A tower of geometries related to the ternary Golay codes

Antonio Pasini

Department of Mathematics
University of Siena
53100 Siena
Italy
pasini@unisi.it

Abstract

The Steiner system $\Sigma = S(12,6,5)$ admits a unique lax projective embedding f in PG(V), V = V(6,3). The embedding f induces a full projective embedding e of the dual Δ of Σ in the dual $PG(V^*)$ of PG(V). The affine expansion $Af_e(\Delta)$ of Δ to $AG(V^*)$ (also called linear representation of Δ in $AG(V^*)$) is a flag-transitive geometry with diagram and orders as follows:

Its collinearity graph is the minimal distance graph of the 6-dimensional ternary Golay code. We shall prove that $Af_e(\Delta)$ is the unique flagtransitive geometry with diagrams and orders as above. The $\{0,1,2,3,4\}$ -residues of $Af_e(\Delta)$ can also be obtained as affine expansions from the dual of S(11,5,4) and are related to the 5-dimensional ternary Golay code. We shall characterize them too by their diagram and orders. Finally, the $\{0,1,2,3\}$ -residues of $Af_e(\Delta)$ are isomorphic to the affine expansion of the dual of the classical inversive plane of order 3. A characterization will also be given for these expansions, in the same style as for $Af_e(\Delta)$.

1 Introduction and main results

In this paper we consider geometries belonging to the following diagram of rank $n+3 \geq 4$, where the integers 0,1,...,n+2 are the types, q-1,q,q-1,1,...,1 are finite orders, the labels Af and Af^* stands for the class of affine planes and the class of dual affine planes and c^* denotes the class of dual circular spaces:

$$(Af.Af^*.c^{*n}) \quad \ \ \underbrace{ \stackrel{0}{q-1} \quad \stackrel{Af}{q} \quad \stackrel{1}{q-1} \quad \stackrel{Af^*}{q} \quad \stackrel{2}{q-1} \quad \stackrel{c^*}{1} \quad \stackrel{3}{1} \cdots \stackrel{n+1}{\stackrel{n+2}{1}} }_{1} \cdots \stackrel{n+2}{\stackrel{n+1}{1}} \cdots \stackrel{n+2}{\stackrel$$

(We follow [18] for the definition of geometry; in particular, all geometries are residually connected, by definition.) If Γ is a geometry for the above diagram, then the residues of the 0-elements of Γ are dually isomorphic to n-point extensions of dual affine planes. We recall that 1-point extensions of affine planes are called inversive planes. It is well known that an affine plane of order q > 3 does not admit any n-point extension for n > 2 (see [18, Theorem 7.24]). AG(2, 13) is the unique affine plane of order q > 3 that might possibly admit a 2-point extension [18, Theorem 7.24], but no such extension has been discovered so far. Anyhow, that extension, if it existed, would not be flag-transitive (Delandtsheer [10]; see also [11]). The affine plane AG(2,3) of order 3 admits no n-point extension for n > 3, but it admits a unique 3-point extension and a unique 2-point extension, namely the Steiner systems S(12,6,5) and S(11,5,4) for M_{12} and M_{11} respectively. Finally, AG(2,2) admits an n-point extension for any n, obtained as a truncation from the (n+2)-dimensional symplex. Thus, the following are the only possibilities for $Af.Af^*.c^{*n}$ if flag-transitivity is assumed:

The geometries belonging to diagram $c.c^{*(n+1)}$ with orders 1, 2, 1, ..., 1 have been classified by Ceccherini and Pasini [5, Theorem 3.5] (see also Huybrechts and Pasini [16]): all of them are homomorphic images of truncated Coxeter complexes. So, we will assume q > 2 in this paper.

Geometries for $Af.Af^*.c^*$ can be obtained as follows. Given an ovoid O of PG(V), V = V(4,q), let $\mathcal{I} = \mathcal{I}(O)$ be the inversive plane of points and secant planes of O, but regarded as a 3-dimensional matroid with the secant lines of O as lines. By applying a correlation of PG(V) (a polarity, for instance), we obtain a (full) projective embedding $e: \mathcal{I}^* \to PG(V^*)$ of the dual \mathcal{I}^* of \mathcal{I} in the dual $PG(V^*)$ of PG(V). The affine expansion $Af_e(\mathcal{I}^*)$ of \mathcal{I}^* by e is the geometry of rank 4 defined as follows (see Subsection 2.1):

Take $\{0,1,2,3\}$ as the set of types. The 0-elements of $Af_e(\mathcal{I}^*)$ are the points of AG(4,q). For $1 \leq i \leq 3$ and an *i*-dimensional affine subspace X of AG(4,q), let X^{∞} be the point, line or plane at infinity of X (according to whether i is 1, 2 or 3). We take X as an i-element of $Af_e(\mathcal{I}^*)$ if and only if X^{∞} is an element of the image $e(\mathcal{I}^*)$

of \mathcal{I}^* . The incidence relation of $\mathrm{Af}_e(\mathcal{I}^*)$ is inherited from AG(4,q).

 $Af_e(\mathcal{I}^*)$ is a residually connected geometry belonging to diagram $Af.Af^*.c^*$. Clearly, $Af_e(\mathcal{I}^*)$ is flag-transitive if and only if \mathcal{I} is flag-transitive. It is well known that $\mathcal{I} = \mathcal{I}(O)$ is flag-transitive if and only if O is classical (see Delandtsheer [11]; also [9]). Suppose that O is classical (which is always the case when q is odd). Then the stabilizer $G_O \cong P\Gamma O^-(4,q)$ of O in $P\Gamma L(4,q)$ induces on \mathcal{I} its full automorphism group. Accordingly, denoted by T the translation group of AG(4,q), we have $Aut(Af_e(\mathcal{I}^*)) \cong T:\Gamma O^-(4,q)$ ($< A\Gamma L(4,q)$; the symbol: stands for split extension, as in [6]). Moreover, every flag-transitive subgroup of $Aut(Af_e(\mathcal{I}^*))$ contains $T:SO^-(4,q)$ (Delandtsheer [11]).

We recall that if \mathcal{I} is classical then, up to automorphisms of PG(V), \mathcal{I} admits a unique embedding as $\mathcal{I}(O)$ in PG(V) with O a classical ovoid. Accordingly, the embedding $e: \mathcal{I}^* \to PG(V^*)$ is uniquely determined up to automorphisms of $PG(V^*)$. We call it the *natural* embedding of \mathcal{I}^* .

As shown by Coxeter [7], the Steiner systems $\Sigma_1 := S(11,5,4)$ and $\Sigma_2 := S(12,6,5)$ also admit embeddings in $PG(V_1)$ and $PG(V_2)$ respectively, where $V_1 := V(5,3)$ and $V_2 := V(6,3)$ (see Section 2 for more details). These embeddings are uniquely determined up to automorphisms of $PG(V_1)$ and $PG(V_2)$ (Theorem 2.2). We call them the *natural embeddings* of Σ_1 and Σ_2 .

For i=1,2, let $f_i:\Sigma_i\to PG(V_i)$ be the natural embedding of Σ_i and Δ_i be the dual of Σ_i . By composing f_i with a correlation of $PG(V_i)$ we obtain a projective embedding $e_i:\Delta_i\to PG(V_i^*)$, which we call the natural embeding of Δ_i . We can define the affine expansion $\mathrm{Af}_{e_i}(\Delta_i)$ of Δ_i by e_i in the same way as we have done for $\mathrm{Af}_e(\mathcal{I}^*)$. Thus, we obtain flag-transitive geometries of rank 4 and 5, belonging to the diagrams $Af.Af^*.c^{*2}$ and $Af.Af^*.c^{*3}$ and with orders 2, 3, 2, 1, 1 and 2, 3, 2, 1, 1, 1 respectively. Their automorphism groups are as follows:

$$\operatorname{Aut}(\operatorname{Af}_{e_1}(\Delta_1)) = 3^5 : (2 \times M_{11}), \quad \operatorname{Aut}(\operatorname{Af}_{e_2}(\Delta_2)) = 3^6 : (2 \cdot M_{12}).$$

(The symbol stands for non-split extension, as in [6].) Aut(Af_{e2}(Δ_2)) is the full automorphism group of the 6-dimensional ternary Golay code $C_6(3)$ (see Section 2 for more details). Clearly, the translation subgroup T of AG(6,3) is the maximal normal 3-subgroup of Aut(Af_{e2}(Δ_2)). Its elements may be regarded as the words of $C_6(3)$. The parallelism relation of AG(6,3) induces an equivalence relation on the set of 1-elements of Af_{e2}(Δ_2). The words of $C_6(3)$ of weight 6 correspond to the elements of T that elementwise stabilize a parallel class of 1-elements of Af_{e2}(Δ_2).

We are now ready to state our main theorem. For the sake of uniformity, we denote by Σ_0 the inversive plane of order 3 arising from a quadric of $PG(V_0)$, where $V_0 = V(4,3)$. The dual of Σ_0 will be denoted by Δ_0 and e_0 is the natural embedding of Δ_0 in $PG(V_0^*)$.

THEOREM 1 (1) Let Γ be a flag-transitive geometry belonging to diagram $Af.Af^*.c^*$ with orders 2, 3, 2, 1. Then $\Gamma \cong Af_{e_0}(\Delta_0)$, where Δ_0 and e_0 are as above.

(2) Let Γ be a flag-transitive geometry belonging to diagram $Af.Af^*.c^{*2}$ with orders 2, 3, 2, 1, 1. Then $\Gamma \cong Af_{e_1}(\Delta_1)$ where Δ_1 is the dual of $\Sigma_1 = S(11, 5, 4)$ and e_1 is the natural embedding of Δ_1 .

(3) Let Γ be a flag-transitive geometry belonging to diagram $Af.Af^*.c^{*3}$ with orders 2, 3, 2, 1, 1, 1. Then $\Gamma \cong Af_{e_2}(\Delta_2)$ where Δ_2 is the dual of $\Sigma_2 = S(12, 6, 5)$ and e_2 is the natural embedding of Δ_2 .

Theorem 1 will be proved in Section 5. In Section 2 we shall discuss the natural embeddings of Σ_1 , Δ_1 , Σ_2 and Δ_2 . Section 3 contains a survey of examples and properties of $Af.Af^*$ -geometries, to be used in Section 4, where we will study $Af.Af^*.c^*$ -geometries, eventually focusing on the flag-transitive case. Claim (1) of Theorem 1 will be obtained as a corollary from the final theorem of Section 4. The results of Section 4 may be regarded as contributions to a possible proof of the following conjecture:

Conjecture 1 Every flag-transitive $Af.Af^*.c^*$ -geometry is the affine expansion of the dual of a classical inversive plane by its natural projective embedding.

For the sake of completeness, we also mention the following theorem, proved in [20], where a two-sided extension of the $Af.Af^*$ -diagram is considered.

THEOREM 2 No flag-transitive geometry exists with diagram and orders as follows:

The next is plausible:

Conjecture 2 No flag-transitive geometry exists with diagram as follows, where q > 2:

The restriction q > 2 is essential in the above conjecture. Indeed, there exists at least one flag-transitive geometry for the above diagram with q = 2. It is obtained by truncating a Coxeter complex of type E_6 .

2 Embeddings of S(11,5,4) and S(12,6,5) and their duals

2.1 Preliminaries

Embeddings and affine expansion have already been mentioned in Section 1, but we shall fix these notions more formally here. A general theory of embeddings and expansions is developed in [19], but we do not need it in this paper. The definitions we shall state are special cases of those of [19].

Let Σ be a geometry belonging to a string diagram of rank n, with the integers 0, 1, ..., n-1 as types, labelling the nodes of the diagram in increasing order from

left to right, as usual. To make things easier, we also assume that Σ satisfies the Intersection Property IP (see [18, Chapter 6]). We denote the set of 0-elements of Σ by P and, for an element x of Σ , we denote by P(x) the set of 0-elements of Σ incident to x.

For a vector space V, let $f: P \to PG(V)$ be an injective mapping from P to the set of points of the projective geometry PG(V) of linear subspaces of V such that f(P) spans PG(V). For an element x of Σ of type t(x) > 0, let $f(x) := \langle f(P(x)) \rangle$ be the span of f(P(x)) in PG(V). In this way, f is extended to a mapping from the whole of Σ to the set of subspaces of PG(V). Assume the following:

- (E1) f(x) is a line for every 1-element x of Γ ;
- (E2) for $p \in P$ and an element x of Σ of type t(x) > 0, we have $f(p) \in f(x)$ only if $p \in P(x)$.

Then we call f a projective embedding of Σ . Note that when t(x) = 1 the set f(P(x)) might not be a line of PG(V) (even if it spans a line, by (E1)). That is, f(P(x)) might be properly contained in $f(x) = \langle f(P(x)) \rangle$. If f(P(x)) = f(x) for every 1-element x of Γ then we say that the embedding f is f(P(x)) = f(x) for an Aldeghem [22], if f is non-full then we say it is f(P(x)) = f(x) on f(P(x)) = f(x) and f(P(x)) = f(x) following:

(E3) For any two elements x, y of Σ of type t(x), t(y) > 0, we have $f(x) \subseteq f(y)$ if and only if x and y are incident in Σ and $t(x) \le t(y)$. In particular, f(x) = f(y) only if x = y.

Affine expansions. The affine expansion $\mathrm{Af}_f(\Sigma)$ of Σ by f is defined as follows: Take $\{0,1,...,n\}$ as type-set for $\mathrm{Af}_f(\Sigma)$. The 0-elements of $\mathrm{Af}_f(\Sigma)$ are the points of the affine geometry AG(V). Regarding PG(V) as the geometry at infinity of AG(V), the 1-elements of $\mathrm{Af}_f(\Sigma)$ are the lines L of AG(V) with point at infinity $L^\infty \in e(P)$. For i>1, the i-elements of $\mathrm{Af}_f(\Sigma)$ are the affine subspaces X of AG(V) with space at infinity $X^\infty = f(x)$ for an (i-1)-element x of Σ . The incidence relation is the natural one, namely inclusion. The structure $\mathrm{Af}_f(\Sigma)$ is indeed a geometry (in particular, it is residually connected [19]) and the residues of its 0-elements are isomorphic to Σ . In view of (E1), the lower residues of the 2-elements of $\mathrm{Af}_f(\Sigma)$ are nets. In particular, when f is full those residues are affine planes.

Remark. A number of authors (as De Clerck and Van Maldeghem [8], for instance) call affine expansions *linear representations*.

Isomorphisms of embeddings. Given two embeddings $f: \Sigma \to PG(V)$ and $g: \Sigma \to PG(W)$, if g = hf for an isomorphism h from PG(V) to PG(W) then we say that f and g are isomorphic and we write $f \cong g$. Given a class $\mathcal C$ of projective embeddings of Σ , if $f \cong g$ for any two embeddings $f, g \in \mathcal C$, then we say that $\mathcal C$ contains a unique embedding. (This is a linguistic abuse, but it is harmless.)

2.2 The natural projective embeddings of S(11,5,4) and S(12,6,5) and their duals

For i=0,1,2, let Σ_i be the Steiner system S(10+i,4+i,3+i), regarded as (3+i)-dimensional matroid. So, Σ_0 is the unique inversive plane of order 3, Σ_1 is the Steiner system for M_{11} and Σ_2 that for M_{12} . We take $\{0,1,2\}$, $\{0,1,2,3\}$ and $\{0,1,2,3,4\}$ as sets of types for Σ_0, Σ_1 and Σ_2 :

For i = 0, 1, 2, we denote by Δ_i the dual of Σ_i . Namely, Δ_i is the same thing as Σ_i , except that types are permuted as follows:

The above diagrams are usually drawn as follows:

As recalled in the introduction of this paper, Σ_0 admits a lax embedding in PG(3,3). As shown by Coxeter [7], the Steiner systems Σ_1 and Σ_2 also admit lax embeddings in PG(4,3) and PG(5,3) respectively. We shall describe these embeddings here. In view of this, we need to recall some properties of the 6-dimensional ternary Golay code $C_6(3)$ and its dual $C_6^*(3)$. We refer to [6, page 31] (also [3, 11.3]) for a description of $C_6(3)$. We warn that $C_6(3)$ is called 'extended ternary Golay code' in [3], but simply 'ternary Golay code' in [6]. In this paper we follow [6].

We recall that the code $C := \mathcal{C}_6(3)$, regarded as a linear subspace of $\widehat{V} = V(12,3)$, is 6-dimensional and the non-zero vectors of C have weight 6, 9 and 12 with respect to B. (We recall that the weight of a vector $v = (\lambda_i)_{i=1}^n$ of V(n,q) is the number of entries $\lambda_i \neq 0$ and the set $S(v) := \{i \in \{1,2,...,n\} | \lambda_i \neq 0\}$ is called the support of v.) For every i = 1,2,...,12, let C_i be the set of vectors $v \in C$ with $i \notin S(v)$. It is well known that C_i is a hyperplane of C (see [3], where C_i is called 'perfect ternary Golay code'). Thus, we get 24 non-zero vectors of the dual C^* of C, partioned in 12 pairs of mutually opposite vectors. (These vectors are the 24 words of weight 1 of the cocode $C^* = \mathcal{C}_6^*(3)$). Accordingly, we have obtained a set S of 12 points of

PG(V), where $V := C^* \cong V(6,3)$. As the non-zero vectors of C have weight 6, 9 or 12, the set S satisfies the following property:

(*) every hyperplane of PG(V) meets S in 6, 3 or 0 points.

Moreover, for every subset X of $\{1, 2, ..., 12\}$ of size 5, there is exactly one 1-dimensional linear subspace $\{0, v, -v\}$ of C (= V^* , dual space of $V = C^*$) such that $S(v) \cap X = \emptyset$. Therefore,

(**) any five points of S span a hyperplane of PG(V).

For every point $p \in S$, let w_p be one of the two vectors $w \in V$ such that $\langle w \rangle = p$. Then C is the kernel of the linear transformation $\varphi : \hat{V} \to V = C^*$ mapping $v = (\lambda_i)_{i=1}^{12} \in \hat{V}$ to $\varphi(v) = \sum_{p \in S} \lambda_p w_p \in V$. The usual definition of $C_6^*(3)$ as the quotient \hat{V}/C of \hat{V} by $C = C_6(3)$ is implicit in the natural isomorphism from $\hat{V}/V^* = \hat{V}/\mathrm{Ker}(\varphi)$ to $V = \mathrm{Im}(\varphi)$.

Turning to Σ_2 and with S as above, we can take S as the set of 0-elements of Σ_2 . The lines, planes, 3-spaces and hyperplanes of PG(5,3) that meet S in 2, 3, 4 and, respectively, 6 points will be taken as elements of type 1, 2, 3 and 4. Thus, we obtain a lax embedding $f_2: \Sigma_2 \to PG(V) \cong PG(5,3)$. Clearly, f_2 induces lax embeddings $f_1: \Sigma_1 \to PG(4,3)$ and $f_0: \Sigma_0 \to PG(3,3)$. The latter embedding is the unique embedding of the inversive plane Σ_0 in PG(3,3).

For i=0,1,2, let $V_i=V(4+i,3)$ be the underlying vector space of the projective space $PG(V_i)=PG(3+i,3)$ in which Σ_i is embedded by f_i and let V_i^* be its dual. (In particular, V_2 and V_2^* are the spaces previously called V and V^* .) The embedding $f_i:\Sigma_i\to PG(V_i)$ induces a full embedding e_i of Δ_i in $PG(V_i^*)$ and we can consider the affine expansion $\mathrm{Af}_{e_i}(\Delta_i)$. As noticed in the introduction of this paper, $\mathrm{Af}_{e_i}(\Delta_i)$ belongs to $Af.Af^*.c^{*(i+1)}$ with orders 2,3,1,...,1 and it is flag-transitive. Moreover,

$$\begin{array}{lcl} \operatorname{Aut}(\operatorname{Af}_{e_0}(\Delta_0)) & = & 3^4{:}\Gamma O^-(4,3), \\ \operatorname{Aut}(\operatorname{Af}_{e_1}(\Delta_1)) & = & 3^5{:}(2\times M_{11}), \\ \operatorname{Aut}(\operatorname{Af}_{e_2}(\Delta_2)) & = & 3^6{:}(2{:}M_{11}). \end{array}$$

Clearly, $Af_{e_0}(\Delta_0)$ is a residue of $Af_{e_1}(\Delta_1)$ and the latter is a residue of $Af_{e_2}(\Delta_2)$. The collinearity graph of $Af_{e_2}(\Delta_2)$ is the minimal distance graph of $C_6(3)$. That is, two vectors $v_1, v_2 \in C_6(3)$ are collinear as points of $Af_{e_2}(\Delta_2)$ if and only if $v_1 - v_2$ has weight 6. Similarly, the collinearity graph of $Af_{e_1}(\Delta_1)$ is the minimal distance graph of the 5-dimensional ternary Golay code $C_5(3)$ ('perfect Golay code' in [3]) and the collinearity graph of $Af_{e_0}(\Delta_0)$ is the minimal distance graph of the code $C_4(3)$ (called the 'truncated Golay code' in [3]).

Remark. We can also consider the affine expansions $Af_{f_0}(\Sigma_0)$, $Af_{f_1}(\Sigma_1)$ and $Af_{f_2}(\Sigma_2)$. Their diagrams are as follows:

In particular, the point-line geometry of 0- and 1-elements of $Af_{f_2}(\Sigma_2)$ is a well known near-hexagon, discovered by Shult and Yanushka [21] and characterized by Brouwer [2] (see also [3, 11.3.A]). Its collinearity graph is the coset graph of $C_6(3)$. Similarly, the collinearity graphs of $Af_{f_1}(\Sigma_1)$ and $Af_{f_0}(\Sigma_0)$ are the coset graphs of $C_5(3)$ and $C_4(3)$, respectively.

2.3 Uniqueness of the embeddings f_0, f_1, f_2

We keep the notation of the previous subsection. For i = 0, 1, 2, let P_i be the set of 0-elements of Σ_i . The lax embeddings f_0, f_1, f_2 satisfy the following properties (compare (*) and (**) of the previous subsection):

- (S0) every triple of points of $f_0(P_0)$ spans a plane of $PG(V_0)$ and every plane of $PG(V_0)$ meets $f_0(P_0)$ in either 1 or 4 points. (That is, $f_0(P_0)$ is an ovoid.)
- (S1) every quadruple of points of $f_1(P_1)$ spans a hyperplane of $PG(V_1)$ and every hyperplane of $PG(V_1)$ meets $f_1(P_1)$ in either 2 or 5 points.
- (S2) any five points $f_2(P_2)$ span a hyperpane of $PG(V_2)$ and every hyperplane of $PG(V_2)$ meets $f_2(P_2)$ in either 0, 3 or 6 points.

Lemma 2.1 For i = 0, 1, 2, let f be an embedding of Σ_i in $PG(V_i)$. Then f satisfies (Si).

Proof. We shall only prove the lemma for i = 2, leaving the remaining cases to the reader.

In view of (E3), for j = 0, 1, 2, 3, 4 the embedding f maps the j-elements of Σ_2 onto j-dimensional subspaces of $PG(V_2)$. As any five 0-elements of Σ_2 are contained in a unique 4-element, any five points of $f(P_2)$ span a hyperplane of $PG(V_2)$. On the other hand, every quadruple of 0-elements of Σ_2 is contained in four 4-elements, the latters are mapped by f onto four hyperplanes of Σ_2 and each of these hyperplanes meets $f(P_2)$ in six points. Therefore, if a hyperplane of $PG(V_2)$ contains four points of $f(P_2)$, then it meets $f(P_2)$ in six points.

Every triple X of points of $f(P_2)$ is contained in 13 hyperplanes of $PG(V_2)$. As every triple of 0-elements of Σ_2 is contained in exactly twelve 4-elements, exactly one of those hyperplanes meets $f(P_2)$ in 3 points. It follows that $PG(V_2)$ contains exactly $\binom{12}{3} = 220$ hyperplanes that meet $f(P_2)$ in 3 points. Every point $p \in f(P_2)$ is contained in $(3^5 - 1)/2 = 121$ hyperplanes. As every 0-element of Σ_2 belongs to exactly 66 elements of type 4, exactly 66 of those 121 hyperplanes meet $f(P_2)$ in 6 points. Moreover, p is contained in $\binom{11}{2} = 55$ triples of points of $f(P_2)$ and each of

these triples is contained in exactly one hyperplane meeting $f(P_2)$ in 3 points. As 66 + 55 = 121, every hyperplane containing p meets $f(P_2)$ in either 6 or 3 points. \square

In the next theorem the word 'unique' means 'unique up to isomorphisms', as stated at the end of Subsection 2.1.

Theorem 2.2 For $i = 0, 1, 2, \Sigma_i$ admits a unique projective embedding in $PG(V_i)$.

Proof. Given f_i as in the previous subsection, put $f := f_i$ and let $g : \Sigma_i \to PG(V_i)$ be another embedding of Σ_i . We shall prove the following:

(A) g = hf for an automorphism h of $PG(V_i)$.

It is well known that (A) holds true when i = 0. So, in order to prove (A) for i = 1 and i = 2 we only must prove the following, where $i \in \{1, 2\}$:

(Bi) if (A) holds for i - 1, then (A) holds for i too.

We shall only prove (B2). Claim (B1) can be proved by a similar but easier argument, which we leave for the reader.

In view of (E3) and Lemma 2.1, the images $\Sigma_f := f(\Sigma_2)$ and $\Sigma_g := g(\Sigma_2)$ of Σ_2 by f and g are isomorphic to Σ_2 . Accordingly, there exist an abstract isomorphism $\omega : \Sigma_f \to \Sigma_g$. Let $P_f := f(P_2)$ and $P_g := g(P_2)$ be the sets of 0-elements of Σ_f and Σ_g , $P_f = \{a_1, ..., a_{12}\}$ and $P_g = \{b_1, ..., b_{12}\}$ say. We may assume to have chosen indices in such a way that $\omega(a_i) = b_i$ for i = 1, 2, ..., 7, but $\omega(a_i)$ might be different from b_i when i > 7. Put $A = \{a_1, a_2, ..., a_7\}$ and $B = \{b_1, b_2, ..., b_7\} = \omega(A)$.

(1) $|A \cap H| = 6$ for exactly one hyperplane H.

(Proof of (1).) $|H \cap A| \leq 6$ for every hyperplane H. If $|A \cap H| = |A \cap H'| = 6$ for two hyperplanes H and H', then $|A \cap H \cap H'| \geq 5$, which forces H = H'. Suppose that $|A \cap H| < 6$ for every hyperplane H. Then distinct 5-subsets of A are contained in distinct hyperplanes. Let $S_5(A)$ be the family of 5-subsets of A and, for $X \in S_5(A)$, let H_X be the hyperplane containing X and a_X be the point of $H_X \cap (P_f \setminus A)$. For two distinct 5-subsets $X, Y \in S_5(A)$, we have $a_X = a_Y$ only if $|X \cap Y| = 3$. Moreover, it is not difficult to see that, given $X, Y \in S_5(A)$ with $|X \cap Y| = 3$, there exists exactly one $Z \in S_5(A)$ such that $|X \cap Z| = |Y \cap Z| = 3$. Therefore, the function α sending $X \in S_5(A)$ to $\alpha(X) = a_X$ has fibers of size at most 3. Consequently, the image $Im(\alpha)$ of α contains at least $|S_5(A)|/3 = 21/3 = 7$ elements. However, $Im(\alpha) \subseteq P_f \setminus A$ and $|P_f \setminus A| = 5$. We have reached a contradiction. Claim (1) is proved.

We may assume to have chosen indices in such a way that $\{a_1,...,a_6\}$ is the unique 6-subset of A contained in a hyperplane. Clearly, we may also assume that $a_1 = b_1 = p$, say. For i = 2,...12, let L_i be the line of $PG(V_2)$ through p and a_i , and M_i be the line through p and b_i . Thus $(L_2,...,L_{12})$ and $(M_2,...,M_{12})$ yield embeddings of Σ_1 in the star of p. Both these embeddings satisfy (S1). Therefore, by (A) for i = 1, there exists an automorphism of $PG(V_2)$ that fixes p and maps $\{M_2,...,M_{12}\}$ onto $\{L_2,...,L_{12}\}$. So,

(2) We may also assume that $b_i \in L_i$ for i = 2, 3, ..., 12.

As $\bigcup_{i=2}^6 L_i$ is contained in a hyperplane, $\{b_1, ..., b_6\}$ is the unique 6-subset of B contained in a hyperplane (compare (1)). Let L be the line through a_6 and a_7 , let a_6' be one of the two points of $L \setminus \{a_6, a_7\}$ and put $A' = \{p, a_2, ..., a_5, a_6', a_7\}$. Then $|H \cap A'| \leq 5$ for every hyperplane H of $PG(V_2)$. Accordingly, we can take $(p, a_2, ..., a_5, a_6', a_7)$ as a coordinate system, where $p, a_2, ..., a_5, a_6'$ form the basis and a_7 is the unit point. Similarly, denoted by M the line through b_6 and b_7 and chosen a point $b_6' \in M \setminus \{b_6, b_7\}$, the sequence $(p, b_2, ..., b_5, b_6', b_7)$ is a coordinate system, where $(p, b_2, ..., b_5, b_6')$ is the basis and b_7 is the unit point. Consequently, there exists a linear mapping h of V_2 fixing p and sending b_i to a_i for i = 2, 3, 4, 5, 7 and b_6' to a_6' . Clearly, h maps M onto L and stabilizes the hyperplane $H_0 := \langle L_1, L_2, ..., L_5 \rangle$ (which is the unique hyperplane meeting A in 6 points). However, $b_6 = M \cap H_0$ and $a_6 = L \cap H_0$. Hence $h(b_6) = a_6$.

(3) We may assume that $b_i = a_i$ for i = 1, 2, ..., 7 and $b_i \in L_i$ for i = 8, 9, ..., 12.

(Proof of (3).) Modulo applying a linear transformation h as in the previous paragraph, we may assume that $b_i = a_i$ for i = 1, 2, ..., 7. If h induces the identity mapping on the star of p, then we are done. Otherwise, h induces a non-trivial homology h_p on the star of p. The center of h_p is the line L_7 and the axis of h_p is the set of lines of H_0 through p. However, in this case, we can consider the non-trivial homology h_0 of $PG(V_2)$ with center a_7 and axis H_0 . The composition h_0h induces the identity on the star of p and maps $b_2, b_3, ..., b_7$ on $a_2, a_3, ..., a_7$ respectively. Claim (3) is proved.

We now turn back to the isomorphism $\omega: \Sigma_f \to \Sigma_g$ considered at the beginning of the proof. Modulo composing ω with the linear transformations considered in the previous paragraphs, ω stabilizes $a_i = b_i$ for i = 1, 2, ..., 7.

(4)
$$\omega(a_i) = b_i$$
 for $i = 8, 7, ..., 12$.

(Proof of (4).) Let π be the projection of $PG(V_2) \setminus \{p\}$ onto the star of p. By claim (3), π maps both Σ_f and Σ_g onto a copy Σ_p of Σ_1 with $\{L_2, L_3, ..., L_{12}\}$ as the point-set. It is also clear that there exist a unique automorphism ω_p of Σ_p such that $\pi\omega = \omega_p\pi$. As ω fixes $a_i = b_i$ for i = 1, 2, ..., 7, ω_p fixes six points of Σ_p , namely $L_2, L_3, ..., L_7$. This forces ω_p to be the identity. Hence $\omega(a_i) = b_i$ for i = 8, 9, ..., 12, as claimed in (4).

The next claim finishes the proof of (B2).

(5)
$$b_i = a_i$$
 for $i = 1, 2, ..., 12$.

(Proof of (5).) In view of (3), we only must prove that $b_i = a_i$ for i > 7. The set $A \setminus \{p\}$ contains 6 subsets of size 5. Just one of them is contained in H_0 . So, denoted by \mathcal{X} the set of 5-subsets of A that are not contained in H_0 , we have $|\mathcal{X}| = 5$. Given $X \in \mathcal{X}$, let H_X be the hyperplane of $PG(V_2)$ spanned by X. Then H_X contains exactly one of the points $a_8, a_9, ..., a_{12}$ and exactly one of $b_8, b_9, ..., b_{12}$. Moreover,

 $p \not\in H_X$, as $H_X \neq H_0$ and H_0 is the unique hyperplane of $PG(V_2)$ that contains six points of A. For a given $X \in \mathcal{X}$, two indices $i(X), j(X) \in \{8, 9, ..., 12\}$ are uniquely determined such that $a_{i(X)}$ and $b_{j(X)}$ are the points of $(H_X \cap P_f) \setminus A$ and $(H_X \cap P_g) \setminus A$ respectively. (Recall that $A = \{a_1, a_2, ..., a_7\} = \{b_1, b_2, ..., b_7\} = B$, by claim (3).) We have $\omega(X) = X$ by claim (4). Hence $H_X = \omega(H_X)$. Consequently, $b_{j(X)} = \omega(a_{i(X)})$. Therefore j(X) = i(X) = k, say, by (4). Accordingly, $\{b_k, a_k\} \subseteq H_X \cap L_k$. However, H_X meets L_k in precisely one point, as $p \notin H_X$. Therefore $b_k = a_k$. On the other hand, the function mapping $X \in \mathcal{X}$ onto i(X) = i(X) is a bijection from \mathcal{X} to $\{8, 9, ..., 12\}$. Therefore, $b_k = a_k$ for every k = 8, 9, ..., 12.

Corollary 2.3 For $i = 0, 1, 2, \Delta_i$ admits a unique projective embedding in $PG(V_i^*)$.

3 A survey of $Af.Af^*$ -geometries

An $Af.Af^*$ -geometry of order s is a geometry with diagram and orders as follows:

$$(Af.Af^*) \qquad \underbrace{\begin{array}{ccc} Af & Af^* \\ s-1 & s & s-1 \\ \text{points} & \text{lines} & \text{planes} \end{array}}$$

The elements of an $Af.Af^*$ -geometry are called *points*, *lines* and *planes*, as indicated in the above picture. The *diameter* of an $Af.Af^*$ -geometry is the diameter of its collinearity graph. In this paper we are only interested in finite $Af.Af^*$ -geometries. Accordingly, s is assumed to be finite. Note that the finiteness of s implies the finiteness of the geometry, as it follows from the next proposition.

Proposition 3.1 (Del Fra and Pasini [12, 4.7]) Every $Af.Af^*$ -geometry has diameter $d \leq 2$.

A few classes of $Af.Af^*$ -geometries are described in the next three subsections. We will turn to general properties of $Af.Af^*$ -geometries in Subsection 3.4.

3.1 Bi-affine geometries and their quotients

Bi-affine geometries can be defined for any rank $n \geq 3$, but we are only interested in the rank 3 case here. Given a prime power q, a bi-affine geometry of order q (and rank 3) is the induced subgeometry $\Sigma(p_0, \pi_0)$ of a projective geometry $\Sigma = PG(3, q)$ obtained by removing a distinguished point p_0 of Σ (called the pole at infinity of $\Sigma(p_0, \pi_0)$), a distinguished plane π_0 of Σ (called the plane at infinity of $\Sigma(p_0, \pi_0)$), all lines and planes of Σ through p_0 and all points and lines of π_0 . We say that $\Sigma(p_0, \pi_0)$ is of flag-type or non-flag-type according to whether $p_0 \in \pi_0$ or $p_0 \notin \pi_0$.

Clearly, $\Sigma(p_0, \pi_0)$ is an $Af.Af^*$ -geometry of order q and it is flag-transitive, with automorphism group isomorphic to the stabilizer of p_0 and π_0 in $P\Gamma L(4, q) = \operatorname{Aut}(\Sigma)$. The subgroup $\operatorname{Aut}_{\text{lin}}(\Sigma(p_0, \pi_0))$ of $\operatorname{Aut}(\Sigma(p_0, \pi_0))$ induced by the stabilizer of p_0 and π_0 in PGL(4, q) also acts flag-transitively on $\Sigma(p_0, \pi_0)$. For the rest of this subsection Z stands for the center of $\operatorname{Aut}_{\text{lin}}(\Sigma(p_0, \pi_0))$.

Flag-transitive quotients of $\Sigma(p_0, \pi_0)$ are obtained by factorizing by subgroups of Z. The quotient $\Sigma(p_0, \pi_0)/Z$ is the minimal one. In the flag-type case (namely $p_0 \in \pi_0$) the group Z has order q and is induced by the group of all elations of Σ with axis π_0 and center p_0 . In this case the minimal quotient $\Sigma(p_0, \pi_0)/Z$ is isomorphic to the canonical gluing of two copies of AG(2, q) (see the next subsection). On the other hand, if $p_0 \notin \pi_0$ then Z has order q-1 and $\Sigma(p_0, \pi_0)/Z$ is isomorphic to the anti-flag geometry of the projective plane $\pi_0 \cong PG(2, q)$ (see Subsection 3.3).

Bi-affine geometries are simply connected, as it follows from Proposition 3.3 of Subsection 3.4. Accordingly, all quotients of $\Sigma(p_0, \pi_0)$ are obtained by factorizing by suitable subgroups of $\operatorname{Aut}(\Sigma(p_0, \pi_0))$ (see [18, Theorem 12.56]). Moreover, if $X < \operatorname{Aut}(\Sigma(p_0, \pi_0))$ defines a quotient of $\Sigma(p_0, \pi_0)$, then no two collinear points of $\Sigma(p_0, \pi_0)$ belong to the same orbit of X and, if two planes of $\Sigma(p_0, \pi_0)$ belong to the same orbit of X, then they meet trivially in $\Sigma(p_0, \pi_0)$. It follows that X, regarded as a subgroup of $\operatorname{Aut}(\Sigma)$, fixes all lines through p_0 and all points of π_0 . Namely, $X \leq Z$. So, we have proved the following:

Proposition 3.2 All quotients of $\Sigma(p_0, \pi_0)$ are obtained by factorizing by subgroups of the center Z of $\operatorname{Aut}_{\lim}(\Sigma(p_0, \pi_0))$. In particular, all quotients of $\Sigma(p_0, \pi_0)$ are flag-transitive.

The following is also worth to be mentioned. Suppose that $p_0 \in \pi_0$. Then, regarding π_0 as the plane at infinity of AG(3,q), $\Sigma(p_0,\pi_0)$ is the induced subgeometry of AG(3,q) obtained by removing all lines with p_0 as the point at infinity and every plane the line at infinity of which contains p_0 . In other words, $\Sigma(p_0,\pi_0)$ is the affine expansion of the punctured projective plane obtained by removing from $\pi_0 \cong PG(2,q)$ a point p_0 and all lines through it.

We finish this survey of bi-affine geometries with a remark on collinearity graphs. The collinearity graph of $\Sigma(p_0, \pi_0)$ is a complete $(q^2 + \varepsilon(q+1))$ -partite graph, with classes of size $q - \varepsilon$, where ε stands for 0 or 1 according to whether p_0 belongs to π_0 or not. Clearly, given a subgroup $X \leq Z$ of order $\lambda = |X|$, the collinearity graph of the quotient $\Sigma(p_0, \pi_0)/X$ is a complete $(q^2 + \varepsilon(q+1))$ -partite graph with classes of size $(q - \varepsilon)/\lambda$. In particular, when X = Z that graph is a complete graph with $q^2 + \varepsilon(q+1)$ vertices.

3.2 Gluings

Gluings have been introduced by Del Fra, Pasini and Shpectorov [13], in view of a classification of $Af.A_{n-2}.Af^*$ -geometries. Later, a general theory of gluings has been developed by Buekenhout, Huybrechts and Pasini [4]. However, we will only consider gluings of two affine planes in this paper.

Given two affine planes \mathcal{A}_1 and \mathcal{A}_2 of the same order s, with lines at infinity \mathcal{A}_1^{∞} and \mathcal{A}_1^{∞} and a bijection α from \mathcal{A}_1^{∞} to \mathcal{A}_2^{∞} , the gluing $\mathrm{Gl}_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ of \mathcal{A}_1 with \mathcal{A}_2 by α is the $Af.Af^*$ -geometry defined as follows: the points of \mathcal{A}_1 and \mathcal{A}_2 are taken as points and planes, respectively; the lines of $\mathrm{Gl}_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ are the pairs (L_1, L_2) of lines of \mathcal{A}_1 and \mathcal{A}_2 such that $\alpha(L_1^{\infty}) = L_2^{\infty}$, where L_i^{∞} is the point at infinity of L_i . Every

point of $Gl_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ is declared to be incident with all planes. A point p_1 (a plane p_2) and a line (L_1, L_2) of $Gl_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ are incident precisely when $p_1 \in L_1$ (respectively, $p_2 \in L_2$). When $\mathcal{A}_1 \cong \mathcal{A}_2 \cong AG(2,q)$ and α is induced by an isomorphism from \mathcal{A}_1 to \mathcal{A}_2 , then the gluing $Gl_{\alpha}(\mathcal{A}_1, \mathcal{A}_2)$ is said to be *canonical*.

Up to isomorphism, there is only one canonical gluing of two copies of AG(2, q). That gluing is flag-transitive and it is isomorphic to the minimal quotient of a biaffine geometry of order q and flag-type (Del Fra, Pasini and Shpectorov [13]; see also Del Fra and Pasini [12, 2.1]).

More generally, every canonical gluing of two copies of the same flag-transitive affine plane is flag-transitive. Many flag-transitive non-canonical gluings also exist. A classification of flag-transitive non-canonical gluings of two copies of AG(2,q) has been obtained by Baumeister and Stroth [1].

3.3 Anti-flag geometries

Given a projective plane \mathcal{P} of order s, let $\Delta(\mathcal{P})$ be the geometry of rank 3 defined as follows: the points and the planes of $\Delta(\mathcal{P})$ are the points and the lines of \mathcal{P} , whereas the lines of $\Delta(\mathcal{P})$ are the flags of \mathcal{P} . We say that a point p and a line L of \mathcal{P} are incident in $\Delta(\mathcal{P})$ when $p \notin L$. A flag (p_1, L_1) and a point p_2 (a line L_2) of \mathcal{P} are incident in $\Delta(\mathcal{P})$ precisely when $p_2 \in L_1$ but $p_2 \neq p_1$ (respectively, $p_1 \in L_2$ but $L_2 \neq L_1$). It is not difficult to see that $\Delta(\mathcal{P})$ is an $Af.Af^*$ -geometry of order s. We call it the anti-flag geometry of \mathcal{P} . (Note that the point-plane flags of $\Delta(\mathcal{P})$ are just the anti-flags of \mathcal{P} .)

When \mathcal{P} is classical, then $\Delta(\mathcal{P})$ is isomorphic to the minimal quotient of the bi-affine geometry of non-flag-type (Del Fra, Pasini and Shpectorov [13]; also Del Fra and Pasini [12, 2.1]). In view of Kantor [15], an anti-flag geometry $\Delta(\mathcal{P})$ is flag-transitive if and only if \mathcal{P} is classical.

3.4 A few properties of $Af.Af^*$ -geometries

All $Af.Af^*$ -geometries obtained as gluings are flat, namely all points are incident to all planes. In a flat $Af.Af^*$ -geometry of order s, every pair of points is incident with exactly s common lines. A similar situation occurs in anti-flag geometries: if Δ is an anti-flag geometry of order s, then Δ has diameter d=1 and every pair of points of Δ is incident with s-1 common lines. A situation completely different from the above is described below:

(LL) no two distinct points are incident with two common lines.

This property characterizes bi-affine geometries. Indeed:

Proposition 3.3 (Levefre & Van Nypelseer [17]) An $Af.Af^*$ -geometry is bi-affine if and only if it satisfies (LL).

In the general case, the following holds:

Proposition 3.4 (Del Fra and Pasini [12, 4.6]) Let Δ be an $Af.Af^*$ -geometry of finite order s. Then there exists a positive integer $\lambda \leq s$ such that:

- (1) if p_1 and p_2 are distinct collinear points, then there are exactly λ lines incident with both p_1 and p_2 ;
- (2) if l_1 and l_2 are distinct lines with at least two points in common (whence $\lambda > 1$), then l_1 and l_2 have exactly λ points in common;
- (3) if π_1 and π_2 are distinct planes with at least one line in common, then there are exactly λ lines incident with both π_1 and π_2 ;
- (4) if l_1 and l_2 are distinct lines incident with at least two common planes (hence $\lambda > 1$), then l_1 and l_2 are incident with exactly λ common planes.

Moreover, λ divides s(s-1).

We call λ the *index* of the $Af.Af^*$ -geometry Δ . Clearly, $\lambda = 1$ if and only if Δ satisfies (LL), namely Δ is bi-affine (Proposition 3.3). Opposite situations are considered in the next proposition:

Proposition 3.5 (Del Fra and Pasini [12, 4.14, 5.1]) Let Δ be an Af.Af*-geometry of finite order s and index λ . Then:

- (1) Δ has diameter d=1 if and only if $s-1 \leq \lambda \leq s$
- (2) Δ is flat if and only if $\lambda = s$.

Proposition 3.6 (Del Fra and Pasini [12, 5.4, 5.6]) Let Δ be a flag-transitive $Af.Af^*$ -geometry of order s and index $\lambda \in \{s-1, s\}$.

- (1) If $\lambda = s$ then Δ is a gluing of two affine planes.
- (2) If $\lambda = s 1$ then Δ is an anti-flag geometry.

Turning back to the case of diameter d=2, we mention the following:

Proposition 3.7 (Del Fra and Pasini [12, 4.15]) Let Δ be an $Af.Af^*$ -geometry of diameter d=2 and $\mathcal{G}(\Delta)$ be its collinearity graph. Then $\mathcal{G}(\Delta)$ is a complete n-partite graph, for a suitable integer $n \geq s^2$. Moreover, $\lambda |C| \leq q$ for every class C of the n-partition of $\mathcal{G}(\Delta)$.

3.5 Classical and nearly classical $Af.Af^*$ -geometries

We say that an $Af.Af^*$ -geometry Δ of prime power order q is classical if $\Delta = \tilde{\Delta}/X$ for a bi-affine geometry $\tilde{\Delta} = \Sigma(p_0, \pi_0)$ and a subgroup X of the center of $\operatorname{Aut}_{\lim}(\Sigma(p_0, \pi_0))$.

Let Δ be an $Af.Af^*$ -geometry of order s and index λ . For $\varepsilon \in \{0,1\}$, we say that Δ is nearly classical of ε -type if s is a prime power, λ divides $s - \varepsilon$, $(s^3 - \varepsilon)/\lambda$ is the number of points as well as the number of planes of Δ and the collinearity graph of Δ is a complete $(s^2 + \varepsilon(s+1))$ -partite graph with all classes of size $(s-\varepsilon)/\lambda$ (possibly, a complete graph with $s^2 + \varepsilon(s+1)$ vertices, when $\lambda = s - \varepsilon$). In short, Δ has the same parameters as a classical $Af.Af^*$ -geometry. For instance, if s is a prime power, all flat $Af.Af^*$ -geometries of order s are nearly classical of 0-type and all anti-flag geometries of order s are nearly classical of 1-type, but not all of these geometries are classical.

4 c-extensions of $Af.Af^*$ -geometries

This section is devoted to $Af.Af^*.c^*$ -geometries, but we prefer to focus on their duals. So, troughout this section Γ is a geometry with diagram as follows and orders 1, q-1, q, q-1, where q is a prime power, say $q=p^n$ for a prime p and a positive integer n.

Note that, given a 0-element x of Γ , the elements of Γ incident to x of type 1, 2 and 3 are respectively the points, lines and planes of the $Af.Af^*$ -geometry $\mathrm{Res}(x)$. On the other hand, the residues of the 3-elements of Γ are $c.Af^*$ -geometries. As recalled in the introduction of this paper, every $c.Af^*$ -geometry is an inversive plane. Therefore the residues of the 3-elements of Γ are inversive planes.

Given a 1-element e and a 0-element x of Γ , if x is incident with e then we say that x belongs e, also that e lies on x, or that it passes through x. We denote by $\mathcal{G}(\Gamma)$ the collinearity graph of Γ , where the elements of type 0 and 1 are taken as points and lines, respectively. The adjacency relation of $\mathcal{G}(\Gamma)$ will be denoted by \sim . When we say that two 0-elements x, y are adjacent (or that they have distance d(x,y)=2) we mean that they are adjacent (respectively, at distance 2) in $\mathcal{G}(\Gamma)$. Given a 0-element x, we denote by x^{\perp} the set of 0-elements adjacent with x or equal to x. The multiplicity $\mu(x,y)$ of an edge $\{x,y\}$ of $\mathcal{G}(\Gamma)$ is the number of 1-elements that are incident with $\{x,y\}$. We say that Γ admits uniform multiplicity μ if $\mu(x,y)=\mu$ for every edge $\{x,y\}$ of $\mathcal{G}(\Gamma)$.

We denote by $S(\Gamma)$ be the point-line geometry with the 3-elements of Γ as points and the 2-elements as lines. We also denote the collinearity graph of $S(\Gamma)$ by $\mathcal{G}^*(\Gamma)$ and its adjacency relation by \sim^* .

Given a type i and an element x of type $t(x) \neq i$, we denote by $\sigma_i(x)$ the set of i-elements incident with x. Also, $\sigma_i(x, y) := \sigma_i(x) \cap \sigma_i(y)$.

Lemma 4.1 Assume the following:

- (A1) for $\varepsilon \in \{0,1\}$ and a given divisor λ of $q \varepsilon$, Res(x) is nearly classical of ε -type and index λ , for every 0-element x of Γ ;
- (A2) Γ admits uniform multiplicity μ .

Then all the following hold:

- (B1) $\varepsilon = 0$ and $\lambda = 1$, namely $\operatorname{Res}(x)$ is isomorphic to the bi-affine geometry of order q and flag-type, for every 0-element x.
- (B2) μ divides q and is smaller than q.
- (B3) $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with classes of size q/μ . (In particular, if $\mu = q$ then $\mathcal{G}(\Gamma)$ is a complete graph with $q^2 + 1$ vertices.) Accordingly, if N_i is the number of i-elements of Γ , then

$$N_0 = (q^2 + 1)q/\mu$$
, $N_1 = (q^2 + 1)q^4/2\mu$, $N_2 = (q^2 + 1)q^4/\mu$, $N_3 = q^4/\mu$.

- (B4) For any three distinct 0-elements x, y, z with $y, z \in x^{\perp}$ and for any choice of $e \in \sigma_1(x, y)$ and $f \in \sigma_1(x, z)$, e and f are coplanar as points of $\operatorname{Res}(x)$ if and only if $y \sim z$.
- (B5) The graph $\mathcal{G}^*(\Gamma)$ has diameter $d^* \leq 2$.

Proof. Let k be the valency of $\mathcal{G}(\Gamma)$. Clearly,

(1)
$$k = (q^3 - \varepsilon)/\mu\lambda$$
.

Note also that, given two 0-elements x, y, the μ elements of $\sigma_1(x, y)$ form a coclique in the collinearity graph of the $Af.Af^*$ -geometry $\mathrm{Res}(x)$. Each of the maximal cocliques of the collinearity graph of $\mathrm{Res}(x)$ is partitioned in $(q - \varepsilon)/\mu$ cocliques as above. Hence μ divides $(q - \varepsilon)/\lambda$, namely

(2) $\lambda \mu$ divides $q - \varepsilon$.

We shall now prove the following:

(3) the graph $\mathcal{G}(\Gamma)$ has diameter $d \leq 2$ and, if d = 2 and x, y are 0-elements at distance 2, then $|x^{\perp} \cap y^{\perp}| = (q^3 - \varepsilon)/\lambda \mu = k$.

Suppose $d \geq 2$. Given two 0-elements x, y at distance 2, pick $z \in x^{\perp} \cap y^{\perp}$. If $e_1 \in \sigma_1(x, z)$ and $e_2 \in \sigma_1(y, z)$ with $e_1 \neq e_2$, then e_1 and e_2 belong to the same maximal coclique of the collinearity graph of Res(z). Therefore, given $e \in \sigma_1(z)$ and regarded e, e_1, e_2 as points of Res(x), e is collinear with e_1 in Res(x) if and only if it is collinear with e_2 . As the common neighbourhood of two non-collinear points of Res(z) has size $(q^3 - q)/\lambda$, we obtain that

$$(*) \quad |x^{\perp} \cap z^{\perp} \cap y^{\perp}| \ge (q^3 - q)/\lambda \mu.$$

With e as above, suppose that e is coplanar with e_1 and e_2 in $\mathrm{Res}(x)$. Let u be the 0-element of e different from z and v a 0-element adjacent with y but at distance 2 from u. Let $f_1 \in \sigma_1(y,u)$ and $f_2 \in \sigma_1(y,v)$. As d(z,v)=2, f_1 and f_2 belong to the same maximal coclique of the collinearity graph of $\mathrm{Res}(y)$. On the other hand, the 0-elements z,y and u are incident with a common 2-element. Hence f_1 and f_2 are collinear as points of $\mathrm{Res}(y)$. Therefore $\sigma_2(f_1,f_2) \neq \emptyset$. So, at least $(q^3-q)/\lambda \mu$ elements of $z^{\perp} \cap y^{\perp}$ belong to v^{\perp} . This implies that d=2.

The equality $|x^{\perp} \cap y^{\perp}| = k$ remains to be proved. With z, e and u as above, let $f_1 \in \sigma_1(u, x)$ and $f_2 \in \sigma_1(u, y)$. Let $f \in \sigma_1(u)$ be such that f, regarded as a point of Res(u), is not collinear with e. Then f is collinear with either of f_1 and f_2 . Therefore the 0-element of f different from u belongs to $x^{\perp} \cap y^{\perp} \cap u^{\perp}$, but not to z^{\perp} . As the maximal coclique of Res(u) containing e contains $(q - \varepsilon)/\lambda - 1$ points of Res(u) different from e, $|(u^{\perp} \cap x^{\perp} \cap y^{\perp}) \setminus z^{\perp}| \geq (q - \varepsilon)/\lambda \mu - 1$. By this inequality and (*), $|x^{\perp} \cap y^{\perp}| \geq (q^3 - q)/\lambda \mu + (q - \varepsilon)/\lambda \mu = (q^3 - \varepsilon)/\lambda \mu$. However, $(q^3 - \varepsilon)/\lambda \mu$ is just the valency of $\mathcal{G}(\Gamma)$, by (1). Therefore $|x^{\perp} \cap y^{\perp}| = (q^3 - q)/\lambda \mu$. Claim (3) is proved.

(4) Suppose that $\mathcal{G}(\Gamma)$ has diameter d=2. Then $\varepsilon=0$, $\lambda=1$, $\mu< q$ and $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with all classes of size q/μ .

(Proof of (4).) By (3), the number of common neighbours of two 0-elements at distance 2 is equal to the valency of $\mathcal{G}(\Gamma)$. Hence $\mathcal{G}(\Gamma)$ is a complete N-partite graph, for some positive integer N. Moreover, $\mathcal{G}(\Gamma)$ is regular. Hence all classes of $\mathcal{G}(\Gamma)$ have the same size, say h. So, Γ has $N_0 := h + (q^3 - \varepsilon)/\lambda \mu$ 0-elements and h divides $(q^3 - \varepsilon)/\lambda \mu$. Given two adjacent 0-elements x, y and a 1-element $e \in \sigma_1(x,y)$, the 1-elements on x that contain 0-elements in the same class as y belong to the maximal coclique of $\mathrm{Res}(x)$ containing e. Hence $h \leq (q - \varepsilon)/\lambda \mu$, namely $h\lambda \mu \leq q - \varepsilon$. Also, $\lambda \mu < q - \varepsilon$ as h > 1 (note that d = 2, by assumption). Clearly, $N_0(q^3 - \varepsilon)/\lambda = N_3(q^2 + 1)$. Accordingly, $q^2 + 1$ divides $(q^3 - \varepsilon)(q^3 - \varepsilon + h\lambda \mu)$. This forces $q^2 + 1$ to divide $(q + \varepsilon)(q + \varepsilon - h\lambda \mu) = q^2 + 2q\varepsilon + \varepsilon^2 - (q + \varepsilon)h\lambda \mu$. Therefore, $q^2 + 1$ divides $(q + \varepsilon)h\lambda \mu + 1 - 2q\varepsilon - \varepsilon^2$. Assume first $\varepsilon = 1$. Then $q^2 + 1$ divides $(q + 1)h\lambda \mu - 2q$. However, this contradicts the inequality $h\lambda \mu \leq q$. Therefore $\varepsilon = 0$. Hence $q^2 + 1$ divides $qh\lambda \mu + 1$. This implies that $h\lambda \mu = q$. As h > 1, we have $\lambda \mu < q$. Also, $N_0 = q(q^2 + 1)/\lambda \mu$.

The equality $\lambda=1$ remains to be proved. Since $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with classes of size $q/\lambda\mu$ and Γ has multiplicity μ , we obtain that

$$N_1 = \frac{q^4(q^2 + 1)}{2\lambda^2 \mu}.$$

By counting $\{1,2\}$ -flags in two ways, we obtain that $N_1(q^2+q)=N_2\binom{q+1}{2}$. Hence

$$N_2 = \frac{q^4(q^2+1)}{\lambda^2 \mu}.$$

However, we can also compute N_2 by counting $\{0, 2\}$ -flags. In this way, recalling that $N_0 = q(q^2+1)/\lambda\mu$ and that $(q^3/\lambda)((q^3-q)/\lambda)/q(q-1)$ is the number of 2-elements on a given 0-element of Γ , we obtain that

$$N_2 = \frac{q^4(q^2+1)}{\lambda^3 \mu}.$$

Comparing the two expressions obtained for N_2 we see that $\lambda = 1$. All claims of (4) are proved.

(5) Suppose that $\mathcal{G}(\Gamma)$ has diameter d=1. Then $\varepsilon=0$, $\lambda=1$, $\mu=q$ and Γ is flat, namely every 0-element of Γ is incident with all 3-elements (hence Γ has q^2+1 elements of type 0 and q^3 elements of type 3).

(Proof of (5).) As d=1, Γ has exactly $N_0=1+(q^3-\varepsilon)\lambda\mu$ 0-elements. As $N_0(q^3-\varepsilon)/\lambda=N_3(1+q^2)$, we obtain that

$$(1 + \frac{q^3 - \varepsilon}{\lambda \mu}) \frac{q^3 - \varepsilon}{\lambda} = N_3 (1 + q^2).$$

This forces $1+q^2$ to divide $2q\varepsilon+\varepsilon^2-\lambda\mu(q+\varepsilon)-1$. If $\varepsilon=0$, then $\lambda\mu$ is a divisor of q and the fact that $1+q^2$ divides $2q\varepsilon+\varepsilon^2-\lambda\mu(q+\varepsilon)-1$ forces $\lambda\mu=q$. On the other hand, if $\varepsilon=1$ then $\lambda\mu$ divides q-1 and $2q\varepsilon+\varepsilon^2-\lambda\mu(q+\varepsilon)-1=2q-\lambda\mu(q+1)$. It is not difficult to see that, for any divisor δ of q-1, $1+q^2$ does not divide $2q-\delta(q+1)$. So, $\lambda\mu=q$ and $\varepsilon=0$. Therefore Γ has q^2+1 elements of type 0 and q^3/λ elements of type 3. Hence Γ is flat.

Counting $\{0,1\}$ -flags in two ways, one can see that Γ has $N_1=q^3(q^2+1)/2\lambda=q^2(q^2+1)\mu/2$ elements of type 1. As every 1-element is in q^2+q elements of type 2 and every 2-element contains (q+1)q/2 elements of type 1, the number of 2-elements of Γ is $N_2=q^3(q^2+1)/\lambda$. However, we can compute that number also by counting the number of $\{0,2\}$ -flags in two ways, thus obtaining that

$$(q^2+1)\frac{q^3\lambda(q^3/\lambda-q/\lambda)}{q(q-1)} = N_2(q+1).$$

As $N_2=q^3(q^2+1)/\lambda$, the above implies $\lambda=1$. All claims contained in (5) are proved.

(6)
$$\mu < q \text{ (hence } d = 2).$$

(Proof of (6).) Suppose to the contrary that $\mu=q$. By (4) and (5), Γ is flat. Hence Γ has exactly q^3 elements of type 3. For a pair $\{\alpha,\beta\}$ of 3-elements, let $\nu(\alpha,\beta):=|\sigma_2(\alpha,\beta)|$. Suppose that $\sigma_2(\alpha,\beta)\neq\emptyset$. Let $X,Y\in\sigma_2(\alpha,\beta)$ be incident with a common 0-element, say x. As $\lambda=1$, $\mathrm{Res}(x)$ is a bi-affine geometry. The 2-elements X and Y are lines of that bi-affine geometry. However, they are contained in two distinct planes of $\mathrm{Res}(x)$, namely α and β . This is impossible, unless X=Y. Therefore, if $X\neq Y$ then $\sigma_0(X,Y)=\emptyset$. Accordingly, $\sigma_2(\alpha,\beta)$ is a set of mutually disjoint blocks of the inversive plane $\mathrm{Res}(\alpha)$. Every block of $\mathrm{Res}(\alpha)$ has q+1 points and $\mathrm{Res}(\alpha)$ has q^2+1 points. Hence $\nu(\alpha,\beta)(q+1)\leq q^2+1$. This forces $\nu(\alpha,\beta)\leq q-1$. As $\mathrm{Res}(\alpha)$ contains $(q^2+1)q$ elements of type 2 and each of them is in q-1 elements of type 3 different from α , the number of neighbours of α in $\mathcal{G}^*(\Gamma)$ is at least $(q^2+1)q$. Accordingly, Γ admits at least $1+(q^2+1)q=q^3+q+1>q^3$ elements of type 3. This is a contradiction, since Γ contains exactly q^3 elements of type 3. Hence $\mu< q$, as claimed in (6).

Claims (B1)-(B4) of the lemma follow from (1)-(6). Claim (B5) remains to be proved. Given two 3-elements α and β of Γ , let $x \in \sigma_0(\alpha)$ and $y \in \sigma_0(\beta)$. $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph, by (B3). Hence we can choose x and y in such a way that $x \sim y$. Let $e \in \sigma_1(x,y)$. Then $|\sigma_3(e)| = q^2$. By (B1), Res(x) is a bi-affine geometry of flag-type. In the bi-affine geometry Res(x), but with 3- and 2-elements regarded as points and lines, we see that α is collinear with at least q^2-1 points of Res(x). Hence α is adjacent in $\mathcal{G}^*(\Gamma)$ with at least q^2-1 elements of $\sigma_3(e)$. Similarly, β is adjacent with at least q^2-1 elements of $\sigma_3(e)$. As $q^2-2>0$, at least one of the 3-elements on e is adjacent with either of α and β . Therefore, $d^* \leq 2$.

Lemma 4.2 Under the hypotheses of Lemma 4.1, we have $\mu = 1$ if and only $S(\Gamma)$ is a semi-linear space.

Proof. Suppose that $S(\Gamma)$ is a semi-linear space. Then no two 3-elements are incident with the same pair of distinct 2-elements. It follows that Γ admits at least $N_3 = 1 + (q^2 + 1)q(q - 1)$ elements of type 3. However, $N_3 = q^4/\mu$ by (B3) of Lemma 4.1. Hence $1 + (q^2 + 1)q(q - 1) \leq q^4/\mu$. If $\mu > 1$, the previous inequality implies that $q^2 + 1 \leq q$, which is impossible. Hence $\mu = 1$.

Conversely, let $\mu=1$. We recall that, by (B1) of Lemma 4.1, $\operatorname{Res}(x)\cong \Delta$ for a given bi-affine geometry Δ of flag-type, for every 0-element x. In particular, the Intersection Property holds in $\operatorname{Res}(x)$. This fact and the hypothesis $\mu=1$, combined with Lemma 7.25 of [18], imply that Γ satisfies the Intersection Property. Hence $\mathcal{S}(\Gamma)$ is semi-linear.

In the next lemma, $\mathcal{A}(\Gamma)$ is the point-line geometry obtained from $\mathcal{S}(\Gamma)$ by keeping all points and lines of $\mathcal{S}(\Gamma)$ but adding the maximal cocliques of the collinearity graph of $\mathrm{Res}(x)$ as additional lines, where x ranges in the set of 0-elements of Γ and the 3- and 2-elements of Γ incident with x are regarded as points and lines of $\mathrm{Res}(x)$. The lines of $\mathcal{A}(\Gamma)$ defined in this latter way will be called $new\ lines$, whereas the lines of $\mathcal{S}(\Gamma)$ will be called $old\ lines$ of $\mathcal{A}(\Gamma)$.

Lemma 4.3 Under the hypotheses of Lemma 4.1, suppose that $\mu = 1$. Then Γ satisfies the Intersection Property, $\mathcal{G}^*(\Gamma)$ has diameter $d^* = 2$ and $\mathcal{A}(\Gamma)$ is a linear space with q^4 points and the same parameters as AG(4,q), namely q points on each line and $q^3 + q^2 + q + 1$ lines on each point.

Proof. As remarked in the second part of the proof of Lemma 4.2, Γ satisfies the Intersection Property (IP for short) and $\operatorname{Res}(x) \cong \Delta$ for a given bi-affine geometry Δ of flag-type, for every 0-element x. With N_0, N_1, N_2 and N_3 as in (B3) of Lemma 4.1, the hypothesis $\mu = 1$ implies the following:

- (1) $N_0 = (q^2 + 1)q$, $N_1 = (q^2 + 1)q^4/2$, $N_2 = (q^2 + 1)q^4$ and $N_3 = q^4$.
- (2) The graph $\mathcal{G}^*(\Gamma)$ has valency $k = (q^2 + 1)q(q 1)$.

(Proof of (2).) Given a 3-element α , the inversive plane $\operatorname{Res}(\alpha)$ contains exactly $(q^2+1)q$ elements of type 2. Each of these 2-elements is incident with q-1 elements of type 3 different from α . As IP holds in Γ , no two 3-elements are incident with the same pair of distinct 2-elements. Hence $k=(q^2+1)q(q-1)$, as claimed in (2).

As $1 + (q^2 + 1)q(q - 1) < q^4 = N_3$, $\mathcal{G}^*(\Gamma)$ is not a complete graph. Hence $\mathcal{G}^*(\Gamma)$ has diameter $d^* = 2$, by (B5) of Lemma 4.1.

(3) Given two 3-elements α and β , if $\alpha \sim^* \beta$ then $|\sigma_0(\alpha, \beta)| = q + 1$, otherwise $|\sigma_0(\alpha, \beta)| = 1$.

(Proof of (3).) Suppose first that $\alpha \sim^* \beta$ and let A be the 2-element of $\sigma_2(\alpha, \beta)$. By IP, A is unique and $\sigma_0(\alpha, \beta) = \sigma_0(A)$. Hence $|\sigma_0(\alpha, \beta)| = q + 1$, as $|\sigma_0(A)| = q + 1$. Property IP also implies that, if $|\sigma_0(\alpha, \beta)| > 1$, then $\alpha \sim^* \beta$.

We now pick a 3-element α . By (2), α is adjacent with $k=(q^2+1)q(q-1)$ elements of type 3. Let h be the number of 3-elements β such that α and β have exactly one 0-element in common. We have $|\sigma_0(\alpha)| = q^2 + 1$ and, if $x \in \sigma_0(\alpha)$, then the bi-affine geometry $\operatorname{Res}(x)$ (which is of flag-type, by (B1) of Lemma 4.1) contains exactly q-1 elements of type 3 non-adjacent with α in $\mathcal{G}^*(\Gamma)$. In view of the previous paragraph, these 3-elements have distance 2 from α in $\mathcal{G}^*(\Gamma)$. Also, none of them can be contributed by two different 0-elements of α . Therefore, $h=(q^2+1)(q-1)$. Hence

$$k + h = (q^2 + 1)q(q - 1) + (q^2 + 1)(q - 1) = (q^2 + 1)(q^2 - 1) = q^4 - 1.$$

As q^4 is the number of 3-elements of Γ (see Lemma 4.1, (B3)), every 3-element at distance 2 from α in $\mathcal{G}^*(\Gamma)$ shares a 0-element with α . Claim (3) is proved.

By claim (3) and the definition of $\mathcal{A}(\Gamma)$, any two 3-elements of Γ are collinear in $\mathcal{A}(\Gamma)$. Moreover, if $|\sigma_0(\alpha,\beta)| > 1$, then $\alpha \sim^* \beta$. Hence $\mathcal{A}(\Gamma)$ is a linear space. Clearly, it has the same parameters as AG(4,q).

Lemma 4.4 Assume the following:

- (A1) for every 0-element x of Γ , the Af. Af*-geometry Res(x) is nearly classical;
- (A2) Aut(Γ) is flag-transitive.

Then:

- (B1) For every 0-element x, Res(x) is isomorphic to the bi-affine geometry of flagtype and order q.
- (B2) Γ satisfies the Intersection Property. In particular, it admits uniform multiplicity $\mu = 1$.
- (B3) $\mathcal{G}(\Gamma)$ is a complete (q^2+1) -partite graph with all classes of size q.
- (B4) Let H be kernel of the action of $\operatorname{Aut}(\Gamma)$ on the set of classes of the (q^2+1) partition of $\mathcal{G}(\Gamma)$. Then $|H|=q^4\gamma$ for a divisor γ of q-1 (possibly, $\gamma=1$)
 and H admits a normal subgroup T of order q^4 acting regularly on the set of 3-elements of Γ .

Proof. As $\operatorname{Aut}(\Gamma)$ is flag-transitive and $\operatorname{Res}(x)$ is nearly classical for every 0-element x, Γ satisfies the hypotheses of Lemma 4.1. In particular, it admits uniform multiplicity μ . Therefore, by Lemma 4.1, $\operatorname{Res}(x) \cong \Delta$ where Δ is the bi-affine geometry of flag-type and order q, as claimed in (B1).

Henceforth, given an element x of Γ , we denote by G_x its stabilizer in $G := \operatorname{Aut}(\Gamma)$ and by K_x the elementwise stabilizer of $\operatorname{Res}(x)$ in G_x . So, G_x/K_x is the group induced by G_x in $\operatorname{Res}(x)$. If x, y, z, ... are elements of Γ , we put $G_{x,y} := G_x \cap G_y$, $G_{x,y,z} := G_x \cap G_y \cap G_z$, etc. By Delandtsheer [11] (see also [9] and [10]) we have the following:

(1) For every 3-element α of Γ , $\operatorname{Res}(\alpha)$ is isomorphic to the inversive plane associated with the elliptic quadric $Q_3^-(q)$, and $PSL(2,q^2) \leq G_{\alpha}/K_{\alpha} \leq P\Gamma L(2,q^2)$.

Consequently,

- (2) $PSL(2,q) \leq G_{\alpha,A}/K_{\alpha} \leq P\Gamma L(2,q) Z_n$ for every $\{2,3\}$ -flag $\{A,\alpha\}$, where Z_n is a cyclic group of order n. (Recall that, according to the conventions stated at the beginning of this section, n is the exponent of $q = p^n$ as a power of p.)
- (3) $\mu = 1$.

(Proof of (3).) Given two 3-elements α and β with $\alpha \sim^* \beta$, put $\nu := |\sigma_3(\alpha, \beta)|$. No two elements $A, B \in \sigma_3(\alpha, \beta)$ can have any 0-element in common. Indeed, if $x \in \sigma_0(A, B)$, then A and B are distinct lines of the bi-affine geometry $\operatorname{Res}(x)$ contained in two distinct planes α, β of $\operatorname{Res}(x)$, which is impossible. Since no two elements of $\sigma_3(\alpha, \beta)$ have any 0-element in common, $\nu \leq q - 1$. Given $A \in \sigma_3(\alpha, \beta)$, we have:

(i)
$$|G_{\alpha,A}:G_{\alpha,\beta,A}| \leq q-1$$
.

(Indeed q-1 is the number of 3-elements on A different from α .) However, it is well known that PSL(2,q) does not admit any proper subgroup of index less than q (see Huppert [14]). Hence Claim (2) and (i) force the group $X:=G_{\alpha,\beta,A}K_{\alpha}/K_{\alpha}$ to contain a copy L of PSL(2,q). On the other hand, $|G_{\alpha,\beta}:G_{\alpha,\beta,A}| \leq \nu \leq q-1$. Hence X has index at most ν in $Y:=G_{\alpha,\beta}K_{\alpha}/K_{\alpha}$. Therefore the subgroup $L\cong PSL(2,q)$ of X has index at most $\nu\delta$ in Y, where δ is the index of L in X. In view of claim (2), $\delta \leq (q-1)n^2/\theta$, where $\theta:=|G_{\alpha,A}:G_{\alpha,\beta,A}|$. As $\nu \leq q-1$,

(ii)
$$|Y:L| \le (q-1)^2 n^2/\theta$$
.

Consequently, Y does not contain $PSL(2, q^2)$. On the other hand, L is maximal in $PSL(2, q^2)$. Hence

(iii)
$$Y \cap PSL(2, q^2) = L$$
.

By (ii) and (iii), Y is a subgroup of the stabilizer $P\Gamma L(2,q) \cdot Z_n$ of A in $P\Gamma L(2,q^2) = \operatorname{Aut}(\operatorname{Res}(\alpha))$. Therefore Y stabilizes A. The same conclusion holds if we replace A with any other element of $\sigma_3(\alpha,\beta)$. Hence Y stabilizes every element of $\sigma_3(\alpha,\beta)$. As $L \leq Y$, the same holds for L. However, $L \cong PSL(2,q)$ stabilizes exactly one block of the inversive plane $\operatorname{Res}(\alpha) \cong \mathcal{I}(O)$. In order to avoid a contradiction, we must conclude that $\nu = 1$, namely $|\sigma_3(\alpha,\beta)| = 1$. So, $\mathcal{S}(\Gamma)$ is a semi-linear space. By Lemma 4.2, $\mu = 1$.

As $\mu=1$, we obtain (B3) from Lemma 4.1 and Γ satisfies the Intersection Property IP (as remarked in the proof of Lemma 4.3). As $\mu=1$, every 1-element is uniquely determined by its pair of 0-elements. If x,y are the two 0-elements of a 1-element e, we write e=xy.

(4) $K_x = 1$ for every 0-element x.

(Proof of (4).) K_x stabilizes all 0-elements of $\mathcal{G}(\Gamma)$ except possibly those that belong to the same class as x. Therefore, and since $\mu = 1$, given $y \in x^{\perp}$, $K_x K_y / K_y$ is seen to stabilize all points of the biaffine geometry Res(y), except possibly those that belong

to a distinguished maximal coclique of the collinearity graph of $\operatorname{Res}(y)$. Clearly, this forces $K_x K_y / K_y$ to fix all points of $\operatorname{Res}(y)$. Hence $K_x \leq K_y$. By symmetry, $K_y \leq K_x$. Therefore, $K_x = K_y$. The connectedness of $\mathcal{G}(\Gamma)$ now implies that $K_x = 1$.

With x as above, we have $\operatorname{Aut}(\operatorname{Res}(x)) = [U_x:(Z_{q-1} \times PGL(2,q))]Z_n$, where U_x is a group of order q^5 , isomorphic to the multiplicative group formed by the following matrices:

$$\begin{bmatrix} 1 & r_1 & r_2 & t \\ 0 & 1 & 0 & s_1 \\ 0 & 0 & 1 & s_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad (r_1, r_2, s_1, s_2, t \in GF(q))$$

The center $Z(U_x)$ of U_x is elementary abelian of order q and $U_x/Z(U_x)$ is elementary abelian of order q^4 . It is not difficult to see that every flag-transitive subgroup of $\operatorname{Aut}(\operatorname{Res}(x))$ contains U_x and a complement $L_x \cong SL(2,q)$ of U_x . By (6), G_x acts faithfully in $\operatorname{Res}(x)$. Therefore,

(5)
$$U_x: L_x \le G_x \le [U_x: (Z_{q-1} \times GL(2,q))] Z_n$$
.

Let C_x be the set of maximal cocliques of the collinearity graph of $\operatorname{Res}(x)$ and H_x be the elementwise stabilizer of C_x . Put $T_x := U_x \cap T_x$. The following is straightforward:

- (6) H_x is a Frobenius group with T_x as the Frobenius kernel and cyclic complements of order a divisor of q-1. Moreover:
- (6.1) T_x is elementary abelian of order q^3 and acts regularly on the set of planes of $\operatorname{Res}(x)$.
- (6.2) $Z(U_x)$ is contained in T_x and acts regularly on each member of C_x .
- (6.3) Every complement C of T_x in H_x stabilizes a unique plane α_C of $\operatorname{Res}(x)$. The group C fixes α_C elementwise and acts semi-regularly on the set of points of $\operatorname{Res}(x)$ not in α_C and on the set of planes of $\operatorname{Res}(x)$ different from α_C . Every plane of $\operatorname{Res}(x)$ is stabilized by a unique complement of T_x .
- (6.4) For a point e of $\operatorname{Res}(x)$, put $H_{x,e} := H_x \cap G_e$ and $T_{x,e} := T_x \cap G_e$. Then $T_x = T_{x,e} \times Z(U_x)$ and $H_{x,e} = T_{x,e} \cdot C$ for a complement C of T_x . The set of points of $\operatorname{Res}(x)$ fixed by $T_{x,e}$ is the union of q members of \mathcal{C}_x and meets every plane of $\operatorname{Res}(x)$ in a line.

Let H be the elementwise stabilizer of the set of classes of the $(q^2 + 1)$ -partition of $\mathcal{G}(\Gamma)$. Clearly, $H_x = H \cap G_x$ for every 0-element x. Hence H contains every complement C of T_x in H_x . Put $\gamma := |C|$. We recall that γ is a divisor of q - 1.

(7) H has order $q^4\gamma$ and acts transitively on every class of the (q^2+1) -partition of $\mathcal{G}(\Gamma)$.

(Proof of (7).) $T_x \leq H$ for every 0-element x. As T_x contains $Z(U_x)$, which acts regularly on every member of \mathcal{C}_x , H is transitive on every class of $\mathcal{G}(\Gamma)$, except possibly the class containing x. However, x is an arbitrary 0-element of Γ . Hence H is transitive on every class of $\mathcal{G}(\Gamma)$. Therefore $|H| = q^4 \gamma$, since $|H_x| = q^3 \gamma$ and every class of $\mathcal{G}(\Gamma)$ has size q. Claim (7) is proved.

(8) H admits a normal subgroup T of order q^4 and H = T:C for any complement C of T_x in H_x and every 0-element x. Accordingly, $T = O_p(H)$.

(Proof of (8).) Let T be a Sylow p-subgroup of H. We have $|T|=q^4$ by (7). Moreover, T contains T_x for some 0-element x. Let y be a 0-element adjacent to x. By (6.4), $|T_x \cap T_y| = q^2$. Therefore $\langle T_x, T_y \rangle$ has order at least q^4 . Suppose first that we can choose y in such a way that $T_y \leq T$. Then, as $|\langle T_x, T_y \rangle| \geq q^4 = |T|$, we have $T = \langle T_x, T_y \rangle$. Pick a 3-element $\alpha \in \sigma_3(x,y)$ and put $C := G_\alpha \cap H$. Then $C \in G_z$ for every $z \in \sigma_0(\alpha)$. In particular, $C \leq H_x \cap H_y$. In view of (6.3), C is a complement of T_x in H_x as well as a complement of T_y in T_y . Hence T_y normalizes either of T_x and T_y . Consequently, $T_y \not \leq T_y$ for every 0-element $T_y \not \leq T_y$. Then, given $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0-element $T_y \not \leq T_y$. Then, given $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for two distinct $T_y \not \leq T_y$ for every 0. Therefore $T_y \in T_y$ for every 0. Therefore $T_y \in T_y$ for every 0. The every 0. The every 0 is in $T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0. The every 0 is in $T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$. Then, given $T_y \in T_y \in T_y$ for every 0 is in $T_y \in T_y \in T_y$.

(9) The subgroup $T = O_p(H)$ acts regularly on the set of 3-elements of Γ .

Indeed, T has order q^4 , which is the number of 3-elements of Γ , and $T \cap G_{\alpha} = 1$ for every 3-element α , by (6). Claim (9) finishes the proof of the lemma.

Theorem 4.5 Assume the following:

- (A) for every 0-element x of Γ , the $Af.Af^*$ -geometry Res(x) is nearly classical;
- (B) $\operatorname{Aut}(\Gamma)$ is flag-transitive;
- (C) q is prime.

Then Γ is isomorphic to the dual of the affine expansion $Af_e(\mathcal{I}^*)$ of the dual \mathcal{I}^* of a classical inversive plane \mathcal{I} , where e is the projective embedding of \mathcal{I}^* in PG(3,q).

Proof. We have $\mu = 1$ by Lemma 4.4. We keep the notation used in the proof of Lemma 4.4. In particular, T_x , C and T are defined as in claims (6) and (8) of that proof. We first prove that T is elementary abelian.

(1) $T_x \leq T$ for any 0-element x.

Indeed, as T is a p group, $N_T(T_x) > T_x$. However, $|T:T_x| = q$, which is assumed to be prime. Hence $N_T(T_x) = T$.

(2) T is elementary abelian.

Indeed, by (1) and the commutativity of T_x and T_y , the commutator subgroup T' of T is contained in $T_x \cap T_y$, for any two adjacent 0-elements x and y. Therefore $T' \leq T_x$ for any 0-element x. This forces T' = 1. Moreover, $T = \langle T_x, T_y \rangle$ and T_x and T_y are elementary abelian. Therefore T is elementary abelian.

(3) $T_x = T_y$ for any two non-adjacent 0-elements x and y.

Indeed, denoted by X be the class of the $(q^2 + 1)$ -partition of $\mathcal{G}(\Gamma)$ containing x, T_x acts trivially on $X \setminus \{x\}$, since every orbit of T_x has order at least q (which is prime), whereas $|X \setminus \{x\}| = q - 1$.

In view of (3), given a 3-element α and a 0-element x, $T_x=T_{x_\alpha}$ for a unique 0-element x_α of α . Therefore

$$(4) \quad \{T_x\}_{x \in (\Gamma)_0} = \{T_x\}_{x \in \sigma_0(\alpha)},$$

where $(\Gamma)_0$ stands for the set of 0-elements of Γ . For every $x \in \sigma_0(\alpha)$, let \mathcal{S}_x be the family of subgroups of T_x of order q. In view of claim (6.4) of the proof of Lemma 4.4, $Z(U_x)$ is the unique member of \mathcal{S}_x that acts semi-regularly on the point-set of $\operatorname{Res}(x)$, whereas each the remaining members of \mathcal{S}_x fixes all points of a line of $\operatorname{Res}(x)$ contained in α and moves each of the remaining $q^2 - q$ points of $\operatorname{Res}(x)$ beloning to α . We call $Z(U_x)$ a special subgroup of T.

(5)
$$T = \bigcup_{x \in \sigma_0(\alpha)} T_x$$
.

(Proof of (5).) With S_x defined as above, we have $|S_x| = q^2 + q + 1$, since T_x is elementary abelian of order q^3 . The special subgroup of T_x is the unique member of S_x that is not contained in T_y for any $y \in \sigma_0(\alpha) \setminus \{x\}$. Each of the $q^2 + q$ remaining members of S_x is contained in T_y for q choices of y in $\sigma_0(\alpha) \setminus \{x\}$. Therefore $\bigcup_{x \in \sigma_0(\alpha)} S_x$ contains exactly $(q^2+1)+(q^2+1)(q^2+q)/(q+1)=q^3+q^2+q+1$ subgroups. However, as q is prime, q^3+q^2+q+1 is just the number of subgroups of T of order q. Equality (5) follows.

We now turn to $\mathcal{A}(\Gamma)$, which is a linear space by Lemma 4.3 (indeed $\mu = 1$). We denote the point-set of $\mathcal{A}(\Gamma)$ by P. Namely, P is the set of 3-elements of Γ . By Lemma 4.4, T acts regularly on P. Thus, given a point $\alpha \in P$, a bijection τ is established from T to P, sending every $t \in T$ to the image α^t of α by t. Moreover T, being elementary abelian of order q^4 , can be regarded as the additive group of V = V(4, q).

(6) τ induces an isomorphism from the affine space AG(V) = AG(4, q) to $\mathcal{A}(\Gamma)$.

To see this, we only must prove that, for every 1-dimensional linear subspace S of V, the orbit α^S of α by S is a line of $\mathcal{A}(\Gamma)$. By (5), $S \leq T_x$ for at least one 0-element x of α . Turning to Res(x), we easily see that claim (6) holds true (compare (6.4) of the proof of Lemma 4.4). The following is implicit in the proof of claim (5):

(7) For a 1-dimensional linear space S of V, the line $\tau(S)$ of $\mathcal{A}(\Gamma)$ is new if and only if S, regarded as a subgroup of T, is special.

As remarked in the proof of claim (5), $q^2 + 1$ is the number of special subgroups of T. Therefore,

(8) $\mathcal{A}(\Gamma)$ contains $(q^2+1)q^3$ new lines, forming q^2+1 bundles of parallel lines.

We say that a new line L belongs to a 0-element x if all points of L, regarded as 3-elements of Γ , are incident with x. The following is clear:

(9) every bundle of parallel new lines of $\mathcal{A}(\Gamma)$ is contained in exactly one 0-element x and each such element contains exactly one bundle of parallel new lines.

In particular, every new line on the distinguished point α belongs to a unique 0-element of α and each of these 0-elements contains exactly one new line through α . Accordingly, the action of G_{α} on the set of new lines through α is isomorphic to its action on $\sigma_0(\alpha)$. Let $\widehat{\mathcal{A}}_3(\Gamma)$ be $\mathcal{A}(\Gamma)$ enriched with its planes and 3-subspaces.

(10) No three new lines on α are coplanar in $\widehat{\mathcal{A}}_3(\Gamma)$.

(Proof of (10).) Suppose the contrary. Then, by (8), (9) and claim (1) of the proof of Lemma 4.4, every plane of $\widehat{\mathcal{A}}_3(\Gamma)$ on α contains 0, 1 or s new lines, where either s=q+1 or s=2+(q-1)/2=(q+3)/2. Therefore, the q^2+1 new lines on α form a linear space with all lines of size s. It is easily seen that no such linear space can exist. Claim (10) is proved.

The residue of α in $\widehat{\mathcal{A}}_3(\Gamma)$ is a 3-dimensional projective space. We shall denote it by \mathcal{P}_{α} . In view of (11), the new lines on α form an ovoid O^* in \mathcal{P}_{α} . As q is prime, the ovoid O^* is classical and the set $O := \sigma_0(\alpha)$ is its dual. It is now clear that Γ is isomorphic to the dual of the affine expansion of the dual of the inversive plane $\mathcal{I}(O)$ associated to O.

The next Corollary is claim (1) of Theorem 1.

Corollary 4.6 Assume q=3 and suppose that $\operatorname{Aut}(\Gamma)$ is flag-transitive. Then Γ is isomorphic to the dual of the affine expansion $\operatorname{Af}_e(\mathcal{I}^*)$ of the dual \mathcal{I}^* of the inversive plane \mathcal{I} of order 3, where e is the projective embedding of \mathcal{I}^* in PG(3,3).

Proof. As Γ is flag-transitive, Γ has uniform multiplicity μ . If we prove that the residues of the 0-elements of Γ are nearly classical, then the conclusion follows from Theorem 4.5. Let $\Delta = \text{Res}(x)$ for a 0-element x of Γ and λ be the index of Δ . By Proposition 3.4, $\lambda \in \{1, 2, 3\}$. Hence Δ is nearly classical, by propositions 3.3 and 3.6. (In fact, Δ is classical.)

5 Proof of Theorem 1

As claim (1) of Theorem 1 has been settled by Corollary 4.6, we only must prove claims (2) and (3) of that theorem. So, in this section we consider a flag-transitive $Af.Af^*.c^{*n}$ -geometry with n=2 and orders 2, 3, 2, 1, 1 or n=3 and orders 2, 3, 2, 1, 1. However, we prefer to focus on the dual of such a geometry. Thus, henceforth Γ is a flag-transitive geometry of rank n+3 with diagram, orders and types as follows:

For an element x of Γ and a type i=0,1,...,n-1 we denote by $\sigma_i(x)$ the set of i-elements incident with x. We also put $\sigma_i(x,y):=\sigma_i(x)\cap\sigma_i(y)$ and $\sigma_i(x,y,z):=\sigma_i(x)\cap\sigma_i(y)\cap\sigma_i(z)$.

As in Section 4, $\mathcal{G}(\Gamma)$ is the collinearity graph of Γ where the elements of type 0 and 1 are taken as points and lines respectively, and \sim is the adjacency relation of $\mathcal{G}(\Gamma)$. As Γ is assumed to be flag-transitive, all edges of $\mathcal{G}(\Gamma)$ are incident with the same number μ of 1-elements, namely $\mu = |\sigma_1(x, y)|$ for every edge $\{x, y\}$ of $\mathcal{G}(\Gamma)$. We call μ the multiplicity of Γ .

We denote by $S(\Gamma)$ the point-line geometry with the (n+2)-elements of Γ as points and the (n+1)-elements as lines. $\mathcal{G}^*(\Gamma)$ is the collinearity graph of $S(\Gamma)$ and \sim^* is the adjacency relation of $\mathcal{G}^*(\Gamma)$. For an edge $\{\alpha,\beta\}$ of $\mathcal{G}^*(\Gamma)$, we put $\mu^*(\alpha,\beta) := |\sigma_{n+1}(\alpha,\beta)|$.

For the rest of this section G is a given flag-transitive subgroup of $\operatorname{Aut}(\Gamma)$. For an element x of Γ , G_x is the stabilizer of x in G and K_x is the elementwise stabilizer of $\operatorname{Res}(x)$ (compare the notation used in the proof of Lemma 4.4).

5.1 The case of n=2

In this subsection, n = 2. So, Γ has rank n + 3 = 5. By Delandtsheer [11],

Lemma 5.1 Let α be a 4-element of Γ . Then $\operatorname{Res}(\alpha)$ is isomorphic to the Steiner system S(11,5,4) for the Mathieu group M_{11} , where the points, duads, triples and blocks correspond to the elements of $\operatorname{Res}(\alpha)$ of type 0, 1, 2 and 3, respectively. Furthermore, $G_{\alpha}/K_{\alpha} = \operatorname{Aut}(\operatorname{Res}(\alpha)) \cong M_{11}$.

Moreover, by Corollary 4.6,

Lemma 5.2 The residues of the 0-elements of Γ are isomorphic to the dual of the affine expansion $Af_e(\mathcal{I}^*)$ of the dual \mathcal{I}^* of the classical inversive plane \mathcal{I} or order 3, where e is the projective embedding of \mathcal{I}^* in PG(3,3).

Lemma 5.3 $\mu = 1$.

Proof. Let $\{x, y\}$ be an edge of $\mathcal{G}(\Gamma)$. The μ elements of $\sigma_1(x, y)$ form a coclique of the graph $\mathcal{G}(\operatorname{Res}(x))$. Moreover, given a maximal coclique C of $\mathcal{G}(\operatorname{Res}(x))$, the relation 'being incident to the same pair of 0-elements' defined on the set of 1-elements of Γ induces an equivalence relation on C and all classes of that induced equivalence relation have size μ . On the other hand, by Lemma 5.2, the maximal cocliques of $\mathcal{G}(\operatorname{Res}(x))$ have size 3. Hence $\mu \in \{1, 3\}$.

Suppose $\mu = 3$. Then every 4-element incident with x is also incident with one of the three elements of $\sigma_1(x, y)$. Hence $\sigma_4(x) = \sigma_4(y)$. By the connectedness of $\mathcal{G}(\Gamma)$, all 4-elements are incident with all 0-elements, namely Γ is flat. Consequently, denoted by N_i the number of i-elements of Γ , we have:

$$N_0=11, \quad N_1=N_0\cdot 10\cdot 3/2=3\cdot 5\cdot 11, \quad N_2=N_1\cdot 3^3/3=3^3\cdot 5\cdot 11, \\ N_3=N_2(3^2+3)/10=2\cdot 3^4\cdot 11, \quad N_4=3^4.$$

Let $\{\alpha, \beta\}$ be an edge of $\mathcal{G}^*(\Gamma)$. By Lemma 5.2, the residues of the 0-elements of Γ satisfy the Intersection Property (IP). Therefore,

(1) $\sigma_0(A, B) = \emptyset$ for any two distinct 3-elements $A, B \in \sigma_3(\alpha, \beta)$.

Consequently:

(2)
$$\mu^*(\alpha, \beta) \le 2$$
.

For i = 1, 2, let $S_i(\alpha)$ be the set of 4-elements β adjacent with α in $\mathcal{G}^*(\Gamma)$ and such that $\mu^*(\alpha, \beta) = i$. By the flag-transitivity of Γ , the number $|\sigma_4(A) \cap S_i(\alpha)|$ does not depend on the choice of the 3-element $A \in \sigma_3(\alpha)$. We must examine the following three cases:

Case 1.
$$|\sigma_4(A) \cap S_1(\alpha)| = 2$$
 and $\sigma_4(A) \cap S_2(\alpha) = \emptyset$.

Case 2.
$$|\sigma_4(A) \cap S_1(\alpha)| = |\sigma_4(A) \cap S_2(\alpha)| = 1$$
.

Case 3.
$$|\sigma_4(A) \cap S_2(\alpha)| = 2$$
 and $\sigma_4(A) \cap S_1(\alpha) = \emptyset$.

(3) Cases 1 and 2 are impossible.

(Proof of (3).) In Case 1, $|S_1(\alpha)| = 2|\sigma_3(\alpha)|$. However, $|\sigma_3(\alpha)| = 66$, which is the number of blocks of S(11, 5, 4) (compare Lemma 5.1). So, $|S_1(\alpha)| = 2 \cdot 66 > 81 = N_4$. This is a contradiction.

Suppose we have Case 2. Let β and γ be the 4-elements of $S_1(\alpha) \cap \sigma_4(A)$ and $S_2(\alpha) \cap \sigma_4(A)$, respectively. By replacing α with γ , we have $\alpha \in S_2(\gamma) \cap \sigma_4(A)$. Hence $\beta \in S_1(\gamma) \cap \sigma_4(A)$, since Case 2 also occurs for the flag $\{A, \gamma\}$ (recall that Γ is flag-transitive). However, $\alpha, \gamma \in S_1(\beta) \cap \sigma_4(A)$. This is a contradiction with the fact that, since Γ is flag-transitive, Case 2 also occurs for the flag $\{A, \beta\}$. Claim (3) is proved.

So, Case 3 holds. Given a 3-element $A \in \sigma_3(\alpha)$, let β and γ be the two 4-elements of $\sigma_4(A) \setminus \{\alpha\}$. One of the following occurs:

Case 3.1.
$$\sigma_3(\alpha, \beta) = \sigma_3(\alpha, \gamma)$$
.

Case 3.2.
$$\sigma_3(\alpha, \beta) \neq \sigma_3(\alpha, \gamma)$$
.

We shall prove that neither of the above two cases is possible, thus finishing the proof of the lemma. By Lemma 5.1, we have $G_{\alpha,A}/K_{\alpha} \cong \operatorname{Sym}(5)$, acting 2-transitively as PGL(2,5) on the complement $\sigma_0(\alpha) \setminus \sigma_0(A)$ of the block $\sigma_0(A)$ of $\operatorname{Res}(\alpha)$, which has size 6. On the other hand, $G_{\alpha,A}$ stabilizes the pair $\{\beta,\gamma\} = \sigma_4(A) \setminus \{\alpha\}$. In Case 3.1 we have $\sigma_3(\alpha,\beta) = \sigma_3(\alpha,\gamma) = \{A,B\}$ and $G_{\alpha,A}/K_{\alpha}$ stabilizes B. As $\sigma_0(B)$ is disjoint from $\sigma_0(\alpha)$ (by (1)) and $|\sigma_0(B)| = 5$, $G_{\alpha,A}$ cannot

induce a transitive action on $\sigma_0(\alpha) \setminus \sigma_0(A)$, contrary to what we have said in the previous paragraph. On the other hand, in Case 3.2 we have $\sigma_3(\alpha, \beta) = \{A, B\}$ and $\sigma_3(\alpha, \gamma) = \{A, C\}$ where $B \neq C$ and $\sigma_0(A, B) = \sigma_0(A, C) = \emptyset$. Therefore $G_{\alpha,A}$ stabilizes $\sigma_0(B, C) \subset \sigma_0(\alpha) \setminus \sigma_0(A)$. Consequently, it cannot act transitively on $\sigma_0(\alpha) \setminus \sigma_0(A)$. In any case, we have obtained a contradiction. Hence Case 3 is impossible, too.

Corollary 5.4 Γ satisfies the Intersection Property (IP). In particular, $S(\Gamma)$ is a semi-linear space.

Proof. This follows from Lemmas 5.2 and 5.3 via [18, Lemma 7.25].

Given an edge $\{x,y\}$ of $\mathcal{G}(\Gamma)$, we denote by xy the 1-element of $\sigma_1(x,y)$ (unique by lemma 5.3). Note that, in view of property IP (which holds in Γ by Corollary 5.4), given a 0-element x and two edges $\{x,y\}$ and $\{x,z\}$ of $\mathcal{G}(\Gamma)$ on x, we have $\sigma_2(xy) \cap \sigma_2(xz) = \sigma_2(x,y,z)$. The next lemma can be proved by arguments similar to those used to prove claims (B3) and (B4) of Lemma 4.1. We leave the details for the reader.

Lemma 5.5 The graph $G(\Gamma)$ is a complete 11-partite graph with classes of size 3. Accordingly, if N_i is the number of i-elements of Γ (i = 0, 1, 2, 3, 4), then

$$N_0 = 3 \cdot 11, \quad N_1 = 3^2 \cdot 5 \cdot 11, \quad N_2 = 3^4 \cdot 5 \cdot 11, \quad N_3 = 2 \cdot 3^5 \cdot 11, \quad N_4 = 3^5.$$

Moreover:

- (1) for every 4-element α , $\sigma_0(\alpha)$ meets each class of the 11-partition of $\mathcal{G}(\Gamma)$;
- (2) for every 0-element x and any two edges $\{x,y\}$, $\{x,z\}$ of $\mathcal{G}(\Gamma)$ on x, we have $\sigma_2(x,y,z) \neq \emptyset$ if and only if y and z are adjacent in $\mathcal{G}(\Gamma)$.

We define the point-line geometry $\mathcal{A}(\Gamma)$ as follows: The points of $\mathcal{A}(\Gamma)$ are those of $\mathcal{S}(\Gamma)$. The lines of $\mathcal{A}(\Gamma)$ are the lines of $\mathcal{S}(\Gamma)$ and the new lines of the affine space $\mathcal{A}(\mathrm{Res}(x))$, for any 0-element x of Γ . The latter lines will be called *new lines* of $\mathcal{A}(\Gamma)$, whereas the lines of $\mathcal{S}(\Gamma)$ are the *old lines* of $\mathcal{A}(\Gamma)$.

Lemma 5.6 For every new line L of $\mathcal{A}(\Gamma)$, we have $|L \cap \sigma_4(e)| > 1$ for exactly one 1-element e. Moreover, if e is the 1-element such that $|L \cap \sigma_4(e)| > 1$, then $L \subset \sigma_4(e)$.

Proof. A 1-element e with $L \subset \sigma_4(e)$ exists by definition. Let $|L \cap \sigma_4(f)| > 1$ for a 1-element f. We shall prove that f = e. Suppose to the contrary that $f \neq e$. Then, by IP, $\sigma_4(f) \cap L \subseteq \sigma_4(X)$ for an element X of type 2 or 3, incident with both e and f. In particular, $|L \cap \sigma_4(Y)| > 1$ for a 2-element $Y \in \sigma_2(e)$. However, by definition, L is a new line of $\mathcal{A}(\operatorname{Res}(x))$ for a 0-element x. With no loss, we may assume $x \in \sigma_0(e)$. By the definition of $\mathcal{A}(\operatorname{Res}(x))$, no new line of $\mathcal{A}(\operatorname{Res}(x))$ meets $\sigma_4(Y)$ in two elements, for any $Y \in \sigma_2(x)$. We have reached a contradiction. \square

We can now imitate the proof of Lemma 4.3, obtaining the following:

Corollary 5.7 The geometry $\mathcal{A}(\Gamma)$ is a linear space with 3^5 points and the same parameters as AG(5,3).

The next lemma can be proved by an argument similar to that exploited for claim (4) in the proof of Lemma 4.4.

Lemma 5.8 $K_x = 1$ for every 0-element x.

Let H be the elementwise stabilizer of the set of classes of the 11-partition of $\mathcal{G}(\Gamma)$. For a 0-element x, we set $H_x := H \cap G_x$. The structure of H_x is clear by Lemmas 5.8 and 5.2: H_x is a Frobenius group with elementary abelian Kernel T_x of order 3^4 and complement C of size $|C| \leq 2$. We can now imitate the arguments used to prove claims (7)-(9) of the proof of Lemma 4.4 and (2), (3) of the proof of Theorem 4.5, obtaining the following:

Lemma 5.9 We have H = T:C where $T \subseteq H$ is elementary abelian of order 3^5 and C is a complement of T_x in G_x , for a 0-element x of Γ . In particular, $T = O_3(H)$ and $|C| \leq 2$. Moreover:

- (1) H acts transitively on every class of the 11-partition of $\mathcal{G}(\Gamma)$.
- (2) The subgroup $T = O_p(H)$ acts regularly on the set of 4-elements of Γ , whereas C stabilizes a 4-element.
- (3) $T = \langle T_x, T_y \rangle$ for any two adjacent 0-elements x and y.
- (4) $T_x = T_y$ for any two non-adjacent 0-elements x and y. Consequently, $\{T_x\}_{x \in (\Gamma)_0} = \{T_x\}_{x \in \sigma_0(\alpha)}$ for every 4-element α , where $(\Gamma)_0$ stands for the set of 0-elements of Γ .

For a 0-element x we denote by S_x the family of minimal subgroups of T_x , namely subgroups of order 3. Given a 4-element α , for every $x \in \sigma_0(\alpha)$ we put $S := \bigcup_{x \in \sigma_0(\alpha)} S_x$ (= $\bigcup_{x \in (\Gamma)_0} S_x$, by (3) of Lemma 5.9). By definition, every line of $\mathcal{A}(\Gamma)$ through α belongs to $\mathcal{A}(\operatorname{Res}(x))$ for a suitable $x \in \sigma_0(\alpha)$. Hence every such line is stabilized by a member of S (uniquely determined, as T is regular on the point-set of $\mathcal{A}(\Gamma)$). On the other hand, $3^4 + 3^3 + 3^2 + 3 + 1$ is the number of lines of $\mathcal{A}(\Gamma)$ through α . Hence S is the family of all 3-subgroups of T, since $3^4 + 3^3 + 3^2 + 3 + 1$ is also the number of minimal subgroups of T. The following is now clear:

Lemma 5.10 We have $A(\Gamma) \cong AG(V)$, where V = V(5,3) and T is the additive group of V.

We are now ready to finish the proof of claim (2) of Theorem 1. The isomorphism $\mathcal{A}(\Gamma) \cong AG(V)$ induces an embedding e of the dual $\operatorname{Res}(\alpha)^*$ of $\operatorname{Res}(\alpha)$ in the projective geometry PG(V), where PG(V) is regarded as the projective space of lines and planes of $\mathcal{A}(\Gamma)$ through the distinguished point α . Accordingly, Γ is the affine expansion of $\operatorname{Res}(\alpha)^*$ embedded in PG(V) via e.

5.2 The case of n=3

Assume n = 3. By Delandtsheer [11],

Lemma 5.11 Let α be a 5-element of Γ . Then $\operatorname{Res}(\alpha)$ is isomorphic to the Steiner system S(12,6,5) for the Mathieu group M_{12} , where the points, duads, triples and blocks correspond to the elements of $\operatorname{Res}(\alpha)$ of type 0, 1, 2 and 3, respectively. Furthermore, $G_{\alpha}/K_{\alpha} = \operatorname{Aut}(\operatorname{Res}(\alpha)) \cong M_{12}$.

Moreover, by claim (2) of Theorem 1,

Lemma 5.12 Let x be a 0-element of Γ . Then $\operatorname{Res}(x)$ is isomorphic to the dual of the affine expansion $\operatorname{Af}_e(\Delta)$ of the dual Δ of $\Sigma = S(12,5,4)$, where e is the (unique) embedding of Δ in PG(4,3).

With Δ and e as above, we have $\operatorname{Aut}(\operatorname{Af}_e(\Delta))=3^5:(2\times M_{11})$ and $3^5:M_{11}$ is the minimal flag-transitive automorphism group of $\operatorname{Af}_e(\Delta)$. Therefore,

Corollary 5.13 We have $3^5:M_{11} \leq G_x/K_x \leq 3^5:(2 \times M_{11})$ for every 0-element x of Γ .

The geometry $Af_e(\Delta)$ can be recovered from its point-line system $\mathcal{S}(Af_e(\Delta))$. Accordingly, the residue Res(x) of a 0-element x can be recovered from the semi-linear space $\mathcal{S}(Res(x))$ of 5- and 4-elements incident with x. Consequently:

Corollary 5.14 We have $\operatorname{Aut}(\mathcal{S}(\operatorname{Res}(x))) = \operatorname{Aut}(\operatorname{Res}(x)) = 3^5:(2 \times M_{11})$ for every 0-element x of Γ .

Lemma 5.15 $\mu = 1$.

Proof. We have $\mu \in \{1, 3\}$, as in the proof of Lemma 5.3. Suppose $\mu = 3$. Then Γ is flat, as in the proof of Lemma 5.3. Consequently, denoted by N_i the number of i-elements of Γ , we have:

$$\begin{array}{lll} N_0=12, & N_1=N_0\cdot 11\cdot 3/2=2\cdot 3^2\cdot 11, & N_2=N_1\cdot 10\cdot 3/3=2^2\cdot 3^2\cdot 5\cdot 11, \\ N_3=N_2\cdot 3^3/4=3^5\cdot 5\cdot 11, & N_4=N_3(3^2+3)/15=2^2\cdot 3^5\cdot 11, & N_5=3^5. \end{array}$$

Let $\{\alpha, \beta\}$ be an edge of the graph $\mathcal{G}^*(\Gamma)$. As in the proof of Lemma 5.3, we obtain that $\sigma_0(A, B) = \emptyset$ for any two distinct 4-elements $A, B \in \sigma_4(\alpha, \beta)$. Hence $\mu^*(\alpha, \beta) \leq 2$. For i = 1, 2, let $S_i(\alpha)$ be the set of 5-elements β adjacent with α in $\mathcal{G}^*(\Gamma)$ and such that $\mu^*(\alpha, \beta) = i$. By the flag-transitivity of Γ , the number $|\sigma_5(A) \cap S_i(\alpha)|$ does not depend on the choice of the 4-element $A \in \sigma_3(\alpha)$. One of the following occurs:

Case 1. $|\sigma_5(A) \cap S_1(\alpha)| = 2$ and $\sigma_5(A) \cap S_2(\alpha) = \emptyset$.

Case 2. $|\sigma_5(A) \cap S_1(\alpha)| = |\sigma_5(A) \cap S_2(\alpha)| = 1$.

Case 3. $|\sigma_5(A) \cap S_2(\alpha)| = 2$ and $\sigma_5(A) \cap S_1(\alpha) = \emptyset$.

Cases 1 and 2 can be ruled out by arguments similar to those used in the proof of Lemma 5.3 for the cases analogous to these. So, Case 3 holds. Given a 4-element $A \in \sigma_4(\alpha)$, let β and γ be the two 5-elements of $\sigma_5(A) \setminus \{\alpha\}$. Let B and C be the

elements different from A in $\sigma_4(\alpha, \beta)$ and $\sigma_4(\alpha, \gamma)$ respectively. Then $\sigma_0(A) \cap \sigma_0(B) = \sigma_0(A) \cap \sigma_0(C) = \emptyset$. It follows that $\sigma_0(B) = \sigma_0(C)$, whence B = C. Accordingly, for every 5-element α , the sets $\sigma_5(A)$ for $A \in \sigma_4(\alpha)$ bijectively correspond to the partition of the design $\text{Res}(\alpha)$ in two disjoint hexads. Therefore,

(1) For any two 4-elements A and B, we have $\sigma_5(A) = \sigma_5(B)$ if and only if $\sigma_5(A) \cap \sigma_5(B) \neq \emptyset$ and $\{\sigma_0(A), \sigma_0(B)\}$ is a partition of the set of 0-elements of Γ .

If $\sigma_5(A) = \sigma_5(B)$ for two 4-elements A and B, then we write $A \equiv B$. Clearly, \equiv is an equivalence relation on the set of 4-elements of Γ and all classes of \equiv have size 2. Moreover, by (1), for every 0-element x, $\sigma_4(x)$ meets every class of \equiv in at most one element. On the other hand, $|\sigma_4(x)| = 66 = N_4/2$. Therefore,

(2) For every 0-element x, $\sigma_4(x)$ meets every class of \equiv in exactly one element.

We define a semi-linear space $\tilde{\mathcal{S}}(\Gamma)$ on the set of 5-elements of Γ by taking the classes of Ξ as lines, with the convention that such a class $\{A, B\}$ and a 5-element α are incident precisely when $\alpha \in \sigma_5(A) = \sigma_5(B)$. Claim (2) implies the following:

(3) $\widetilde{\mathcal{S}}(\Gamma) \cong \mathcal{S}(\operatorname{Res}(x))$ for every 0-element x.

Let U be the elementwise stabilizer of $\widetilde{\mathcal{S}}(\Gamma)$. Then (3) and Corollaries 5.13 and 5.14 imply the following:

- (4) $3^5:M_{11} \le G/U \le 3^5:(2 \times M_{11}).$
- (5) $U \cap G_x = K_x = 1$ for every 0-element x.

(Proof of (5).) We have $U \cap G_x \leq K_x$ since $U \cap G_x$ stabilizes all elements of $\mathcal{S}(\mathrm{Res}(x))$ and $\mathrm{Res}(x)$ can be recovered from $\mathcal{S}(\mathrm{Res}(x))$. The equality $K_x = 1$ remains to be proved. Clearly, K_x fixes all 0-elements. Given a 0-element $y \neq x$, Lemma 5.12 implies that $\mathcal{G}(\mathrm{Res}(y))$ is a complete 11-partite graph with all classes of size 3. One of those classes, say C, contains the three elements of $\sigma_1(x,y)$. The group K_xK_y/K_y fixes all classes of the 11-partition of $\mathcal{G}(\mathrm{Res}(y))$ and all elements of $\mathrm{Res}(y)$ incident with any of the 1-elements of C. This forces K_xK_y/K_y to be trivial. Hence $K_x \leq K_y$. By symmetry, $K_x = K_y$. Finally $K_x = 1$, since y is an arbitrary 0-element of Γ . Claim (5) is proved.

By (5), G_x acts faithfully in Res(x) and G contains a semi-direct product $\widehat{G} = U:G_x$. By (4) and Corollary 5.13 and 5.14, \widehat{G} has index at most 2 in G. Moreover, $U \leq G_{\alpha}$, for every 5-element α . It follows that $G_{\alpha} = U:G_{x,\alpha}$ for $x \in \sigma_0(\alpha)$. On the other hand, G_{α} induces M_{12} on $\sigma_0(\alpha)$, by Lemma 5.11. This does not fit with the description of G_{α} as $U:G_{x,\alpha}$ (recall that $G_{x,\alpha}$ is isomorphic to either M_{11} or $2 \times M_{11}$). We have reached a final contradiction.

The proof now can be continued as in the case of n=2. We only recall its main steps, leaving all proofs for the reader:

Corollary 5.16 Γ satisfies the Intersection Property (IP). In particular, $S(\Gamma)$ is a semi-linear space.

Lemma 5.17 The graph $\mathcal{G}(\Gamma)$ is a complete 12-partite graph with classes of size 3. Accordingly, if N_i is the number of i-elements of Γ (i = 0, 1, 2, 3, 4), then

$$\begin{array}{lll} N_0 = 12 \cdot 3 = 2^2 \cdot 3^3, & N_1 = 2 \cdot 3^3 \cdot 11, & N_2 = 2^2 \cdot 3^3 \cdot 5 \cdot 11, \\ N_3 = 3^6 \cdot 5 \cdot 11, & N_4 = 2^2 \cdot 3^6 \cdot 11, & N_5 = 3^6. \end{array}$$

Moreover:

- (1) for every 5-element α , $\sigma_0(\alpha)$ meets each class of the 12-partition of $\mathcal{G}(\Gamma)$;
- (2) for every 0-element x and two edges $\{x,y\}$, $\{x,z\}$ of $\mathcal{G}(\Gamma)$ on x, we have $\sigma_2(x,y,z) \neq \emptyset$ if and only if y and z are adjacent in $\mathcal{G}(\Gamma)$.

The point-line geometry $\mathcal{A}(\Gamma)$ is defined as in the case of n=2: The points of $\mathcal{A}(\Gamma)$ are those of $\mathcal{S}(\Gamma)$. The lines of $\mathcal{A}(\Gamma)$ are the lines of $\mathcal{S}(\Gamma)$ and the new lines of the affine space $\mathcal{A}(\operatorname{Res}(x))$, for any 0-element x of Γ . The latter lines are the new lines of $\mathcal{A}(\Gamma)$, whereas the lines of $\mathcal{S}(\Gamma)$ are the old lines of $\mathcal{A}(\Gamma)$.

Lemma 5.18 For every new line L of $\mathcal{A}(\Gamma)$, we have $|L \cap \sigma_5(e)| > 1$ for exactly one 2-element e. Moreover, if e is the 2-element such that $|L \cap \sigma_5(e)| > 1$, then $L \subset \sigma_5(e)$.

Corollary 5.19 $\mathcal{A}(\Gamma)$ is a linear space with 3^6 points and the same parameters as AG(6,3).

Lemma 5.20 $K_x = 1$ for every 0-element x.

Let H be the elementwise stabilizer of the set of classes of the 12-partition of $\mathcal{G}(\Gamma)$. For a 0-element x, we set $H_x := H \cap G_x$. Then H_x is a Frobenius group with elementary abelian Kernel T_x of order 3^5 and complement C of size $|C| \leq 2$.

Lemma 5.21 We have H = T:C where $T \subseteq H$ is elementary abelian of order 3^6 and C is a complement of T_x in G_x , for a 0-element x of Γ . In particular, $T = O_3(H)$ and $|C| \leq 2$. Moreover:

- (1) H acts transitively on every class of the 12-partition of $\mathcal{G}(\Gamma)$.
- (2) The subgroup $T = O_p(H)$ acts regularly on the set of 5-elements of Γ , whereas C stabilizes a 5-element.
- (3) $T = \langle T_x, T_y \rangle$ for any two adjacent 0-elements x and y.
- (4) $T_x = T_y$ for any two non-adjacent 0-elements x and y. Consequently, $\{T_x\}_{x \in (\Gamma)_0} = \{T_x\}_{x \in \sigma_0(\alpha)}$ for every 5-element α , where $(\Gamma)_0$ stands for the set of 0-elements of Γ .

Lemma 5.22 We have $A(\Gamma) \cong AG(V)$, where V = V(6,3) and T is the additive group of V.

The isomorphism $\mathcal{A}(\Gamma) \cong AG(V)$ induces an embedding e of the dual $\mathrm{Res}(\alpha)^*$ of $\mathrm{Res}(\alpha)$ in the projective geometry PG(V), where PG(V) is regarded as the projective space of lines and planes of $\mathcal{A}(\Gamma)$ through the distinguished point α . Accordingly, Γ is the affine expansion of $\mathrm{Res}(\alpha)^*$ embedded in PG(V) via the embedding e. This finishes the proof of Theorem 1.

References

- B. Baumeister and G. Stroth, The non-canonical gluings of two affine spaces, Groups and Geometries (L. Di Martino et al. eds.), Birkäuser, Basel (1998), 9–28.
- [2] A.E. Brouwer, The uniqueness of the near hexagon on 759 points, *Combinatorica* **2** (1981), 333–340.
- [3] A.E. Brouwer, A.M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer, Berlin, 1989.
- [4] F. Buekenhout, C. Huybrechts and A. Pasini, Parallelism in diagram geometry, Bull. Soc. Math. Belgique-Simon Stevin 1 (1994), 355–397.
- [5] G. Ceccherini and A. Pasini, Extending locally truncated geometries, J. Combin. Th. Ser. A 94 (2001), 289–338.
- [6] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford 1985.
- [7] H.S.M. Coxeter, Twelve points in PG(5,3) with 95040 self-transformations, $Proc.\ Royal\ Soc.\ London\ Ser.\ A,\ 247\ (1958),\ 279-293.$
- [8] F. De Clerck and H. Van Maldeghem, Some classes of rank 2 geometries, Chapter 10 of Handbook of Incidence Geometry (F. Buekenhout ed.), North Holland, Amsterdam (1995), 433–475.
- [9] A. Delandtsheer, Finite (line-plane)-flag transitive linear spaces, Geom. Dedicata 41 (1992), 145–153.
- [10] A. Delandtsheer, Dimensional linear spaces whose automorphism group is (line-hyperplane)-flag transitive, Designs, Codes and Cryptography 1 (1992), 237–245.
- [11] A. Delandtsheer, Dimensional linear spaces, *Handbook of Incidence Geometry* (F. Buekenhout ed.), North Holland, Amsterdam (1995), 193–294.
- [12] A. Del Fra and A. Pasini, On $Af.Af^*$ -geometries, J. Geometry **54** (1995), 15–29.
- [13] A. Del Fra, A. Pasini and S. Shpectorov, Geometries with bi-affine and bi-linear diagrams, European J. Combin. 16 (1995), 439–459.
- [14] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1979.
- [15] W.M. Kantor, Homogeneous designs and geometric lattices, J. Combin. Theory Ser. A 38 (1985), 66–74.
- [16] C. Huybrechts and A. Pasini, On $c^{n-2}.c^*$ geometries of order 2, *Designs, Codes and Cryptography* 9 (1996), 317–330.

- [17] C. Levefre-Percsy and L. Van Nypelseer, Finite rank 3 geometries with affine planes and dual affine point residues, *Discrete Math.* 84 (1990), 161–167.
- [18] A. Pasini, Diagram Geometries, Oxford Univ. Press, Oxford 1994.
- [19] A. Pasini, Embeddings and expansions, Bull. Soc. Math. Belgique-Simon Stevin 10 (2003), 1–42.
- [20] A. Pasini, Flag-transitive $L_h.L_k^*$ -geometries, to appear in Proc. Conf. Combinatorics 2004 (Acircale, September 2004).
- [21] E.E. Shult and A. Yanushka, Near n-gons and line systems, Geom. Dedicata 9 (1980), 1–72.
- [22] H. Van Maldeghem, Generalized Polygons, Birkäuser, Basel 1998.

(Received 9 Jan 2004; revised 28 Mar 2005)