f \setminus A$ and $|P_f \setminus A| = 5$. We have reached a contradiction. Claim (1) is proved. We may assume to have chosen indices in such a way that $\{a_1,...,a_6\}$ is the unique 6-subset of A contained in a hyperplane. Clearly, we may also assume that $a_1 = b_1 = p$, say. For i = 2,...12, let L_i be the line of $PG(V_2)$ through p and a_i , and M_i be the line through p and b_i . Thus $(L_2,...,L_{12})$ and $(M_2,...,M_{12})$ yield embeddings of Σ_1 in the star of p. Both these embeddings satisfy (S1). Therefore, by (A) for i = 1, there exists an automorphism of $PG(V_2)$ that fixes p and maps $\{M_2,...,M_{12}\}$ onto $\{L_2,...,L_{12}\}$. So, (2) We may also assume that $b_i \in L_i$ for i = 2, 3, ..., 12. As $\bigcup_{i=2}^6 L_i$ is contained in a hyperplane, $\{b_1, ..., b_6\}$ is the unique 6-subset of B contained in a hyperplane (compare (1)). Let L be the line through a_6 and a_7 , let a_6' be one of the two points of $L \setminus \{a_6, a_7\}$ and put $A' = \{p, a_2, ..., a_5, a_6', a_7\}$. Then $|H \cap A'| \leq 5$ for every hyperplane H of $PG(V_2)$. Accordingly, we can take $(p, a_2, ..., a_5, a_6', a_7)$ as a coordinate system, where $p, a_2, ..., a_5, a_6'$ form the basis and a_7 is the unit point. Similarly, denoted by M the line through b_6 and b_7 and chosen a point $b_6' \in M \setminus \{b_6, b_7\}$, the sequence $(p, b_2, ..., b_5, b_6', b_7)$ is a coordinate system, where $(p, b_2, ..., b_5, b_6')$ is the basis and b_7 is the unit point. Consequently, there exists a linear mapping h of V_2 fixing p and sending b_i to a_i for i = 2, 3, 4, 5, 7 and b_6' to a_6' . Clearly, h maps M onto L and stabilizes the hyperplane $H_0 := \langle L_1, L_2, ..., L_5 \rangle$ (which is the unique hyperplane meeting A in 6 points). However, $b_6 = M \cap H_0$ and $a_6 = L \cap H_0$. Hence $h(b_6) = a_6$. (3) We may assume that $b_i = a_i$ for i = 1, 2, ..., 7 and $b_i \in L_i$ for i = 8, 9, ..., 12. (Proof of (3).) Modulo applying a linear transformation h as in the previous paragraph, we may assume that $b_i = a_i$ for i = 1, 2, ..., 7. If h induces the identity mapping on the star of p, then we are done. Otherwise, h induces a non-trivial homology h_p on the star of p. The center of h_p is the line L_7 and the axis of h_p is the set of lines of H_0 through p. However, in this case, we can consider the non-trivial homology h_0 of $PG(V_2)$ with center a_7 and axis H_0 . The composition h_0h induces the identity on the star of p and maps $b_2, b_3, ..., b_7$ on $a_2, a_3, ..., a_7$ respectively. Claim (3) is proved. We now turn back to the isomorphism $\omega: \Sigma_f \to \Sigma_g$ considered at the beginning of the proof. Modulo composing ω with the linear transformations considered in the previous paragraphs, ω stabilizes $a_i = b_i$ for i = 1, 2, ..., 7. (4) $$\omega(a_i) = b_i$$ for $i = 8, 7, ..., 12$. (Proof of (4).) Let π be the projection of $PG(V_2) \setminus \{p\}$ onto the star of p. By claim (3), π maps both Σ_f and Σ_g onto a copy Σ_p of Σ_1 with $\{L_2, L_3, ..., L_{12}\}$ as the point-set. It is also clear that there exist a unique automorphism ω_p of Σ_p such that $\pi\omega = \omega_p\pi$. As ω fixes $a_i = b_i$ for i = 1, 2, ..., 7, ω_p fixes six points of Σ_p , namely $L_2, L_3, ..., L_7$. This forces ω_p to be the identity. Hence $\omega(a_i) = b_i$ for i = 8, 9, ..., 12, as claimed in (4). The next claim finishes the proof of (B2). (5) $$b_i = a_i$$ for $i = 1, 2, ..., 12$. (Proof of (5).) In view of (3), we only must prove that $b_i = a_i$ for i > 7. The set $A \setminus \{p\}$ contains 6 subsets of size 5. Just one of them is contained in H_0 . So, denoted by \mathcal{X} the set of 5-subsets of A that are not contained in H_0 , we have $|\mathcal{X}| = 5$. Given $X \in \mathcal{X}$, let H_X be the hyperplane of $PG(V_2)$ spanned by X. Then H_X contains exactly one of the points $a_8, a_9, ..., a_{12}$ and exactly one of $b_8, b_9, ..., b_{12}$. Moreover, $p \not\in H_X$, as $H_X \neq H_0$ and H_0 is the unique hyperplane of $PG(V_2)$ that contains six points of A. For a given $X \in \mathcal{X}$, two indices $i(X), j(X) \in \{8, 9, ..., 12\}$ are uniquely determined such that $a_{i(X)}$ and $b_{j(X)}$ are the points of $(H_X \cap P_f) \setminus A$ and $(H_X \cap P_g) \setminus A$ respectively. (Recall that $A = \{a_1, a_2, ..., a_7\} = \{b_1, b_2, ..., b_7\} = B$, by claim (3).) We have $\omega(X) = X$ by claim (4). Hence $H_X = \omega(H_X)$. Consequently, $b_{j(X)} = \omega(a_{i(X)})$. Therefore j(X) = i(X) = k, say, by (4). Accordingly, $\{b_k, a_k\} \subseteq H_X \cap L_k$. However, H_X meets L_k in precisely one point, as $p \notin H_X$. Therefore $b_k = a_k$. On the other hand, the function mapping $X \in \mathcal{X}$ onto i(X) = i(X) is a bijection from \mathcal{X} to $\{8, 9, ..., 12\}$. Therefore, $b_k = a_k$ for every k = 8, 9, ..., 12. Corollary 2.3 For $i = 0, 1, 2, \Delta_i$ admits a unique projective embedding in $PG(V_i^*)$. ## 3 A survey of $Af.Af^*$ -geometries An $Af.Af^*$ -geometry of order s is a geometry with diagram and orders as follows: $$(Af.Af^*) \qquad \underbrace{\begin{array}{ccc} Af & Af^* \\ s-1 & s & s-1 \\ \text{points} & \text{lines} & \text{planes} \end{array}}$$ The elements of an $Af.Af^*$ -geometry are called *points*, *lines* and *planes*, as indicated in the above picture. The *diameter* of an $Af.Af^*$ -geometry is the diameter of its collinearity graph. In this paper we are only interested in finite $Af.Af^*$ -geometries. Accordingly, s is assumed to be finite. Note that the finiteness of s implies the finiteness of the
geometry, as it follows from the next proposition. **Proposition 3.1** (Del Fra and Pasini [12, 4.7]) Every $Af.Af^*$ -geometry has diameter $d \leq 2$. A few classes of $Af.Af^*$ -geometries are described in the next three subsections. We will turn to general properties of $Af.Af^*$ -geometries in Subsection 3.4. #### 3.1 Bi-affine geometries and their quotients Bi-affine geometries can be defined for any rank $n \geq 3$, but we are only interested in the rank 3 case here. Given a prime power q, a bi-affine geometry of order q (and rank 3) is the induced subgeometry $\Sigma(p_0, \pi_0)$ of a projective geometry $\Sigma = PG(3, q)$ obtained by removing a distinguished point p_0 of Σ (called the pole at infinity of $\Sigma(p_0, \pi_0)$), a distinguished plane π_0 of Σ (called the plane at infinity of $\Sigma(p_0, \pi_0)$), all lines and planes of Σ through p_0 and all points and lines of π_0 . We say that $\Sigma(p_0, \pi_0)$ is of flag-type or non-flag-type according to whether $p_0 \in \pi_0$ or $p_0 \notin \pi_0$. Clearly, $\Sigma(p_0, \pi_0)$ is an $Af.Af^*$ -geometry of order q and it is flag-transitive, with automorphism group isomorphic to the stabilizer of p_0 and π_0 in $P\Gamma L(4, q) = \operatorname{Aut}(\Sigma)$. The subgroup $\operatorname{Aut}_{\text{lin}}(\Sigma(p_0, \pi_0))$ of $\operatorname{Aut}(\Sigma(p_0, \pi_0))$ induced by the stabilizer of p_0 and π_0 in PGL(4, q) also acts flag-transitively on $\Sigma(p_0, \pi_0)$. For the rest of this subsection Z stands for the center of $\operatorname{Aut}_{\text{lin}}(\Sigma(p_0, \pi_0))$. Flag-transitive quotients of $\Sigma(p_0, \pi_0)$ are obtained by factorizing by subgroups of Z. The quotient $\Sigma(p_0, \pi_0)/Z$ is the minimal one. In the flag-type case (namely $p_0 \in \pi_0$) the group Z has order q and is induced by the group of all elations of Σ with axis π_0 and center p_0 . In this case the minimal quotient $\Sigma(p_0, \pi_0)/Z$ is isomorphic to the canonical gluing of two copies of AG(2, q) (see the next subsection). On the other hand, if $p_0 \notin \pi_0$ then Z has order q-1 and $\Sigma(p_0, \pi_0)/Z$ is isomorphic to the anti-flag geometry of the projective plane $\pi_0 \cong PG(2, q)$ (see Subsection 3.3). Bi-affine geometries are simply connected, as it follows from Proposition 3.3 of Subsection 3.4. Accordingly, all quotients of $\Sigma(p_0, \pi_0)$ are obtained by factorizing by suitable subgroups of $\operatorname{Aut}(\Sigma(p_0, \pi_0))$ (see [18, Theorem 12.56]). Moreover, if $X < \operatorname{Aut}(\Sigma(p_0, \pi_0))$ defines a quotient of $\Sigma(p_0, \pi_0)$, then no two collinear points of $\Sigma(p_0, \pi_0)$ belong to the same orbit of X and, if two planes of $\Sigma(p_0, \pi_0)$ belong to the same orbit of X, then they meet trivially in $\Sigma(p_0, \pi_0)$. It follows that X, regarded as a subgroup of $\operatorname{Aut}(\Sigma)$, fixes all lines through p_0 and all points of π_0 . Namely, $X \leq Z$. So, we have proved the following: **Proposition 3.2** All quotients of $\Sigma(p_0, \pi_0)$ are obtained by factorizing by subgroups of the center Z of $\operatorname{Aut}_{\lim}(\Sigma(p_0, \pi_0))$. In particular, all quotients of $\Sigma(p_0, \pi_0)$ are flag-transitive. The following is also worth to be mentioned. Suppose that $p_0 \in \pi_0$. Then, regarding π_0 as the plane at infinity of AG(3,q), $\Sigma(p_0,\pi_0)$ is the induced subgeometry of AG(3,q) obtained by removing all lines with p_0 as the point at infinity and every plane the line at infinity of which contains p_0 . In other words, $\Sigma(p_0,\pi_0)$ is the affine expansion of the punctured projective plane obtained by removing from $\pi_0 \cong PG(2,q)$ a point p_0 and all lines through it. We finish this survey of bi-affine geometries with a remark on collinearity graphs. The collinearity graph of $\Sigma(p_0, \pi_0)$ is a complete $(q^2 + \varepsilon(q+1))$ -partite graph, with classes of size $q - \varepsilon$, where ε stands for 0 or 1 according to whether p_0 belongs to π_0 or not. Clearly, given a subgroup $X \leq Z$ of order $\lambda = |X|$, the collinearity graph of the quotient $\Sigma(p_0, \pi_0)/X$ is a complete $(q^2 + \varepsilon(q+1))$ -partite graph with classes of size $(q - \varepsilon)/\lambda$. In particular, when X = Z that graph is a complete graph with $q^2 + \varepsilon(q+1)$ vertices. #### 3.2 Gluings Gluings have been introduced by Del Fra, Pasini and Shpectorov [13], in view of a classification of $Af.A_{n-2}.Af^*$ -geometries. Later, a general theory of gluings has been developed by Buekenhout, Huybrechts and Pasini [4]. However, we will only consider gluings of two affine planes in this paper. Given two affine planes \mathcal{A}_1 and \mathcal{A}_2 of the same order s, with lines at infinity \mathcal{A}_1^{∞} and \mathcal{A}_1^{∞} and a bijection α from \mathcal{A}_1^{∞} to \mathcal{A}_2^{∞} , the gluing $\mathrm{Gl}_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ of \mathcal{A}_1 with \mathcal{A}_2 by α is the $Af.Af^*$ -geometry defined as follows: the points of \mathcal{A}_1 and \mathcal{A}_2 are taken as points and planes, respectively; the lines of $\mathrm{Gl}_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ are the pairs (L_1, L_2) of lines of \mathcal{A}_1 and \mathcal{A}_2 such that $\alpha(L_1^{\infty}) = L_2^{\infty}$, where L_i^{∞} is the point at infinity of L_i . Every point of $Gl_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ is declared to be incident with all planes. A point p_1 (a plane p_2) and a line (L_1, L_2) of $Gl_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ are incident precisely when $p_1 \in L_1$ (respectively, $p_2 \in L_2$). When $\mathcal{A}_1 \cong \mathcal{A}_2 \cong AG(2,q)$ and α is induced by an isomorphism from \mathcal{A}_1 to \mathcal{A}_2 , then the gluing $Gl_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ is said to be *canonical*. Up to isomorphism, there is only one canonical gluing of two copies of AG(2, q). That gluing is flag-transitive and it is isomorphic to the minimal quotient of a biaffine geometry of order q and flag-type (Del Fra, Pasini and Shpectorov [13]; see also Del Fra and Pasini [12, 2.1]). More generally, every canonical gluing of two copies of the same flag-transitive affine plane is flag-transitive. Many flag-transitive non-canonical gluings also exist. A classification of flag-transitive non-canonical gluings of two copies of AG(2,q) has been obtained by Baumeister and Stroth [1]. #### 3.3 Anti-flag geometries Given a projective plane \mathcal{P} of order s, let $\Delta(\mathcal{P})$ be the geometry of rank 3 defined as follows: the points and the planes of $\Delta(\mathcal{P})$ are the points and the lines of \mathcal{P} , whereas the lines of $\Delta(\mathcal{P})$ are the flags of \mathcal{P} . We say that a point p and a line L of \mathcal{P} are incident in $\Delta(\mathcal{P})$ when $p \notin L$. A flag (p_1, L_1) and a point p_2 (a line L_2) of \mathcal{P} are incident in $\Delta(\mathcal{P})$ precisely when $p_2 \in L_1$ but $p_2 \neq p_1$ (respectively, $p_1 \in L_2$ but $L_2 \neq L_1$). It is not difficult to see that $\Delta(\mathcal{P})$ is an $Af.Af^*$ -geometry of order s. We call it the anti-flag geometry of \mathcal{P} . (Note that the point-plane flags of $\Delta(\mathcal{P})$ are just the anti-flags of \mathcal{P} .) When \mathcal{P} is classical, then $\Delta(\mathcal{P})$ is isomorphic to the minimal quotient of the bi-affine geometry of non-flag-type (Del Fra, Pasini and Shpectorov [13]; also Del Fra and Pasini [12, 2.1]). In view of Kantor [15], an anti-flag geometry $\Delta(\mathcal{P})$ is flag-transitive if and only if \mathcal{P} is classical. #### 3.4 A few properties of $Af.Af^*$ -geometries All $Af.Af^*$ -geometries obtained as gluings are flat, namely all points are incident to all planes. In a flat $Af.Af^*$ -geometry of order s, every pair of points is incident with exactly s common lines. A similar situation occurs in anti-flag geometries: if Δ is an anti-flag geometry of order s, then Δ has diameter d=1 and every pair of points of Δ is incident with s-1 common lines. A situation completely different from the above is described below: (LL) no two distinct points are incident with two common lines. This property characterizes bi-affine geometries. Indeed: **Proposition 3.3** (Levefre & Van Nypelseer [17]) An $Af.Af^*$ -geometry is bi-affine if and only if it satisfies (LL). In the general case, the following holds: **Proposition 3.4** (Del Fra and Pasini [12, 4.6]) Let Δ be an $Af.Af^*$ -geometry of finite order s. Then there exists a positive integer $\lambda \leq s$ such that: - (1) if p_1 and p_2 are distinct collinear points, then there are exactly λ lines incident with both p_1 and p_2 ; - (2) if l_1 and l_2 are distinct lines with at least two points in common (whence $\lambda > 1$), then l_1 and l_2 have exactly λ points in common; - (3) if π_1 and π_2 are distinct planes with at least one line in common, then there are exactly λ lines incident with both π_1 and π_2 ; - (4) if l_1 and l_2 are distinct lines incident with at least two common planes (hence $\lambda > 1$), then l_1 and l_2 are incident with exactly λ common planes. Moreover, λ divides s(s-1). We call λ the *index* of the $Af.Af^*$ -geometry Δ . Clearly, $\lambda = 1$ if and only if Δ satisfies (LL), namely Δ is bi-affine (Proposition 3.3). Opposite situations are considered in the next proposition: **Proposition 3.5** (Del Fra and Pasini [12, 4.14, 5.1]) Let Δ be an Af.Af*-geometry of finite order s and index λ . Then: - (1) Δ has diameter d=1 if and only if $s-1 \leq \lambda \leq s$ - (2) Δ is flat if
and only if $\lambda = s$. **Proposition 3.6** (Del Fra and Pasini [12, 5.4, 5.6]) Let Δ be a flag-transitive $Af.Af^*$ -geometry of order s and index $\lambda \in \{s-1, s\}$. - (1) If $\lambda = s$ then Δ is a gluing of two affine planes. - (2) If $\lambda = s 1$ then Δ is an anti-flag geometry. Turning back to the case of diameter d=2, we mention the following: **Proposition 3.7** (Del Fra and Pasini [12, 4.15]) Let Δ be an $Af.Af^*$ -geometry of diameter d=2 and $\mathcal{G}(\Delta)$ be its collinearity graph. Then $\mathcal{G}(\Delta)$ is a complete n-partite graph, for a suitable integer $n \geq s^2$. Moreover, $\lambda |C| \leq q$ for every class C of the n-partition of $\mathcal{G}(\Delta)$. #### 3.5 Classical and nearly classical $Af.Af^*$ -geometries We say that an $Af.Af^*$ -geometry Δ of prime power order q is classical if $\Delta = \tilde{\Delta}/X$ for a bi-affine geometry $\tilde{\Delta} = \Sigma(p_0, \pi_0)$ and a subgroup X of the center of $\operatorname{Aut}_{\lim}(\Sigma(p_0, \pi_0))$. Let Δ be an $Af.Af^*$ -geometry of order s and index λ . For $\varepsilon \in \{0,1\}$, we say that Δ is nearly classical of ε -type if s is a prime power, λ divides $s - \varepsilon$, $(s^3 - \varepsilon)/\lambda$ is the number of points as well as the number of planes of Δ and the collinearity graph of Δ is a complete $(s^2 + \varepsilon(s+1))$ -partite graph with all classes of size $(s-\varepsilon)/\lambda$ (possibly, a complete graph with $s^2 + \varepsilon(s+1)$ vertices, when $\lambda = s - \varepsilon$). In short, Δ has the same parameters as a classical $Af.Af^*$ -geometry. For instance, if s is a prime power, all flat $Af.Af^*$ -geometries of order s are nearly classical of 0-type and all anti-flag geometries of order s are nearly classical of 1-type, but not all of these geometries are classical. ### 4 c-extensions of $Af.Af^*$ -geometries This section is devoted to $Af.Af^*.c^*$ -geometries, but we prefer to focus on their duals. So, troughout this section Γ is a geometry with diagram as follows and orders 1, q-1, q, q-1, where q is a prime power, say $q=p^n$ for a prime p and a positive integer n. Note that, given a 0-element x of Γ , the elements of Γ incident to x of type 1, 2 and 3 are respectively the points, lines and planes of the $Af.Af^*$ -geometry $\mathrm{Res}(x)$. On the other hand, the residues of the 3-elements of Γ are $c.Af^*$ -geometries. As recalled in the introduction of this paper, every $c.Af^*$ -geometry is an inversive plane. Therefore the residues of the 3-elements of Γ are inversive planes. Given a 1-element e and a 0-element x of Γ , if x is incident with e then we say that x belongs e, also that e lies on x, or that it passes through x. We denote by $\mathcal{G}(\Gamma)$ the collinearity graph of Γ , where the elements of type 0 and 1 are taken as points and lines, respectively. The adjacency relation of $\mathcal{G}(\Gamma)$ will be denoted by \sim . When we say that two 0-elements x, y are adjacent (or that they have distance d(x,y)=2) we mean that they are adjacent (respectively, at distance 2) in $\mathcal{G}(\Gamma)$. Given a 0-element x, we denote by x^{\perp} the set of 0-elements adjacent with x or equal to x. The multiplicity $\mu(x,y)$ of an edge $\{x,y\}$ of $\mathcal{G}(\Gamma)$ is the number of 1-elements that are incident with $\{x,y\}$. We say that Γ admits uniform multiplicity μ if $\mu(x,y)=\mu$ for every edge $\{x,y\}$ of $\mathcal{G}(\Gamma)$. We denote by $S(\Gamma)$ be the point-line geometry with the 3-elements of Γ as points and the 2-elements as lines. We also denote the collinearity graph of $S(\Gamma)$ by $\mathcal{G}^*(\Gamma)$ and its adjacency relation by \sim^* . Given a type i and an element x of type $t(x) \neq i$, we denote by $\sigma_i(x)$ the set of i-elements incident with x. Also, $\sigma_i(x, y) := \sigma_i(x) \cap \sigma_i(y)$. #### **Lemma 4.1** Assume the following: - (A1) for $\varepsilon \in \{0,1\}$ and a given divisor λ of $q \varepsilon$, Res(x) is nearly classical of ε -type and index λ , for every 0-element x of Γ ; - (A2) Γ admits uniform multiplicity μ . Then all the following hold: - (B1) $\varepsilon = 0$ and $\lambda = 1$, namely $\operatorname{Res}(x)$ is isomorphic to the bi-affine geometry of order q and flag-type, for every 0-element x. - (B2) μ divides q and is smaller than q. - (B3) $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with classes of size q/μ . (In particular, if $\mu = q$ then $\mathcal{G}(\Gamma)$ is a complete graph with $q^2 + 1$ vertices.) Accordingly, if N_i is the number of i-elements of Γ , then $$N_0 = (q^2 + 1)q/\mu$$, $N_1 = (q^2 + 1)q^4/2\mu$, $N_2 = (q^2 + 1)q^4/\mu$, $N_3 = q^4/\mu$. - (B4) For any three distinct 0-elements x, y, z with $y, z \in x^{\perp}$ and for any choice of $e \in \sigma_1(x, y)$ and $f \in \sigma_1(x, z)$, e and f are coplanar as points of $\operatorname{Res}(x)$ if and only if $y \sim z$. - (B5) The graph $\mathcal{G}^*(\Gamma)$ has diameter $d^* \leq 2$. **Proof.** Let k be the valency of $\mathcal{G}(\Gamma)$. Clearly, (1) $$k = (q^3 - \varepsilon)/\mu\lambda$$. Note also that, given two 0-elements x, y, the μ elements of $\sigma_1(x, y)$ form a coclique in the collinearity graph of the $Af.Af^*$ -geometry $\mathrm{Res}(x)$. Each of the maximal cocliques of the collinearity graph of $\mathrm{Res}(x)$ is partitioned in $(q - \varepsilon)/\mu$ cocliques as above. Hence μ divides $(q - \varepsilon)/\lambda$, namely (2) $\lambda \mu$ divides $q - \varepsilon$. We shall now prove the following: (3) the graph $\mathcal{G}(\Gamma)$ has diameter $d \leq 2$ and, if d = 2 and x, y are 0-elements at distance 2, then $|x^{\perp} \cap y^{\perp}| = (q^3 - \varepsilon)/\lambda \mu = k$. Suppose $d \geq 2$. Given two 0-elements x, y at distance 2, pick $z \in x^{\perp} \cap y^{\perp}$. If $e_1 \in \sigma_1(x, z)$ and $e_2 \in \sigma_1(y, z)$ with $e_1 \neq e_2$, then e_1 and e_2 belong to the same maximal coclique of the collinearity graph of Res(z). Therefore, given $e \in \sigma_1(z)$ and regarded e, e_1, e_2 as points of Res(x), e is collinear with e_1 in Res(x) if and only if it is collinear with e_2 . As the common neighbourhood of two non-collinear points of Res(z) has size $(q^3 - q)/\lambda$, we obtain that $$(*) \quad |x^{\perp} \cap z^{\perp} \cap y^{\perp}| \ge (q^3 - q)/\lambda \mu.$$ With e as above, suppose that e is coplanar with e_1 and e_2 in $\mathrm{Res}(x)$. Let u be the 0-element of e different from z and v a 0-element adjacent with y but at distance 2 from u. Let $f_1 \in \sigma_1(y,u)$ and $f_2 \in \sigma_1(y,v)$. As d(z,v)=2, f_1 and f_2 belong to the same maximal coclique of the collinearity graph of $\mathrm{Res}(y)$. On the other hand, the 0-elements z,y and u are incident with a common 2-element. Hence f_1 and f_2 are collinear as points of $\mathrm{Res}(y)$. Therefore $\sigma_2(f_1,f_2) \neq \emptyset$. So, at least $(q^3-q)/\lambda \mu$ elements of $z^{\perp} \cap y^{\perp}$ belong to v^{\perp} . This implies that d=2. The equality $|x^{\perp} \cap y^{\perp}| = k$ remains to be proved. With z, e and u as above, let $f_1 \in \sigma_1(u, x)$ and $f_2 \in \sigma_1(u, y)$. Let $f \in \sigma_1(u)$ be such that f, regarded as a point of Res(u), is not collinear with e. Then f is collinear with either of f_1 and f_2 . Therefore the 0-element of f different from u belongs to $x^{\perp} \cap y^{\perp} \cap u^{\perp}$, but not to z^{\perp} . As the maximal coclique of Res(u) containing e contains $(q - \varepsilon)/\lambda - 1$ points of Res(u) different from e, $|(u^{\perp} \cap x^{\perp} \cap y^{\perp}) \setminus z^{\perp}| \geq (q - \varepsilon)/\lambda \mu - 1$. By this inequality and (*), $|x^{\perp} \cap y^{\perp}| \geq (q^3 - q)/\lambda \mu + (q - \varepsilon)/\lambda \mu = (q^3 - \varepsilon)/\lambda \mu$. However, $(q^3 - \varepsilon)/\lambda \mu$ is just the valency of $\mathcal{G}(\Gamma)$, by (1). Therefore $|x^{\perp} \cap y^{\perp}| = (q^3 - q)/\lambda \mu$. Claim (3) is proved. (4) Suppose that $\mathcal{G}(\Gamma)$ has diameter d=2. Then $\varepsilon=0$, $\lambda=1$, $\mu< q$ and $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with all classes of size q/μ . (Proof of (4).) By (3), the number of common neighbours of two 0-elements at distance 2 is equal to the valency of $\mathcal{G}(\Gamma)$. Hence $\mathcal{G}(\Gamma)$ is a complete N-partite graph, for some positive integer N. Moreover, $\mathcal{G}(\Gamma)$ is regular. Hence all classes of $\mathcal{G}(\Gamma)$ have the same size, say h. So, Γ has $N_0 := h + (q^3 - \varepsilon)/\lambda \mu$ 0-elements and h divides $(q^3 - \varepsilon)/\lambda \mu$. Given two adjacent 0-elements x, y and a 1-element $e \in \sigma_1(x,y)$, the 1-elements on x that contain 0-elements in the same class as y belong to the maximal coclique of $\mathrm{Res}(x)$ containing e. Hence $h \leq (q - \varepsilon)/\lambda \mu$, namely $h\lambda \mu \leq q - \varepsilon$. Also, $\lambda \mu < q - \varepsilon$ as h > 1 (note that d = 2, by assumption). Clearly, $N_0(q^3 - \varepsilon)/\lambda = N_3(q^2 + 1)$. Accordingly, $q^2 + 1$ divides $(q^3 - \varepsilon)(q^3 - \varepsilon + h\lambda \mu)$. This forces $q^2 + 1$ to divide $(q + \varepsilon)(q + \varepsilon - h\lambda \mu) = q^2 + 2q\varepsilon + \varepsilon^2 - (q + \varepsilon)h\lambda \mu$. Therefore, $q^2 + 1$ divides $(q + \varepsilon)h\lambda \mu + 1 - 2q\varepsilon - \varepsilon^2$. Assume first $\varepsilon = 1$. Then $q^2 + 1$ divides $(q + 1)h\lambda \mu - 2q$. However, this contradicts the inequality $h\lambda \mu \leq q$. Therefore $\varepsilon = 0$. Hence $q^2 + 1$ divides $qh\lambda \mu +
1$. This implies that $h\lambda \mu = q$. As h > 1, we have $\lambda \mu < q$. Also, $N_0 = q(q^2 + 1)/\lambda \mu$. The equality $\lambda=1$ remains to be proved. Since $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with classes of size $q/\lambda\mu$ and Γ has multiplicity μ , we obtain that $$N_1 = \frac{q^4(q^2 + 1)}{2\lambda^2 \mu}.$$ By counting $\{1,2\}$ -flags in two ways, we obtain that $N_1(q^2+q)=N_2\binom{q+1}{2}$. Hence $$N_2 = \frac{q^4(q^2+1)}{\lambda^2 \mu}.$$ However, we can also compute N_2 by counting $\{0, 2\}$ -flags. In this way, recalling that $N_0 = q(q^2+1)/\lambda\mu$ and that $(q^3/\lambda)((q^3-q)/\lambda)/q(q-1)$ is the number of 2-elements on a given 0-element of Γ , we obtain that $$N_2 = \frac{q^4(q^2+1)}{\lambda^3 \mu}.$$ Comparing the two expressions obtained for N_2 we see that $\lambda = 1$. All claims of (4) are proved. (5) Suppose that $\mathcal{G}(\Gamma)$ has diameter d=1. Then $\varepsilon=0$, $\lambda=1$, $\mu=q$ and Γ is flat, namely every 0-element of Γ is incident with all 3-elements (hence Γ has q^2+1 elements of type 0 and q^3 elements of type 3). (Proof of (5).) As d=1, Γ has exactly $N_0=1+(q^3-\varepsilon)\lambda\mu$ 0-elements. As $N_0(q^3-\varepsilon)/\lambda=N_3(1+q^2)$, we obtain that $$(1 + \frac{q^3 - \varepsilon}{\lambda \mu}) \frac{q^3 - \varepsilon}{\lambda} = N_3 (1 + q^2).$$ This forces $1+q^2$ to divide $2q\varepsilon+\varepsilon^2-\lambda\mu(q+\varepsilon)-1$. If $\varepsilon=0$, then $\lambda\mu$ is a divisor of q and the fact that $1+q^2$ divides $2q\varepsilon+\varepsilon^2-\lambda\mu(q+\varepsilon)-1$ forces $\lambda\mu=q$. On the other hand, if $\varepsilon=1$ then $\lambda\mu$ divides q-1 and $2q\varepsilon+\varepsilon^2-\lambda\mu(q+\varepsilon)-1=2q-\lambda\mu(q+1)$. It is not difficult to see that, for any divisor δ of q-1, $1+q^2$ does not divide $2q-\delta(q+1)$. So, $\lambda\mu=q$ and $\varepsilon=0$. Therefore Γ has q^2+1 elements of type 0 and q^3/λ elements of type 3. Hence Γ is flat. Counting $\{0,1\}$ -flags in two ways, one can see that Γ has $N_1=q^3(q^2+1)/2\lambda=q^2(q^2+1)\mu/2$ elements of type 1. As every 1-element is in q^2+q elements of type 2 and every 2-element contains (q+1)q/2 elements of type 1, the number of 2-elements of Γ is $N_2=q^3(q^2+1)/\lambda$. However, we can compute that number also by counting the number of $\{0,2\}$ -flags in two ways, thus obtaining that $$(q^2+1)\frac{q^3\lambda(q^3/\lambda-q/\lambda)}{q(q-1)} = N_2(q+1).$$ As $N_2=q^3(q^2+1)/\lambda$, the above implies $\lambda=1$. All claims contained in (5) are proved. (6) $$\mu < q \text{ (hence } d = 2).$$ (Proof of (6).) Suppose to the contrary that $\mu=q$. By (4) and (5), Γ is flat. Hence Γ has exactly q^3 elements of type 3. For a pair $\{\alpha,\beta\}$ of 3-elements, let $\nu(\alpha,\beta):=|\sigma_2(\alpha,\beta)|$. Suppose that $\sigma_2(\alpha,\beta)\neq\emptyset$. Let $X,Y\in\sigma_2(\alpha,\beta)$ be incident with a common 0-element, say x. As $\lambda=1$, $\mathrm{Res}(x)$ is a bi-affine geometry. The 2-elements X and Y are lines of that bi-affine geometry. However, they are contained in two distinct planes of $\mathrm{Res}(x)$, namely α and β . This is impossible, unless X=Y. Therefore, if $X\neq Y$ then $\sigma_0(X,Y)=\emptyset$. Accordingly, $\sigma_2(\alpha,\beta)$ is a set of mutually disjoint blocks of the inversive plane $\mathrm{Res}(\alpha)$. Every block of $\mathrm{Res}(\alpha)$ has q+1 points and $\mathrm{Res}(\alpha)$ has q^2+1 points. Hence $\nu(\alpha,\beta)(q+1)\leq q^2+1$. This forces $\nu(\alpha,\beta)\leq q-1$. As $\mathrm{Res}(\alpha)$ contains $(q^2+1)q$ elements of type 2 and each of them is in q-1 elements of type 3 different from α , the number of neighbours of α in $\mathcal{G}^*(\Gamma)$ is at least $(q^2+1)q$. Accordingly, Γ admits at least $1+(q^2+1)q=q^3+q+1>q^3$ elements of type 3. This is a contradiction, since Γ contains exactly q^3 elements of type 3. Hence $\mu< q$, as claimed in (6). Claims (B1)-(B4) of the lemma follow from (1)-(6). Claim (B5) remains to be proved. Given two 3-elements α and β of Γ , let $x \in \sigma_0(\alpha)$ and $y \in \sigma_0(\beta)$. $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph, by (B3). Hence we can choose x and y in such a way that $x \sim y$. Let $e \in \sigma_1(x,y)$. Then $|\sigma_3(e)| = q^2$. By (B1), Res(x) is a bi-affine geometry of flag-type. In the bi-affine geometry Res(x), but with 3- and 2-elements regarded as points and lines, we see that α is collinear with at least q^2-1 points of Res(x). Hence α is adjacent in $\mathcal{G}^*(\Gamma)$ with at least q^2-1 elements of $\sigma_3(e)$. Similarly, β is adjacent with at least q^2-1 elements of $\sigma_3(e)$. As $q^2-2>0$, at least one of the 3-elements on e is adjacent with either of α and β . Therefore, $d^* \leq 2$. **Lemma 4.2** Under the hypotheses of Lemma 4.1, we have $\mu = 1$ if and only $S(\Gamma)$ is a semi-linear space. **Proof.** Suppose that $S(\Gamma)$ is a semi-linear space. Then no two 3-elements are incident with the same pair of distinct 2-elements. It follows that Γ admits at least $N_3 = 1 + (q^2 + 1)q(q - 1)$ elements of type 3. However, $N_3 = q^4/\mu$ by (B3) of Lemma 4.1. Hence $1 + (q^2 + 1)q(q - 1) \leq q^4/\mu$. If $\mu > 1$, the previous inequality implies that $q^2 + 1 \leq q$, which is impossible. Hence $\mu = 1$. Conversely, let $\mu=1$. We recall that, by (B1) of Lemma 4.1, $\operatorname{Res}(x)\cong \Delta$ for a given bi-affine geometry Δ of flag-type, for every 0-element x. In particular, the Intersection Property holds in $\operatorname{Res}(x)$. This fact and the hypothesis $\mu=1$, combined with Lemma 7.25 of [18], imply that Γ satisfies the Intersection Property. Hence $\mathcal{S}(\Gamma)$ is semi-linear. In the next lemma, $\mathcal{A}(\Gamma)$ is the point-line geometry obtained from $\mathcal{S}(\Gamma)$ by keeping all points and lines of $\mathcal{S}(\Gamma)$ but adding the maximal cocliques of the collinearity graph of $\mathrm{Res}(x)$ as additional lines, where x ranges in the set of 0-elements of Γ and the 3- and 2-elements of Γ incident with x are regarded as points and lines of $\mathrm{Res}(x)$. The lines of $\mathcal{A}(\Gamma)$ defined in this latter way will be called $new\ lines$, whereas the lines of $\mathcal{S}(\Gamma)$ will be called $old\ lines$ of $\mathcal{A}(\Gamma)$. **Lemma 4.3** Under the hypotheses of Lemma 4.1, suppose that $\mu = 1$. Then Γ satisfies the Intersection Property, $\mathcal{G}^*(\Gamma)$ has diameter $d^* = 2$ and $\mathcal{A}(\Gamma)$ is a linear space with q^4 points and the same parameters as AG(4,q), namely q points on each line and $q^3 + q^2 + q + 1$ lines on each point. **Proof.** As remarked in the second part of the proof of Lemma 4.2, Γ satisfies the Intersection Property (IP for short) and $\operatorname{Res}(x) \cong \Delta$ for a given bi-affine geometry Δ of flag-type, for every 0-element x. With N_0, N_1, N_2 and N_3 as in (B3) of Lemma 4.1, the hypothesis $\mu = 1$ implies the following: - (1) $N_0 = (q^2 + 1)q$, $N_1 = (q^2 + 1)q^4/2$, $N_2 = (q^2 + 1)q^4$ and $N_3 = q^4$. - (2) The graph $\mathcal{G}^*(\Gamma)$ has valency $k = (q^2 + 1)q(q 1)$. (Proof of (2).) Given a 3-element α , the inversive plane $\operatorname{Res}(\alpha)$ contains exactly $(q^2+1)q$ elements of type 2. Each of these 2-elements is incident with q-1 elements of type 3 different from α . As IP holds in Γ , no two 3-elements are incident with the same pair of distinct 2-elements. Hence $k=(q^2+1)q(q-1)$, as claimed in (2). As $1 + (q^2 + 1)q(q - 1) < q^4 = N_3$, $\mathcal{G}^*(\Gamma)$ is not a complete graph. Hence $\mathcal{G}^*(\Gamma)$ has diameter $d^* = 2$, by (B5) of Lemma 4.1. (3) Given two 3-elements α and β , if $\alpha \sim^* \beta$ then $|\sigma_0(\alpha, \beta)| = q + 1$, otherwise $|\sigma_0(\alpha, \beta)| = 1$. (Proof of (3).) Suppose first that $\alpha \sim^* \beta$ and let A be the 2-element of $\sigma_2(\alpha, \beta)$. By IP, A is unique and $\sigma_0(\alpha, \beta) = \sigma_0(A)$. Hence $|\sigma_0(\alpha, \beta)| = q + 1$, as $|\sigma_0(A)| = q + 1$. Property IP also implies that, if $|\sigma_0(\alpha, \beta)| > 1$, then $\alpha \sim^* \beta$. We now pick a 3-element α . By (2), α is adjacent with $k=(q^2+1)q(q-1)$ elements of type 3. Let h be the number of 3-elements β such that α and β have exactly one 0-element in common. We have $|\sigma_0(\alpha)| = q^2 + 1$ and, if $x \in \sigma_0(\alpha)$, then the bi-affine geometry $\operatorname{Res}(x)$ (which is of flag-type, by (B1) of Lemma 4.1) contains exactly q-1 elements of type 3 non-adjacent with α in $\mathcal{G}^*(\Gamma)$. In view of the previous paragraph, these 3-elements have distance 2 from α in $\mathcal{G}^*(\Gamma)$. Also, none of them can be contributed by two different 0-elements of α . Therefore, $h=(q^2+1)(q-1)$. Hence $$k + h = (q^2 + 1)q(q - 1) + (q^2 + 1)(q - 1) = (q^2 + 1)(q^2 - 1) = q^4 - 1.$$ As q^4 is the number of 3-elements of Γ (see Lemma 4.1, (B3)), every 3-element at distance 2 from α in $\mathcal{G}^*(\Gamma)$ shares a 0-element with α . Claim (3) is proved. By claim (3) and the definition of $\mathcal{A}(\Gamma)$, any two 3-elements of Γ are collinear in $\mathcal{A}(\Gamma)$. Moreover, if $|\sigma_0(\alpha,\beta)| > 1$, then $\alpha \sim^* \beta$. Hence $\mathcal{A}(\Gamma)$ is a linear space. Clearly, it has the same parameters as AG(4,q). #### **Lemma 4.4** Assume the following: - (A1) for every 0-element x of Γ , the Af. Af*-geometry Res(x)
is nearly classical; - (A2) Aut(Γ) is flag-transitive. Then: - (B1) For every 0-element x, Res(x) is isomorphic to the bi-affine geometry of flagtype and order q. - (B2) Γ satisfies the Intersection Property. In particular, it admits uniform multiplicity $\mu = 1$. - (B3) $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with all classes of size q. - (B4) Let H be kernel of the action of $\operatorname{Aut}(\Gamma)$ on the set of classes of the (q^2+1) partition of $\mathcal{G}(\Gamma)$. Then $|H|=q^4\gamma$ for a divisor γ of q-1 (possibly, $\gamma=1$) and H admits a normal subgroup T of order q^4 acting regularly on the set of 3-elements of Γ . **Proof.** As $\operatorname{Aut}(\Gamma)$ is flag-transitive and $\operatorname{Res}(x)$ is nearly classical for every 0-element x, Γ satisfies the hypotheses of Lemma 4.1. In particular, it admits uniform multiplicity μ . Therefore, by Lemma 4.1, $\operatorname{Res}(x) \cong \Delta$ where Δ is the bi-affine geometry of flag-type and order q, as claimed in (B1). Henceforth, given an element x of Γ , we denote by G_x its stabilizer in $G := \operatorname{Aut}(\Gamma)$ and by K_x the elementwise stabilizer of $\operatorname{Res}(x)$ in G_x . So, G_x/K_x is the group induced by G_x in $\operatorname{Res}(x)$. If x, y, z, ... are elements of Γ , we put $G_{x,y} := G_x \cap G_y$, $G_{x,y,z} := G_x \cap G_y \cap G_z$, etc. By Delandtsheer [11] (see also [9] and [10]) we have the following: (1) For every 3-element α of Γ , $\operatorname{Res}(\alpha)$ is isomorphic to the inversive plane associated with the elliptic quadric $Q_3^-(q)$, and $PSL(2,q^2) \leq G_{\alpha}/K_{\alpha} \leq P\Gamma L(2,q^2)$. Consequently, - (2) $PSL(2,q) \leq G_{\alpha,A}/K_{\alpha} \leq P\Gamma L(2,q) Z_n$ for every $\{2,3\}$ -flag $\{A,\alpha\}$, where Z_n is a cyclic group of order n. (Recall that, according to the conventions stated at the beginning of this section, n is the exponent of $q = p^n$ as a power of p.) - (3) $\mu = 1$. (Proof of (3).) Given two 3-elements α and β with $\alpha \sim^* \beta$, put $\nu := |\sigma_3(\alpha, \beta)|$. No two elements $A, B \in \sigma_3(\alpha, \beta)$ can have any 0-element in common. Indeed, if $x \in \sigma_0(A, B)$, then A and B are distinct lines of the bi-affine geometry $\operatorname{Res}(x)$ contained in two distinct planes α, β of $\operatorname{Res}(x)$, which is impossible. Since no two elements of $\sigma_3(\alpha, \beta)$ have any 0-element in common, $\nu \leq q - 1$. Given $A \in \sigma_3(\alpha, \beta)$, we have: (i) $$|G_{\alpha,A}:G_{\alpha,\beta,A}| \leq q-1$$. (Indeed q-1 is the number of 3-elements on A different from α .) However, it is well known that PSL(2,q) does not admit any proper subgroup of index less than q (see Huppert [14]). Hence Claim (2) and (i) force the group $X:=G_{\alpha,\beta,A}K_{\alpha}/K_{\alpha}$ to contain a copy L of PSL(2,q). On the other hand, $|G_{\alpha,\beta}:G_{\alpha,\beta,A}| \leq \nu \leq q-1$. Hence X has index at most ν in $Y:=G_{\alpha,\beta}K_{\alpha}/K_{\alpha}$. Therefore the subgroup $L\cong PSL(2,q)$ of X has index at most $\nu\delta$ in Y, where δ is the index of L in X. In view of claim (2), $\delta \leq (q-1)n^2/\theta$, where $\theta:=|G_{\alpha,A}:G_{\alpha,\beta,A}|$. As $\nu \leq q-1$, (ii) $$|Y:L| \le (q-1)^2 n^2/\theta$$. Consequently, Y does not contain $PSL(2, q^2)$. On the other hand, L is maximal in $PSL(2, q^2)$. Hence (iii) $$Y \cap PSL(2, q^2) = L$$. By (ii) and (iii), Y is a subgroup of the stabilizer $P\Gamma L(2,q) \cdot Z_n$ of A in $P\Gamma L(2,q^2) = \operatorname{Aut}(\operatorname{Res}(\alpha))$. Therefore Y stabilizes A. The same conclusion holds if we replace A with any other element of $\sigma_3(\alpha,\beta)$. Hence Y stabilizes every element of $\sigma_3(\alpha,\beta)$. As $L \leq Y$, the same holds for L. However, $L \cong PSL(2,q)$ stabilizes exactly one block of the inversive plane $\operatorname{Res}(\alpha) \cong \mathcal{I}(O)$. In order to avoid a contradiction, we must conclude that $\nu = 1$, namely $|\sigma_3(\alpha,\beta)| = 1$. So, $\mathcal{S}(\Gamma)$ is a semi-linear space. By Lemma 4.2, $\mu = 1$. As $\mu=1$, we obtain (B3) from Lemma 4.1 and Γ satisfies the Intersection Property IP (as remarked in the proof of Lemma 4.3). As $\mu=1$, every 1-element is uniquely determined by its pair of 0-elements. If x,y are the two 0-elements of a 1-element e, we write e=xy. (4) $K_x = 1$ for every 0-element x. (Proof of (4).) K_x stabilizes all 0-elements of $\mathcal{G}(\Gamma)$ except possibly those that belong to the same class as x. Therefore, and since $\mu = 1$, given $y \in x^{\perp}$, $K_x K_y / K_y$ is seen to stabilize all points of the biaffine geometry Res(y), except possibly those that belong to a distinguished maximal coclique of the collinearity graph of $\operatorname{Res}(y)$. Clearly, this forces $K_x K_y / K_y$ to fix all points of $\operatorname{Res}(y)$. Hence $K_x \leq K_y$. By symmetry, $K_y \leq K_x$. Therefore, $K_x = K_y$. The connectedness of $\mathcal{G}(\Gamma)$ now implies that $K_x = 1$. With x as above, we have $\operatorname{Aut}(\operatorname{Res}(x)) = [U_x:(Z_{q-1} \times PGL(2,q))]Z_n$, where U_x is a group of order q^5 , isomorphic to the multiplicative group formed by the following matrices: $$\begin{bmatrix} 1 & r_1 & r_2 & t \\ 0 & 1 & 0 & s_1 \\ 0 & 0 & 1 & s_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad (r_1, r_2, s_1, s_2, t \in GF(q))$$ The center $Z(U_x)$ of U_x is elementary abelian of order q and $U_x/Z(U_x)$ is elementary abelian of order q^4 . It is not difficult to see that every flag-transitive subgroup of $\operatorname{Aut}(\operatorname{Res}(x))$ contains U_x and a complement $L_x \cong SL(2,q)$ of U_x . By (6), G_x acts faithfully in $\operatorname{Res}(x)$. Therefore, (5) $$U_x: L_x \le G_x \le [U_x: (Z_{q-1} \times GL(2,q))] Z_n$$. Let C_x be the set of maximal cocliques of the collinearity graph of $\operatorname{Res}(x)$ and H_x be the elementwise stabilizer of C_x . Put $T_x := U_x \cap T_x$. The following is straightforward: - (6) H_x is a Frobenius group with T_x as the Frobenius kernel and cyclic complements of order a divisor of q-1. Moreover: - (6.1) T_x is elementary abelian of order q^3 and acts regularly on the set of planes of $\operatorname{Res}(x)$. - (6.2) $Z(U_x)$ is contained in T_x and acts regularly on each member of C_x . - (6.3) Every complement C of T_x in H_x stabilizes a unique plane α_C of $\operatorname{Res}(x)$. The group C fixes α_C elementwise and acts semi-regularly on the set of points of $\operatorname{Res}(x)$ not in α_C and on the set of planes of $\operatorname{Res}(x)$ different from α_C . Every plane of $\operatorname{Res}(x)$ is stabilized by a unique complement of T_x . - (6.4) For a point e of $\operatorname{Res}(x)$, put $H_{x,e} := H_x \cap G_e$ and $T_{x,e} := T_x \cap G_e$. Then $T_x = T_{x,e} \times Z(U_x)$ and $H_{x,e} = T_{x,e} \cdot C$ for a complement C of T_x . The set of points of $\operatorname{Res}(x)$ fixed by $T_{x,e}$ is the union of q members of \mathcal{C}_x and meets every plane of $\operatorname{Res}(x)$ in a line. Let H be the elementwise stabilizer of the set of classes of the $(q^2 + 1)$ -partition of $\mathcal{G}(\Gamma)$. Clearly, $H_x = H \cap G_x$ for every 0-element x. Hence H contains every complement C of T_x in H_x . Put $\gamma := |C|$. We recall that γ is a divisor of q - 1. (7) H has order $q^4\gamma$ and acts transitively on every class of the (q^2+1) -partition of $\mathcal{G}(\Gamma)$. (Proof of (7).) $T_x \leq H$ for every 0-element x. As T_x contains $Z(U_x)$, which acts regularly on every member of \mathcal{C}_x , H is transitive on every class of $\mathcal{G}(\Gamma)$, except possibly the class containing x. However, x is an arbitrary 0-element of Γ . Hence H is transitive on every class of $\mathcal{G}(\Gamma)$. Therefore $|H| = q^4 \gamma$, since $|H_x| = q^3 \gamma$ and every class of $\mathcal{G}(\Gamma)$ has size q. Claim (7) is proved. (8) H admits a normal subgroup T of order q^4 and H = T:C for any complement C of T_x in H_x and every 0-element x. Accordingly, $T = O_p(H)$. (Proof of (8).) Let T be a Sylow p-subgroup of H. We have $|T|=q^4$ by (7). Moreover, T contains T_x for some 0-element x. Let y be a 0-element adjacent to x. By (6.4), $|T_x \cap T_y| = q^2$. Therefore $\langle T_x, T_y \rangle$ has order at least q^4 . Suppose first that we can choose y in such a way that $T_y \leq T$. Then, as $|\langle T_x, T_y \rangle| \geq q^4 = |T|$, we have $T = \langle T_x, T_y \rangle$. Pick a 3-element $\alpha \in \sigma_3(x,y)$ and put $C := G_\alpha \cap H$. Then $C \in G_z$ for every $z \in \sigma_0(\alpha)$. In particular, $C \leq H_x \cap H_y$. In view of (6.3), C is a complement of T_x in H_x as well as a complement of T_y in T_y . Hence T_y normalizes either of T_x and T_y . Consequently, $T_y \not \leq T_y$ for every 0-element $T_y \not \leq T_y$. Then, given $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0-element $T_y \not \leq T_y$. Then, given $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for every 0. Therefore
$T_y \in T_y$ for every 0. The every 0. The every 0 is in $T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0. The every 0 is in $T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. (9) The subgroup $T = O_p(H)$ acts regularly on the set of 3-elements of Γ . Indeed, T has order q^4 , which is the number of 3-elements of Γ , and $T \cap G_{\alpha} = 1$ for every 3-element α , by (6). Claim (9) finishes the proof of the lemma. #### **Theorem 4.5** Assume the following: - (A) for every 0-element x of Γ , the $Af.Af^*$ -geometry Res(x) is nearly classical; - (B) $\operatorname{Aut}(\Gamma)$ is flag-transitive; - (C) q is prime. Then Γ is isomorphic to the dual of the affine expansion $Af_e(\mathcal{I}^*)$ of the dual \mathcal{I}^* of a classical inversive plane \mathcal{I} , where e is the projective embedding of \mathcal{I}^* in PG(3,q). **Proof.** We have $\mu = 1$ by Lemma 4.4. We keep the notation used in the proof of Lemma 4.4. In particular, T_x , C and T are defined as in claims (6) and (8) of that proof. We first prove that T is elementary abelian. (1) $T_x \leq T$ for any 0-element x. Indeed, as T is a p group, $N_T(T_x) > T_x$. However, $|T:T_x| = q$, which is assumed to be prime. Hence $N_T(T_x) = T$. (2) T is elementary abelian. Indeed, by (1) and the commutativity of T_x and T_y , the commutator subgroup T' of T is contained in $T_x \cap T_y$, for any two adjacent 0-elements x and y. Therefore $T' \leq T_x$ for any 0-element x. This forces T' = 1. Moreover, $T = \langle T_x, T_y \rangle$ and T_x and T_y are elementary abelian. Therefore T is elementary abelian. (3) $T_x = T_y$ for any two non-adjacent 0-elements x and y. Indeed, denoted by X be the class of the $(q^2 + 1)$ -partition of $\mathcal{G}(\Gamma)$ containing x, T_x acts trivially on $X \setminus \{x\}$, since every orbit of T_x has order at least q (which is prime), whereas $|X \setminus \{x\}| = q - 1$. In view of (3), given a 3-element α and a 0-element x, $T_x=T_{x_\alpha}$ for a unique 0-element x_α of α . Therefore $$(4) \quad \{T_x\}_{x \in (\Gamma)_0} = \{T_x\}_{x \in \sigma_0(\alpha)},$$ where $(\Gamma)_0$ stands for the set of 0-elements of Γ . For every $x \in \sigma_0(\alpha)$, let \mathcal{S}_x be the family of subgroups of T_x of order q. In view of claim (6.4) of the proof of Lemma 4.4, $Z(U_x)$ is the unique member of \mathcal{S}_x that acts semi-regularly on the point-set of $\operatorname{Res}(x)$, whereas each the remaining members of \mathcal{S}_x fixes all points of a line of $\operatorname{Res}(x)$ contained in α and moves each of the remaining $q^2 - q$ points of $\operatorname{Res}(x)$ beloning to α . We call $Z(U_x)$ a special subgroup of T. (5) $$T = \bigcup_{x \in \sigma_0(\alpha)} T_x$$. (Proof of (5).) With S_x defined as above, we have $|S_x| = q^2 + q + 1$, since T_x is elementary abelian of order q^3 . The special subgroup of T_x is the unique member of S_x that is not contained in T_y for any $y \in \sigma_0(\alpha) \setminus \{x\}$. Each of the $q^2 + q$ remaining members of S_x is contained in T_y for q choices of y in $\sigma_0(\alpha) \setminus \{x\}$. Therefore $\bigcup_{x \in \sigma_0(\alpha)} S_x$ contains exactly $(q^2+1)+(q^2+1)(q^2+q)/(q+1)=q^3+q^2+q+1$ subgroups. However, as q is prime, q^3+q^2+q+1 is just the number of subgroups of T of order q. Equality (5) follows. We now turn to $\mathcal{A}(\Gamma)$, which is a linear space by Lemma 4.3 (indeed $\mu = 1$). We denote the point-set of $\mathcal{A}(\Gamma)$ by P. Namely, P is the set of 3-elements of Γ . By Lemma 4.4, T acts regularly on P. Thus, given a point $\alpha \in P$, a bijection τ is established from T to P, sending every $t \in T$ to the image α^t of α by t. Moreover T, being elementary abelian of order q^4 , can be regarded as the additive group of V = V(4, q). (6) τ induces an isomorphism from the affine space AG(V) = AG(4, q) to $\mathcal{A}(\Gamma)$. To see this, we only must prove that, for every 1-dimensional linear subspace S of V, the orbit α^S of α by S is a line of $\mathcal{A}(\Gamma)$. By (5), $S \leq T_x$ for at least one 0-element x of α . Turning to Res(x), we easily see that claim (6) holds true (compare (6.4) of the proof of Lemma 4.4). The following is implicit in the proof of claim (5): (7) For a 1-dimensional linear space S of V, the line $\tau(S)$ of $\mathcal{A}(\Gamma)$ is new if and only if S, regarded as a subgroup of T, is special. As remarked in the proof of claim (5), $q^2 + 1$ is the number of special subgroups of T. Therefore, (8) $\mathcal{A}(\Gamma)$ contains $(q^2+1)q^3$ new lines, forming q^2+1 bundles of parallel lines. We say that a new line L belongs to a 0-element x if all points of L, regarded as 3-elements of Γ , are incident with x. The following is clear: (9) every bundle of parallel new lines of $\mathcal{A}(\Gamma)$ is contained in exactly one 0-element x and each such element contains exactly one bundle of parallel new lines. In particular, every new line on the distinguished point α belongs to a unique 0-element of α and each of these 0-elements contains exactly one new line through α . Accordingly, the action of G_{α} on the set of new lines through α is isomorphic to its action on $\sigma_0(\alpha)$. Let $\widehat{\mathcal{A}}_3(\Gamma)$ be $\mathcal{A}(\Gamma)$ enriched with its planes and 3-subspaces. (10) No three new lines on α are coplanar in $\widehat{\mathcal{A}}_3(\Gamma)$. (Proof of (10).) Suppose the contrary. Then, by (8), (9) and claim (1) of the proof of Lemma 4.4, every plane of $\widehat{\mathcal{A}}_3(\Gamma)$ on α contains 0, 1 or s new lines, where either s=q+1 or s=2+(q-1)/2=(q+3)/2. Therefore, the q^2+1 new lines on α form a linear space with all lines of size s. It is easily seen that no such linear space can exist. Claim (10) is proved. The residue of α in $\widehat{\mathcal{A}}_3(\Gamma)$ is a 3-dimensional projective space. We shall denote it by \mathcal{P}_{α} . In view of (11), the new lines on α form an ovoid O^* in \mathcal{P}_{α} . As q is prime, the ovoid O^* is classical and the set $O := \sigma_0(\alpha)$ is its dual. It is now clear that Γ is isomorphic to the dual of the affine expansion of the dual of the inversive plane $\mathcal{I}(O)$ associated to O. The next Corollary is claim (1) of Theorem 1. Corollary 4.6 Assume q=3 and suppose that $\operatorname{Aut}(\Gamma)$ is flag-transitive. Then Γ is isomorphic to the dual of the affine expansion $\operatorname{Af}_e(\mathcal{I}^*)$ of the dual \mathcal{I}^* of the inversive plane \mathcal{I} of order 3, where e is the projective embedding of \mathcal{I}^* in PG(3,3). **Proof.** As Γ is flag-transitive, Γ has uniform multiplicity μ . If we prove that the residues of the 0-elements of Γ are nearly classical, then the conclusion follows from Theorem 4.5. Let $\Delta = \text{Res}(x)$ for a 0-element x of Γ and λ be the index of Δ . By Proposition 3.4, $\lambda \in \{1, 2, 3\}$. Hence Δ is nearly classical, by propositions 3.3 and 3.6. (In fact, Δ is classical.) #### 5 Proof of Theorem 1 As claim (1) of Theorem 1 has been settled by Corollary 4.6, we only must prove claims (2) and (3) of that theorem. So, in this section we consider a flag-transitive $Af.Af^*.c^{*n}$ -geometry with n=2 and orders 2, 3, 2, 1, 1 or n=3 and orders 2, 3, 2, 1, 1. However, we prefer to focus on the dual of such a geometry. Thus, henceforth Γ is a flag-transitive geometry of rank n+3 with diagram, orders and types as follows: For an element x of Γ and a type i=0,1,...,n-1 we denote by $\sigma_i(x)$ the set of i-elements incident with x. We also put $\sigma_i(x,y):=\sigma_i(x)\cap\sigma_i(y)$ and $\sigma_i(x,y,z):=\sigma_i(x)\cap\sigma_i(y)\cap\sigma_i(z)$. As in Section 4, $\mathcal{G}(\Gamma)$ is the collinearity graph of Γ where the elements of type 0 and 1 are taken as points and lines respectively, and \sim is the adjacency relation of $\mathcal{G}(\Gamma)$. As Γ is assumed to be flag-transitive, all edges of $\mathcal{G}(\Gamma)$ are incident with the same number μ of 1-elements, namely $\mu = |\sigma_1(x, y)|$ for every edge $\{x, y\}$ of $\mathcal{G}(\Gamma)$. We call μ the multiplicity of Γ . We denote by $S(\Gamma)$ the point-line geometry with the (n+2)-elements of Γ as points and the (n+1)-elements as lines. $\mathcal{G}^*(\Gamma)$ is the collinearity graph of $S(\Gamma)$ and \sim^* is the adjacency relation of $\mathcal{G}^*(\Gamma)$. For an edge $\{\alpha,\beta\}$ of $\mathcal{G}^*(\Gamma)$, we put $\mu^*(\alpha,\beta) := |\sigma_{n+1}(\alpha,\beta)|$. For the rest of this section G is a given flag-transitive subgroup of $\operatorname{Aut}(\Gamma)$. For an element x of Γ , G_x is the stabilizer of x in G and K_x is the elementwise stabilizer of $\operatorname{Res}(x)$ (compare the notation used in the proof of Lemma 4.4). #### 5.1 The case of n=2 In this subsection, n = 2. So, Γ has rank n + 3 = 5. By Delandtsheer [11], **Lemma 5.1** Let α be a 4-element of Γ . Then $\operatorname{Res}(\alpha)$ is isomorphic to the Steiner system S(11,5,4) for the Mathieu group M_{11} , where the points, duads, triples and blocks correspond to the elements
of $\operatorname{Res}(\alpha)$ of type 0, 1, 2 and 3, respectively. Furthermore, $G_{\alpha}/K_{\alpha} = \operatorname{Aut}(\operatorname{Res}(\alpha)) \cong M_{11}$. Moreover, by Corollary 4.6, **Lemma 5.2** The residues of the 0-elements of Γ are isomorphic to the dual of the affine expansion $Af_e(\mathcal{I}^*)$ of the dual \mathcal{I}^* of the classical inversive plane \mathcal{I} or order 3, where e is the projective embedding of \mathcal{I}^* in PG(3,3). #### **Lemma 5.3** $\mu = 1$. **Proof.** Let $\{x, y\}$ be an edge of $\mathcal{G}(\Gamma)$. The μ elements of $\sigma_1(x, y)$ form a coclique of the graph $\mathcal{G}(\operatorname{Res}(x))$. Moreover, given a maximal coclique C of $\mathcal{G}(\operatorname{Res}(x))$, the relation 'being incident to the same pair of 0-elements' defined on the set of 1-elements of Γ induces an equivalence relation on C and all classes of that induced equivalence relation have size μ . On the other hand, by Lemma 5.2, the maximal cocliques of $\mathcal{G}(\operatorname{Res}(x))$ have size 3. Hence $\mu \in \{1, 3\}$. Suppose $\mu = 3$. Then every 4-element incident with x is also incident with one of the three elements of $\sigma_1(x, y)$. Hence $\sigma_4(x) = \sigma_4(y)$. By the connectedness of $\mathcal{G}(\Gamma)$, all 4-elements are incident with all 0-elements, namely Γ is flat. Consequently, denoted by N_i the number of i-elements of Γ , we have: $$N_0=11, \quad N_1=N_0\cdot 10\cdot 3/2=3\cdot 5\cdot 11, \quad N_2=N_1\cdot 3^3/3=3^3\cdot 5\cdot 11, \\ N_3=N_2(3^2+3)/10=2\cdot 3^4\cdot 11, \quad N_4=3^4.$$ Let $\{\alpha, \beta\}$ be an edge of $\mathcal{G}^*(\Gamma)$. By Lemma 5.2, the residues of the 0-elements of Γ satisfy the Intersection Property (IP). Therefore, (1) $\sigma_0(A, B) = \emptyset$ for any two distinct 3-elements $A, B \in \sigma_3(\alpha, \beta)$. Consequently: (2) $$\mu^*(\alpha, \beta) \le 2$$. For i = 1, 2, let $S_i(\alpha)$ be the set of 4-elements β adjacent with α in $\mathcal{G}^*(\Gamma)$ and such that $\mu^*(\alpha, \beta) = i$. By the flag-transitivity of Γ , the number $|\sigma_4(A) \cap S_i(\alpha)|$ does not depend on the choice of the 3-element $A \in \sigma_3(\alpha)$. We must examine the following three cases: Case 1. $$|\sigma_4(A) \cap S_1(\alpha)| = 2$$ and $\sigma_4(A) \cap S_2(\alpha) = \emptyset$. Case 2. $$|\sigma_4(A) \cap S_1(\alpha)| = |\sigma_4(A) \cap S_2(\alpha)| = 1$$. Case 3. $$|\sigma_4(A) \cap S_2(\alpha)| = 2$$ and $\sigma_4(A) \cap S_1(\alpha) = \emptyset$. (3) Cases 1 and 2 are impossible. (Proof of (3).) In Case 1, $|S_1(\alpha)| = 2|\sigma_3(\alpha)|$. However, $|\sigma_3(\alpha)| = 66$, which is the number of blocks of S(11, 5, 4) (compare Lemma 5.1). So, $|S_1(\alpha)| = 2 \cdot 66 > 81 = N_4$. This is a contradiction. Suppose we have Case 2. Let β and γ be the 4-elements of $S_1(\alpha) \cap \sigma_4(A)$ and $S_2(\alpha) \cap \sigma_4(A)$, respectively. By replacing α with γ , we have $\alpha \in S_2(\gamma) \cap \sigma_4(A)$. Hence $\beta \in S_1(\gamma) \cap \sigma_4(A)$, since Case 2 also occurs for the flag $\{A, \gamma\}$ (recall that Γ is flag-transitive). However, $\alpha, \gamma \in S_1(\beta) \cap \sigma_4(A)$. This is a contradiction with the fact that, since Γ is flag-transitive, Case 2 also occurs for the flag $\{A, \beta\}$. Claim (3) is proved. So, Case 3 holds. Given a 3-element $A \in \sigma_3(\alpha)$, let β and γ be the two 4-elements of $\sigma_4(A) \setminus \{\alpha\}$. One of the following occurs: Case 3.1. $$\sigma_3(\alpha, \beta) = \sigma_3(\alpha, \gamma)$$. Case 3.2. $$\sigma_3(\alpha, \beta) \neq \sigma_3(\alpha, \gamma)$$. We shall prove that neither of the above two cases is possible, thus finishing the proof of the lemma. By Lemma 5.1, we have $G_{\alpha,A}/K_{\alpha} \cong \operatorname{Sym}(5)$, acting 2-transitively as PGL(2,5) on the complement $\sigma_0(\alpha) \setminus \sigma_0(A)$ of the block $\sigma_0(A)$ of $\operatorname{Res}(\alpha)$, which has size 6. On the other hand, $G_{\alpha,A}$ stabilizes the pair $\{\beta,\gamma\} = \sigma_4(A) \setminus \{\alpha\}$. In Case 3.1 we have $\sigma_3(\alpha,\beta) = \sigma_3(\alpha,\gamma) = \{A,B\}$ and $G_{\alpha,A}/K_{\alpha}$ stabilizes B. As $\sigma_0(B)$ is disjoint from $\sigma_0(\alpha)$ (by (1)) and $|\sigma_0(B)| = 5$, $G_{\alpha,A}$ cannot induce a transitive action on $\sigma_0(\alpha) \setminus \sigma_0(A)$, contrary to what we have said in the previous paragraph. On the other hand, in Case 3.2 we have $\sigma_3(\alpha, \beta) = \{A, B\}$ and $\sigma_3(\alpha, \gamma) = \{A, C\}$ where $B \neq C$ and $\sigma_0(A, B) = \sigma_0(A, C) = \emptyset$. Therefore $G_{\alpha,A}$ stabilizes $\sigma_0(B, C) \subset \sigma_0(\alpha) \setminus \sigma_0(A)$. Consequently, it cannot act transitively on $\sigma_0(\alpha) \setminus \sigma_0(A)$. In any case, we have obtained a contradiction. Hence Case 3 is impossible, too. **Corollary 5.4** Γ satisfies the Intersection Property (IP). In particular, $S(\Gamma)$ is a semi-linear space. **Proof.** This follows from Lemmas 5.2 and 5.3 via [18, Lemma 7.25]. Given an edge $\{x,y\}$ of $\mathcal{G}(\Gamma)$, we denote by xy the 1-element of $\sigma_1(x,y)$ (unique by lemma 5.3). Note that, in view of property IP (which holds in Γ by Corollary 5.4), given a 0-element x and two edges $\{x,y\}$ and $\{x,z\}$ of $\mathcal{G}(\Gamma)$ on x, we have $\sigma_2(xy) \cap \sigma_2(xz) = \sigma_2(x,y,z)$. The next lemma can be proved by arguments similar to those used to prove claims (B3) and (B4) of Lemma 4.1. We leave the details for the reader. **Lemma 5.5** The graph $G(\Gamma)$ is a complete 11-partite graph with classes of size 3. Accordingly, if N_i is the number of i-elements of Γ (i = 0, 1, 2, 3, 4), then $$N_0 = 3 \cdot 11, \quad N_1 = 3^2 \cdot 5 \cdot 11, \quad N_2 = 3^4 \cdot 5 \cdot 11, \quad N_3 = 2 \cdot 3^5 \cdot 11, \quad N_4 = 3^5.$$ Moreover: - (1) for every 4-element α , $\sigma_0(\alpha)$ meets each class of the 11-partition of $\mathcal{G}(\Gamma)$; - (2) for every 0-element x and any two edges $\{x,y\}$, $\{x,z\}$ of $\mathcal{G}(\Gamma)$ on x, we have $\sigma_2(x,y,z) \neq \emptyset$ if and only if y and z are adjacent in $\mathcal{G}(\Gamma)$. We define the point-line geometry $\mathcal{A}(\Gamma)$ as follows: The points of $\mathcal{A}(\Gamma)$ are those of $\mathcal{S}(\Gamma)$. The lines of $\mathcal{A}(\Gamma)$ are the lines of $\mathcal{S}(\Gamma)$ and the new lines of the affine space $\mathcal{A}(\mathrm{Res}(x))$, for any 0-element x of Γ . The latter lines will be called *new lines* of $\mathcal{A}(\Gamma)$, whereas the lines of $\mathcal{S}(\Gamma)$ are the *old lines* of $\mathcal{A}(\Gamma)$. **Lemma 5.6** For every new line L of $\mathcal{A}(\Gamma)$, we have $|L \cap \sigma_4(e)| > 1$ for exactly one 1-element e. Moreover, if e is the 1-element such that $|L \cap \sigma_4(e)| > 1$, then $L \subset \sigma_4(e)$. **Proof.** A 1-element e with $L \subset \sigma_4(e)$ exists by definition. Let $|L \cap \sigma_4(f)| > 1$ for a 1-element f. We shall prove that f = e. Suppose to the contrary that $f \neq e$. Then, by IP, $\sigma_4(f) \cap L \subseteq \sigma_4(X)$ for an element X of type 2 or 3, incident with both e and f. In particular, $|L \cap \sigma_4(Y)| > 1$ for a 2-element $Y \in \sigma_2(e)$. However, by definition, L is a new line of $\mathcal{A}(\operatorname{Res}(x))$ for a 0-element x. With no loss, we may assume $x \in \sigma_0(e)$. By the definition of $\mathcal{A}(\operatorname{Res}(x))$, no new line of $\mathcal{A}(\operatorname{Res}(x))$ meets $\sigma_4(Y)$ in two elements, for any $Y \in \sigma_2(x)$. We have reached a contradiction. \square We can now imitate the proof of Lemma 4.3, obtaining the following: **Corollary 5.7** The geometry $\mathcal{A}(\Gamma)$ is a linear space with 3^5 points and the same parameters as AG(5,3). The next lemma can be proved by an argument similar to that exploited for claim (4) in the proof of Lemma 4.4. **Lemma 5.8** $K_x = 1$ for every 0-element x. Let H be the elementwise stabilizer of the set of classes of the 11-partition of $\mathcal{G}(\Gamma)$. For a 0-element x, we set $H_x := H \cap G_x$. The structure of H_x is clear by Lemmas 5.8 and 5.2: H_x is a Frobenius group with elementary abelian Kernel T_x of order 3^4 and complement C of size $|C| \leq 2$. We can now imitate the arguments used to prove claims (7)-(9) of the proof of Lemma 4.4 and (2), (3) of the proof of Theorem 4.5, obtaining the following: **Lemma 5.9** We have H = T:C where $T \subseteq H$ is elementary abelian of order 3^5 and C is a complement of T_x in G_x , for a 0-element x of Γ . In particular, $T = O_3(H)$ and $|C| \leq 2$. Moreover: - (1) H acts transitively on every class of the 11-partition of $\mathcal{G}(\Gamma)$. - (2) The subgroup $T = O_p(H)$ acts regularly on the set of 4-elements of Γ , whereas C stabilizes a 4-element. - (3) $T = \langle T_x, T_y \rangle$ for any two adjacent 0-elements x and y. - (4) $T_x = T_y$ for any two non-adjacent 0-elements x and y. Consequently, $\{T_x\}_{x \in (\Gamma)_0} = \{T_x\}_{x \in \sigma_0(\alpha)}$ for every 4-element α , where $(\Gamma)_0$ stands for the set of 0-elements of Γ . For a 0-element x we denote by S_x the family of minimal subgroups of T_x , namely subgroups of order 3. Given a 4-element α , for every $x \in \sigma_0(\alpha)$ we put $S := \bigcup_{x \in \sigma_0(\alpha)} S_x$ (= $\bigcup_{x \in (\Gamma)_0} S_x$, by (3) of Lemma 5.9). By definition, every line of $\mathcal{A}(\Gamma)$ through α belongs to $\mathcal{A}(\operatorname{Res}(x))$ for a suitable $x \in \sigma_0(\alpha)$. Hence every such line is stabilized by a member of S (uniquely determined, as T is regular on the
point-set of $\mathcal{A}(\Gamma)$). On the other hand, $3^4 + 3^3 + 3^2 + 3 + 1$ is the number of lines of $\mathcal{A}(\Gamma)$ through α . Hence S is the family of all 3-subgroups of T, since $3^4 + 3^3 + 3^2 + 3 + 1$ is also the number of minimal subgroups of T. The following is now clear: **Lemma 5.10** We have $A(\Gamma) \cong AG(V)$, where V = V(5,3) and T is the additive group of V. We are now ready to finish the proof of claim (2) of Theorem 1. The isomorphism $\mathcal{A}(\Gamma) \cong AG(V)$ induces an embedding e of the dual $\operatorname{Res}(\alpha)^*$ of $\operatorname{Res}(\alpha)$ in the projective geometry PG(V), where PG(V) is regarded as the projective space of lines and planes of $\mathcal{A}(\Gamma)$ through the distinguished point α . Accordingly, Γ is the affine expansion of $\operatorname{Res}(\alpha)^*$ embedded in PG(V) via e. #### 5.2 The case of n=3 Assume n = 3. By Delandtsheer [11], **Lemma 5.11** Let α be a 5-element of Γ . Then $\operatorname{Res}(\alpha)$ is isomorphic to the Steiner system S(12,6,5) for the Mathieu group M_{12} , where the points, duads, triples and blocks correspond to the elements of $\operatorname{Res}(\alpha)$ of type 0, 1, 2 and 3, respectively. Furthermore, $G_{\alpha}/K_{\alpha} = \operatorname{Aut}(\operatorname{Res}(\alpha)) \cong M_{12}$. Moreover, by claim (2) of Theorem 1, **Lemma 5.12** Let x be a 0-element of Γ . Then $\operatorname{Res}(x)$ is isomorphic to the dual of the affine expansion $\operatorname{Af}_e(\Delta)$ of the dual Δ of $\Sigma = S(12,5,4)$, where e is the (unique) embedding of Δ in PG(4,3). With Δ and e as above, we have $\operatorname{Aut}(\operatorname{Af}_e(\Delta))=3^5:(2\times M_{11})$ and $3^5:M_{11}$ is the minimal flag-transitive automorphism group of $\operatorname{Af}_e(\Delta)$. Therefore, **Corollary 5.13** We have $3^5:M_{11} \leq G_x/K_x \leq 3^5:(2 \times M_{11})$ for every 0-element x of Γ . The geometry $Af_e(\Delta)$ can be recovered from its point-line system $\mathcal{S}(Af_e(\Delta))$. Accordingly, the residue Res(x) of a 0-element x can be recovered from the semi-linear space $\mathcal{S}(Res(x))$ of 5- and 4-elements incident with x. Consequently: Corollary 5.14 We have $\operatorname{Aut}(\mathcal{S}(\operatorname{Res}(x))) = \operatorname{Aut}(\operatorname{Res}(x)) = 3^5:(2 \times M_{11})$ for every 0-element x of Γ . Lemma 5.15 $\mu = 1$. **Proof.** We have $\mu \in \{1, 3\}$, as in the proof of Lemma 5.3. Suppose $\mu = 3$. Then Γ is flat, as in the proof of Lemma 5.3. Consequently, denoted by N_i the number of i-elements of Γ , we have: $$\begin{array}{lll} N_0=12, & N_1=N_0\cdot 11\cdot 3/2=2\cdot 3^2\cdot 11, & N_2=N_1\cdot 10\cdot 3/3=2^2\cdot 3^2\cdot 5\cdot 11, \\ N_3=N_2\cdot 3^3/4=3^5\cdot 5\cdot 11, & N_4=N_3(3^2+3)/15=2^2\cdot 3^5\cdot 11, & N_5=3^5. \end{array}$$ Let $\{\alpha, \beta\}$ be an edge of the graph $\mathcal{G}^*(\Gamma)$. As in the proof of Lemma 5.3, we obtain that $\sigma_0(A, B) = \emptyset$ for any two distinct 4-elements $A, B \in \sigma_4(\alpha, \beta)$. Hence $\mu^*(\alpha, \beta) \leq 2$. For i = 1, 2, let $S_i(\alpha)$ be the set of 5-elements β adjacent with α in $\mathcal{G}^*(\Gamma)$ and such that $\mu^*(\alpha, \beta) = i$. By the flag-transitivity of Γ , the number $|\sigma_5(A) \cap S_i(\alpha)|$ does not depend on the choice of the 4-element $A \in \sigma_3(\alpha)$. One of the following occurs: Case 1. $|\sigma_5(A) \cap S_1(\alpha)| = 2$ and $\sigma_5(A) \cap S_2(\alpha) = \emptyset$. Case 2. $|\sigma_5(A) \cap S_1(\alpha)| = |\sigma_5(A) \cap S_2(\alpha)| = 1$. Case 3. $|\sigma_5(A) \cap S_2(\alpha)| = 2$ and $\sigma_5(A) \cap S_1(\alpha) = \emptyset$. Cases 1 and 2 can be ruled out by arguments similar to those used in the proof of Lemma 5.3 for the cases analogous to these. So, Case 3 holds. Given a 4-element $A \in \sigma_4(\alpha)$, let β and γ be the two 5-elements of $\sigma_5(A) \setminus \{\alpha\}$. Let B and C be the elements different from A in $\sigma_4(\alpha, \beta)$ and $\sigma_4(\alpha, \gamma)$ respectively. Then $\sigma_0(A) \cap \sigma_0(B) = \sigma_0(A) \cap \sigma_0(C) = \emptyset$. It follows that $\sigma_0(B) = \sigma_0(C)$, whence B = C. Accordingly, for every 5-element α , the sets $\sigma_5(A)$ for $A \in \sigma_4(\alpha)$ bijectively correspond to the partition of the design $\text{Res}(\alpha)$ in two disjoint hexads. Therefore, (1) For any two 4-elements A and B, we have $\sigma_5(A) = \sigma_5(B)$ if and only if $\sigma_5(A) \cap \sigma_5(B) \neq \emptyset$ and $\{\sigma_0(A), \sigma_0(B)\}$ is a partition of the set of 0-elements of Γ . If $\sigma_5(A) = \sigma_5(B)$ for two 4-elements A and B, then we write $A \equiv B$. Clearly, \equiv is an equivalence relation on the set of 4-elements of Γ and all classes of \equiv have size 2. Moreover, by (1), for every 0-element x, $\sigma_4(x)$ meets every class of \equiv in at most one element. On the other hand, $|\sigma_4(x)| = 66 = N_4/2$. Therefore, (2) For every 0-element x, $\sigma_4(x)$ meets every class of \equiv in exactly one element. We define a semi-linear space $\tilde{\mathcal{S}}(\Gamma)$ on the set of 5-elements of Γ by taking the classes of Ξ as lines, with the convention that such a class $\{A, B\}$ and a 5-element α are incident precisely when $\alpha \in \sigma_5(A) = \sigma_5(B)$. Claim (2) implies the following: (3) $\widetilde{\mathcal{S}}(\Gamma) \cong \mathcal{S}(\operatorname{Res}(x))$ for every 0-element x. Let U be the elementwise stabilizer of $\widetilde{\mathcal{S}}(\Gamma)$. Then (3) and Corollaries 5.13 and 5.14 imply the following: - (4) $3^5:M_{11} \le G/U \le 3^5:(2 \times M_{11}).$ - (5) $U \cap G_x = K_x = 1$ for every 0-element x. (Proof of (5).) We have $U \cap G_x \leq K_x$ since $U \cap G_x$ stabilizes all elements of $\mathcal{S}(\mathrm{Res}(x))$ and $\mathrm{Res}(x)$ can be recovered from $\mathcal{S}(\mathrm{Res}(x))$. The equality $K_x = 1$ remains to be proved. Clearly, K_x fixes all 0-elements. Given a 0-element $y \neq x$, Lemma 5.12 implies that $\mathcal{G}(\mathrm{Res}(y))$ is a complete 11-partite graph with all classes of size 3. One of those classes, say C, contains the three elements of $\sigma_1(x,y)$. The group K_xK_y/K_y fixes all classes of the 11-partition of $\mathcal{G}(\mathrm{Res}(y))$ and all elements of $\mathrm{Res}(y)$ incident with any of the 1-elements of C. This forces K_xK_y/K_y to be trivial. Hence $K_x \leq K_y$. By symmetry, $K_x = K_y$. Finally $K_x = 1$, since y is an arbitrary 0-element of Γ . Claim (5) is proved. By (5), G_x acts faithfully in Res(x) and G contains a semi-direct product $\widehat{G} = U:G_x$. By (4) and Corollary 5.13 and 5.14, \widehat{G} has index at most 2 in G. Moreover, $U \leq G_{\alpha}$, for every 5-element α . It follows that $G_{\alpha} = U:G_{x,\alpha}$ for $x \in \sigma_0(\alpha)$. On the other hand, G_{α} induces M_{12} on $\sigma_0(\alpha)$, by Lemma 5.11. This does not fit with the description of G_{α} as $U:G_{x,\alpha}$ (recall that $G_{x,\alpha}$ is isomorphic to either M_{11} or $2 \times M_{11}$). We have reached a final contradiction. The proof now can be continued as in the case of n=2. We only recall its main steps, leaving all proofs for the reader: **Corollary 5.16** Γ satisfies the Intersection Property (IP). In particular, $S(\Gamma)$ is a semi-linear space. **Lemma 5.17** The graph $\mathcal{G}(\Gamma)$ is a complete 12-partite graph with classes of size 3. Accordingly, if N_i is the number of i-elements of Γ (i = 0, 1, 2, 3, 4), then $$\begin{array}{lll} N_0 = 12 \cdot 3 = 2^2 \cdot 3^3, & N_1 = 2 \cdot 3^3 \cdot 11, & N_2 = 2^2 \cdot 3^3 \cdot 5 \cdot 11, \\ N_3 = 3^6 \cdot 5 \cdot 11, & N_4 = 2^2 \cdot 3^6 \cdot 11, & N_5 = 3^6. \end{array}$$ Moreover: - (1) for every 5-element α , $\sigma_0(\alpha)$ meets each class of the 12-partition of $\mathcal{G}(\Gamma)$; - (2) for every 0-element x and two edges $\{x,y\}$, $\{x,z\}$ of $\mathcal{G}(\Gamma)$ on x, we have $\sigma_2(x,y,z) \neq \emptyset$ if and only if y and z are adjacent in $\mathcal{G}(\Gamma)$. The point-line geometry $\mathcal{A}(\Gamma)$ is defined as in the case of n=2: The points of $\mathcal{A}(\Gamma)$ are those of $\mathcal{S}(\Gamma)$. The lines of $\mathcal{A}(\Gamma)$ are the lines of $\mathcal{S}(\Gamma)$ and the new lines of the affine space $\mathcal{A}(\operatorname{Res}(x))$, for any 0-element x of Γ . The latter lines are the new lines of $\mathcal{A}(\Gamma)$, whereas the lines of $\mathcal{S}(\Gamma)$ are the old lines of $\mathcal{A}(\Gamma)$. **Lemma 5.18** For every new line L of $\mathcal{A}(\Gamma)$, we have $|L \cap \sigma_5(e)| > 1$ for exactly one 2-element e. Moreover, if e is the 2-element such that $|L \cap \sigma_5(e)| > 1$, then $L \subset \sigma_5(e)$. Corollary 5.19 $\mathcal{A}(\Gamma)$ is a linear space with 3^6 points and the same parameters as AG(6,3). **Lemma 5.20** $K_x = 1$ for every 0-element x. Let H be the elementwise stabilizer of the set of classes of the 12-partition of $\mathcal{G}(\Gamma)$. For a 0-element x, we set $H_x := H \cap G_x$. Then H_x is a Frobenius group with elementary abelian Kernel T_x of order 3^5 and complement C of size $|C| \leq 2$. **Lemma 5.21** We have H = T:C where $T \subseteq H$ is elementary abelian of order 3^6 and C is a complement of T_x in G_x , for a 0-element x of Γ . In particular, $T = O_3(H)$ and $|C| \leq 2$. Moreover: - (1) H acts transitively on every class of the 12-partition of $\mathcal{G}(\Gamma)$. - (2) The subgroup $T = O_p(H)$ acts regularly on the set of 5-elements of Γ , whereas C stabilizes a 5-element. - (3) $T = \langle T_x, T_y \rangle$ for any two adjacent 0-elements x and y.
- (4) $T_x = T_y$ for any two non-adjacent 0-elements x and y. Consequently, $\{T_x\}_{x \in (\Gamma)_0} = \{T_x\}_{x \in \sigma_0(\alpha)}$ for every 5-element α , where $(\Gamma)_0$ stands for the set of 0-elements of Γ . **Lemma 5.22** We have $A(\Gamma) \cong AG(V)$, where V = V(6,3) and T is the additive group of V. The isomorphism $\mathcal{A}(\Gamma) \cong AG(V)$ induces an embedding e of the dual $\mathrm{Res}(\alpha)^*$ of $\mathrm{Res}(\alpha)$ in the projective geometry PG(V), where PG(V) is regarded as the projective space of lines and planes of $\mathcal{A}(\Gamma)$ through the distinguished point α . Accordingly, Γ is the affine expansion of $\mathrm{Res}(\alpha)^*$ embedded in PG(V) via the embedding e. This finishes the proof of Theorem 1. #### References - B. Baumeister and G. Stroth, The non-canonical gluings of two affine spaces, Groups and Geometries (L. Di Martino et al. eds.), Birkäuser, Basel (1998), 9–28. - [2] A.E. Brouwer, The uniqueness of the near hexagon on 759 points, *Combinatorica* **2** (1981), 333–340. - [3] A.E. Brouwer, A.M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer, Berlin, 1989. - [4] F. Buekenhout, C. Huybrechts and A. Pasini, Parallelism in diagram geometry, Bull. Soc. Math. Belgique-Simon Stevin 1 (1994), 355–397. - [5] G. Ceccherini and A. Pasini, Extending locally truncated geometries, J. Combin. Th. Ser. A 94 (2001), 289–338. - [6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985. - [7] H.S.M. Coxeter, Twelve points in PG(5,3) with 95040 self-transformations, $Proc.\ Royal\ Soc.\ London\ Ser.\ A,\ 247\ (1958),\ 279-293.$ - [8] F. De Clerck and H. Van Maldeghem, Some classes of rank 2 geometries, Chapter 10 of Handbook of Incidence Geometry (F. Buekenhout ed.), North Holland, Amsterdam (1995), 433–475. - [9] A. Delandtsheer, Finite (line-plane)-flag transitive linear spaces, Geom. Dedicata 41 (1992), 145–153. - [10] A. Delandtsheer, Dimensional linear spaces whose automorphism group is (line-hyperplane)-flag transitive, Designs, Codes and Cryptography 1 (1992), 237–245. - [11] A. Delandtsheer, Dimensional linear spaces, *Handbook of Incidence Geometry* (F. Buekenhout ed.), North Holland, Amsterdam (1995), 193–294. - [12] A. Del Fra and A. Pasini, On $Af.Af^*$ -geometries, J. Geometry **54** (1995), 15–29. - [13] A. Del Fra, A. Pasini and S. Shpectorov, Geometries with bi-affine and bi-linear diagrams, European J. Combin. 16 (1995), 439–459. - [14] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1979. - [15] W.M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A 38 (1985), 66–74. - [16] C. Huybrechts and A. Pasini, On $c^{n-2}.c^*$ geometries of order 2, *Designs, Codes and Cryptography* 9 (1996), 317–330. - [17] C. Levefre-Percsy and L. Van Nypelseer, Finite rank 3 geometries with affine planes and dual affine point residues, *Discrete Math.* 84 (1990), 161–167. - [18] A. Pasini, Diagram Geometries, Oxford Univ. Press, Oxford 1994. - [19] A. Pasini, Embeddings and expansions, Bull. Soc. Math. Belgique-Simon Stevin 10 (2003), 1–42. - [20] A. Pasini, Flag-transitive $L_h.L_k^*$ -geometries, to appear in Proc. Conf. Combinatorics 2004 (Acircale, September 2004). - [21] E.E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980), 1–72. - [22] H. Van Maldeghem, Generalized Polygons, Birkäuser, Basel 1998. (Received 9 Jan 2004; revised 28 Mar 2005)