AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 33 (2005), Pages 291-305

RAK factoring algorithm *

Y. BanNt HAMMAD! G. CARTER? E. DAWSON!

L Information Security Research Centre 2School of Mathematics and Science
Queensland University of Technology
G.P.O. Box 2434, Brisbane 4001
Australia

W. MULLER

Institute of Mathematics
Klagenfurt University
Austria

Y. HITCHCOCK

Information Security Research Centre
Queensland University of Technology
G.P.O. Box 2434, Brisbane 4001
Australia

Abstract

Two hard mathematical problems provide the basis for the security of
public key cryptosystems used today. The first is the factoring problem,
that is, determining a prime factor of a given integer when the only fac-
tors of the given integer are large. The second is the discrete logarithm
problem, that is, determining the index ¢ given g and & in a group where
g = h. The proposed algorithm, RAK, essentially converts the factoring
problem to a discrete log problem, so it can be used for factoring as well
for determining discrete logarithms. It is particularly useful for numbers
that are the product of two large primes p and g of approximately the
same order, such as an RSA modulus. RAK offers significant improve-
ment over more traditional methods such as Fermat factorisation. After
presenting RAK we compare its complexity with Fermat factorisation.

1 Introduction

The difficulty of the factoring problem, that is, given a large integer n with no small
factors determine a prime factor of n, provides the security of many cryptosystems,

* RAK is the name of a city in the United Arab Emirates.

292 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

for example RSA [2] [10]. The first dedicated factoring technique was due to Fer-
mat [4] and, because of its simplicity, is generally the first technique tried when a
large number is to be factored after implementing trial divisions of the number n by
primes less than some given bound. Hence, Fermat factoring algorithm is often used
as a benchmark for the efficiency of factoring algorithms. Fermat factorization as it
is known will be described in section 5. In this paper we present a new factoring
algorithm, the RAK algorithm, which is highly efficient for numbers of the form pg
where p and ¢ are distinct primes. The algorithm essentially converts the factoring
problem into a discrete logarithm problem. It is as efficient as Fermat factorisation
where p and ¢ are twin primes and becomes far superior to Fermat as the difference
between primes p and ¢ increases. It should be noted however that RAK is at its
most efficient when p and ¢ are “close” as is the case in Fermat factorisation, thus
making a comparison with Fermat meaningful.

2 The general factorization technique

Factoring techniques fall into two categories, special and general. The special tech-
niques are applied to a factor number n that has some particular properties or its
factors have some particular properties. For example, Fermat factorisation, works
particularly well when n has only two prime factors whose difference is “small”.
Similarly, there are techniques which can be applied to numbers which contain the
factor p and p — 1 is the product of numerous “small” factors. On the other hand,
general techniques can applied to factor numbers of any form. The most powerful
general factoring algorithm is the general number field sieve [1]. With these defi-
nitions, the RAK technique would be described as special. The generic factoring
technique can be described as follows. Given an integer n to be factored, first apply
a compositeness test. If this test fails then n is prime and algorithm terminates. If
n passes compositeness test, a special purpose factoring algorithm is applied. This
algorithm is allowed to run either for a certain predetermined time or for a certain
predetermined number of iterations. If n is factored the algorithm terminates. If n
is not factored, then a general purpose algorithm is applied, again with a set time or
number of iterations to be performed. The diagram below illustrates the process of
factorisation.

Pass " T

Integer n>2 l:> Compositeness r.._—‘____l> Special factoring 1& ! General factoring
9 Test i algorithm i algorithm I

el Pass Pass

n is prime n factored n factored

Figure 1: General factorization technique

RAK FACTORING ALGORITHM 293

3 The mathematics behind RAK Algorithm

The RAK algorithm relies on the following theorems:

Theorem 1 [8] If p and q are distinct integer primes and n = pq, then n = ®(n)+
p+q—1, where ®(n) = (p — 1)(q — 1), and ®(n) is the Euler totient function.

Theorem 2 Euler Totient theorem: [5] If ged(a,n) = 1 and n = [[pf", then
a®™ = 1(modn).

Theorem 3 Arithmetic-Geometric Mean: [8] Given distinct numbers x and y then
52 VT

Theorem 4 [9] If a*> = b* mod n and a # +bmod n then 1 < gcd(a £b,n) < n.

The following results can be deduced from these theorems.
Let n = pq be a number to be factored, where p and ¢ are distinct odd prime
numbers. Now if ged(a,n) = 1 for any integer a, we have from theorems 1 and 2.

Corollary 1

a™ = @’ mod n (1)
Theorem 5 p+q > 2(|/n] + 1) where [\/n] is the integer part of \/n.
Theorem 6 If n is of the form pg and 4|(n + 1) then 4|(p + q).
Theorem 7 If n is of the form pg and 8|(n + 1) then 8|(p + q).

Theorem 8 If p and q are numbers with ¢ > p such that ¢ = p+d where d > 0 then
D =p+q—2(/pq]| +1) is an increasing function of d for fized p.

Theorem 9 Ifn =pq and ¢ = p + 2 then |\/n| = p.
Theorem 10 Ifn=1pq and g =p+4 then |/n| =p+1.

4 RAK Algorithm

In this section a description of the algorithm is given.

294 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

4.1 Verbal Description of RAK

RAK has a precomputation phase and an iterative phase. In the precomputation
phase an array A is constructed of size e?. The value of e will be discussed in the
section 4.2. The array consists of elements of the form (a%)* mod n, 1 < z < e?. The
choice for a will be discussed in section 4.3.
Definition: Let ¢ = o™+~ 2(V2+1D) mod n.
Since n + 1 is even
c=(a*)TLJrl (VR4 mod n (2)

The array is then searched for the value ¢ calculated from equation (2). If ¢ is found
then there exists a z, (1 < z < €?) such that

c = (a*)” mod n.

(a®)n+1 (VR4 = (%)% mod n.
(a2)"F ~(WVn+D=2 = 1 mod n.

It follows that
1 <ged(as ~WrHD=* 4 1 mod n,n) <n

n+41

provided that a2 ~(lV2l+1=2 2 41 mod n, and the algorithm terminates.
If ¢ is not found in array A, then RAK proceeds to the iterative phase where

c=c.((a®) ' modn

and array A is searched for this new value of c. If ¢ is found then there exists a z,
(1 < 2 < €?) such that
(a*)* = cmod n

that is
(a2)" 5 ~(Wl+D=2=¢* = | 10 gy

and
1< ged(a™® ~WrtD=2=¢" 41 py <

provided @ 3 - (Vl+)—a—e? # £1 mod n, and the algorithm terminates. If ¢ is not
found then ¢ = c.a~ %" mod n and the process repeats.

Clearly, at each step of the iterative phase the index of ¢ is decreasing by e? from
a maximum of 2% — (|y/n] + 1). Hence, the index of ¢ must eventually decrease to
a point where 1 < index of ¢ < €2, and so ¢ must appear in array A. If ¢ is found
after m iterations then

(a2)"5 ~(Wrl+D=e=me? = 1 nod g

and
1 < ged(a™s ~(WrlHD=2mme® 4))

provided
Sl =2=me® 2 41 mod n

RAK FACTORING ALGORITHM 295

If after finding c,
S (VR -2me® = 11 mod g

then the algorithm determines

ged(b™3 (WAl =2=me® 4 1 od)

where b is the next prime > a. As with the case of the base “a”,

1< ged(d™ 5 ~(WaltD=2=me? oq £ 1,0) < n

provided
b3 ~(LVal+1)—z=me? Z 1l modn

If
b (WAl —2-me® — 41 6d g

then repeat the above process for the next prime larger than . This process can be
controlled by limiting the range of b or the number of primes b to be tested.

In section 4.4 we let a =2 and b = 3 or 5. In section 4.6 we show how to extend
the values of b beyond 5 if the algorithm fails to produce a result for 2,3 and 5.
Section 4.7 also contains some statistics on the success of the algorithm using 2,3
and 5 only, and for those examples that did not resolve using 2,3 and 5, how large b
had to be taken for these to be resolved.

4.2 The size of Array A

A technique that could be used is just to generate successive powers of a? until ¢ is
found. However, this would require a computationally expensive modular exponen-
tiation each time and would be no more efficient than Fermat factorisation which
increments, in its iterative step, by 1 each time. This technique would require a max-
imum number of 24 — (|\/n] + 1) modular exponentiations which is unknown since
p + ¢ is unknown. However, there would be no storage requirements. What RAK
does is create array A of fewer than 2% — (|/n] +1) elements when 28 — ([\/n] +1)
is large, and compares these elements to ¢, which is relatively inexpensive, computa-
tionally speaking. The size of the array is therefore a compromise between storage of
array elements and the speed and efficiency of the search of the array. Ideally, array
A should not be too “large” and should only depend on the size of n and not on the
sizes of the factors p and ¢ of n. As theorem 8 indicates, for given n of a particular
size, the value of 1% — ([v/n] +1), where p and ¢ are the prime factors of n, is very
dependent on the relative sizes of p and q.

Experimentation has indicated that an array size of 2 where e = LIH"J is efficient
for our purpose. Now for pg of RSA size, say 1024 bits, Llnqu ~ 1024 so array A
will be approximately (1024)? = 10°. If LIH” 2> B — |{/n] +1) then the initial
value of ¢ will occur in the array and the algorithm w111 terminate. If, on the other
hand, [22|* < 222 — (|/n] + 1) the algorithm may proceed to the iterative phase.
The search for an “optimal” array size is the subject of ongoing research.

296 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

4.3 The choice for a

The choice of a as the base in the calculation of the elements of array A is a tradeoff
between the size of a and its order modulo n, the number to be factored. The original
approach was to try a “small” value for a as this facilitated the calculation of the
elements of array A. However, we speculate that a “small” value for “a” will have a
large order mod n. This is based on a table in [6] where the author has stated that
2,3, and 5 are generators of the group Z,, p prime, p < 4000, with high probability.
If a has a large order then the number of iterative steps in the algorithm is likely to
increase. We have selected a = 2 as the base element in the algorithm described in
section 4.4. The choice of a “larger” base element with smaller order may reduce the
number of iterative steps in the algorithm but it will increase the complexity of the
calculation of array elements. These aspects, related to the choice of base element
for the calculation of the array elements, are the subject of ongoing research.

4.4 Pseudo Code for RAK

Precomputation phase
c=4"7 -+ mod
If ¢ =1 then » = % — (|\/n] 4+ 1) Go To Test
e = k]
A=[4modn], 1<z < e
Search A for c. If ¢ € A then z = 22 — (|\/n] 4+ 1) — z Go To Test
h = (4¢)"" mod n
m =1 (m keeps track of the number of iterations)
and go to iterative phase.
Iterative Phase
Repeat

c=chmodn

Ifc¢ Athenm=m+1.

If c € A then z = 2 — (|\/n] + 1) — me* — z Go To Test
Test

while((z is even)&(4” =1 mod n))

r=3

If 4* = —1 mod n then z = 2z
If ged(2* £ 1,n) £ £1 mod n and ged(2* £ 1,n) = p and ¢ Stop.
If 3* £ £1 mod n and ged(3* £ 1,n) # 1 or n Stop.
If 5* £ £1 mod n and ged(5* £ 1,n) # 1 or n Stop.
Go To Second_Test (see section 4.6)

4.5 Numerical example

Let n = 3711 be a composite number to be factored.
c = 4" mod 3711 = 2488

e=11

Calculate array A

4
3496
1351
676
775
1948
2914
1090
2644
2614
2371

16
2851
1693
2704
3100
370
523
649
3154
3034
2062

64
271
3061
3394
1267
1480
2092
2596
1483
1003
826

RAK FACTORING ALGORITHM

256

1084
1111
2443
1357
2209
946

2962
2221
301

3304

1024
625
733
2350
1717
1414
73
715
1462
1204
2083

385

2500
2932
1978
3157
1945
292

2860
2137
1105
910

Since 2488 ¢ A move to iterative phase
h =235

m=1

c=2053¢ Aand m=2
c=25¢ Aand m=3

c=2164¢ Aand m =4
¢ =133 € A and index(133)=75

41856-61-4:121-T5 110 3711 = 41230 1od 3711 = 1

Since 2!23¢ mod 3711 =1
31236 mod 3711 = 2475

.. ged(2474,3711) = 1237 and 3711 = 1237 -3
Note: The algorithm could terminate in precomputeation phase if we noticed that
4'% mod 3711 = 625 = 25% and then 2449 mod 3711 = 25% so (2449 + 25)(2449 —
25) mod 3711 = 0 and 3711 = 3- 1237

1540
2578
595
490
1495
358
1168
307
1126
709
3640

2449
2890
2380
1960
2269
1432
961

1228
793

2836
3427

2374
427
2098
418
1654
2017
133
1201
3172
211
2575

4.6 Increasing the Likelihood of Success of RAK

2074
1708
970
1672
2905
646
532
1093
1555
844
2878

874
3121
169
2977
487
2584
2128
661
2509
3376
379

297

If the algorithm in section 4.4 fails to resolve n into its factors we execute a second
algorithm Second_Test which essentially enables us to increase the base to numbers
larger than 5. In other words if 2,3 and 5 do not succeed, Second_Test enables us to
use 7,11,13, ... up to some given bound. The pseudo code for Second Test follows.

Second_Test

a=5
Repeat
b is the next prime > a

4.7 Failure of the RAK Algorithm

c=b* modn

if ¢ # £1 mod n then ged(c £ 1,n) = p or ¢ and stop
elsea =0
Until b > some given bound.

RAK will not always be able to resolve a number n into its factors. The RAK tests

will not succeed when either

298 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

1. b* = +1 mod n for all choices of b.

2. b* # £1 mod n and ged(b* £ 1,n) =1 or n for all choices of b.

For b < 5 we tested 1000 pairs of 20 digits primes and RAK was successful 94.7%
of the time. By increasing b to a maximum of 29, the RAK algorithm was 100%
successful. This is the subject of further research.

5 Fermat’s Factoring method [4]:

Proposed in the 17** century by French mathematician Pierre de Fermat, Fermat
factoring is the oldest systematic method of factoring a composite number into its
prime factors. The algorithm looks for integers z and y such that n = 22 — 3% then
n=(z—y)(x+y). The algorithm works well when the difference between two prime
factors p and q is small.

There is a generalization of the idea behind the Fermat factoring method, which
leads to a much more efficient factoring method [9]. If we are able to find z and y such
that 22 = y? mod n, where x # £y mod n, then ged(z £ y,n) are two factors of n,
and many factoring methods such as factor base [4], continued fraction [4], Quadratic
Sieve (QS) [4], Multi Polynomial Quadratic Sieve (MPQS) [12],and General Number
Field Sieve (GNFS) [1] use this technique to factor the number n.

5.1 Fermat Factoring Algorithm:
r=|vn]
i=1

Repeat
a=(r+i)?—-n
If @ is not perfect square then i =i + 1

n=(r+i—/a)(r+i+/a)

6 Complexity Comparisons

For n of the form pg where p < ¢, suppose that Fermat factorisation takes ¢ iterations
and RAK takes m iterations.
6.1 Fermat Complexity

In this case from Section 5.1

Vo] +t—Va=p

and

lVn] +t+Va=gq

RAK FACTORING ALGORITHM 299

SO L
bTq
1=).
It follows that
p+q=2(vn] +1)+2(t—1). (3)

6.2 RAK Complexity
From Section 4.1 if ¢ is found after m iterations then

2(lvn] + 1) +2me* + 22 < p+q. (4)

From (3) and (4) it follows that
t—1>me?+z

and
t>mer+ 241

(5)

Thus, in Fermat factorisation there are at least me? + 241 squarings and me? +z+1
square root extractions whereas in RAK there are m or fewer modular multiplications

and me? + z comparisons.

6.3 RAK vs. Fermat

Table 1 compares Fermat algorithm with RAK.

Table 2 indicates running times in seconds in a number of trials for the RAK
algorithm and the Fermat algorithm, in factoring numbers of the form pq where p

and ¢ are 20 digit primes.

Criteria Fermat RAK
Precomputation r=|vn] c =47~V mod n
e=|R2
In2
Calculate the array A
m=1
h =4 modn
=a|v/n]
Number of B — | /] < | ==
iterations
Operations in r=r-+1 c=chmodn
each step b=r? m=m+1
c=b-—n Search for ¢ in the Array A
Checking whether ¢
is a perfect square or not
Pre-iterative phase No Yes
termination conditions

Table 1: Comparison of RAK and Fermat

300 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

In column 2 the first 15 rows of RAK times represent the average time to run
the RAK algorithm with 1000, p, ¢ pairs whose minimum difference is indicated in
column 1. The next 2 RAK times are average times for 100 p, ¢ pairs, while the
remaining rows of RAK times are for a single p, ¢ pair.

In column 3 the first 8 rows of Fermat times are average times to run 1000 p, ¢
pairs. The next row is the time to run 200 p, ¢ pairs and the remaining rows are the
times to run one pair.

Note that in successive rows of the table the difference ¢ — p is increasing.

Note that when the minimum ¢ — p = 100000000002 RAK becomes significantly
faster than Fermat and that at minimum ¢ — p = 8800000000026 RAK is 2056 times
faster than Fermat. Looking at the last entries in columns 2 and 3 one sees that
even when the difference between p and ¢ is = 1000 times greater RAK is still = 2.5
times as fast as Fermat.

The running time of RAK is based on the algorithm which is described in section
4.4 and that running time can be improved if we apply the techniques for algorithm
efficiencies which are described in section 8.

minimum ¢ —p | RAK runing time | Fermat Runing time
100002 0.00469410 0.00297910
1000002 0.00468410 0.00308210
10000002 0.00467610 0.00318110
100000002 0.00463910 0.00325610
1000000002 0.00466110 0.00334610
10000000002 0.00466310 0.00380910
100000000002 0.00468210 0.00942310
500000000002 0.00607710 0.16537610
1000000000002 0.01019710 0.71425410
2200000000002 0.03861810 8.35613810
3300000000102 0.06413210 20.50635910
5500000000002 0.07504310 52.69080310
6600000000042 0.07442710 76.96297010
8800000000026 0.07524310 154.70656910
10000000000010 0.07507710
100000000000002 0.08279710
1000000000000002 0.84976710
2000000000000020 6.47825910
3000000000000014 14.29810610
4000000000000004 17.23231110
5000000000000010 39.42578310
6000000000000206 47.95687910
7000000000000042 60.98136210

Table 2: Running Times for RAK and Fermat

RAK FACTORING ALGORITHM 301

7 Some Special Cases

In this section we describe three special cases.

7.1 Case ¢=p+2 (twin primes) and ¢ =p+4

From equation (5) we can examine the case of ¢ = 1, which corresponds to the two
cases in question. From (5) ¢ = 1 implies m = 0 and z = 0. This in turn implies
that there is no need to construct the array in RAK. This is indeed so, since from
theorem 9 we have
2p+2=2(vn] +1)
and in the case p + 4 = ¢ we have from theorem 9
2 +4 = 2(| /] +1)
In addition p 4+ g = 2p + 2 in the twin prime case and p + ¢ = 2p + 4 in the case
p+4 =gq. Thus, 2(|v/n] +1) = p+ ¢ and from section 4.1

—(p+q) n+1
Cc= 2 .

2 modn

and from equation (1)
=270 9P+ ;od = 1

Thus, in the case where t = 1 in equation (5), ¢ = 1 in RAK.

7.2 11:11—2 = I an integer

If 8¢ is an even integer I then ¢ = a’ and from equations (1) and (2) we have

In

qrt1I2Vel+) = of od
(az)kzi-_l_(LﬁJ-Fl)_% =1modn

1< gcd(a%f(wm*l)*% +1,n)<n

provided a"F ~(VA+1=5 % 41 mod n.

n+1
Now, if I is an odd integer or in the case I is even, and a5 ~(WVrlHD=5 mod n =
+1 mod n, with high probability ged((a & 1)1~ 2(lv2+)=T £ 1 mod n,n) = p or q.

7.3 p>aand g > f for some known « and 3, both odd or both even

If p > a and ¢ > S for some known a and (3, both odd or both even as well as

2(lvn] +1) < a+ S, we can use a + 8 instead of 2(|y/n] + 1) in equation (2).
Thus, ¢ = (az)nz_-f_l’(a;ﬁ) mod n. This reduces the number of iterations required as

ol _ # is < 2L — (|y/n] 4 1) making it closer to 2¢?, the maximum index in the

array.

302 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

8 Other Algorithm Efficiencies

1. In generating the array A one can check whether or not there exists a z > £
such that (a?)* mod n = m?, 0 < m < |/n]. If such a z exists then by theorem
4,1 < ged(a® £ m,n) < n provided a* Z —m mod n.

2. In generating array A one can check whether or not there exists a z and an
even s such that (a®)* = b° mod n, where z > £ and 1 < b* < n. If such a z
and s exist then (a?)* — b* = 0 mod n and it that (a* — b2)(a® +b2) = 0 mod n

and if ¢* # £b% mod n, then 1 < ged(a® £ b2,n) < n.

Both of the above checks can be performed at the precomputation phase and
hence may preclude the need for the iterative phase.

3. Sorting the array A in ascending order makes it quicker to search. In addition,
calculating the inverse of each element in the sorted array as in the following

table,
Index | Element | Inverse
b1 ai C1
by a2 Co
be2 Qg2 Ce2

where a; < a2 < ... < a2, and checking if there exist an ¢ and a j such that
a; = ¢; for some ¢ and j where 1 < i, j < €%, then we have

(a*)™" =4’ mod n
a*) = 1mod n

so by theorem 4 o
s l<ged(n,a™ £1)<n

provided a7 # +£1 mod n

4. Let a = |55] and m = 0 where #n is number of digits of n. « is another
value that 1s not “too large” for an array size. Create a second array B

B1 = (a®)* mod n B
B2 = (a*)** mod n Byt
Ps =

(a*)3* mod n B3t

Ban = (a®)#™ mod n BQL

If §; or 5;1 € A, where 1 < i < #n then there exists a k, 1 < k < #n, such
that

RAK FACTORING ALGORITHM 303

1< ged@®*£1,n)<n

provided a**=* # +1 mod n If 5; and 57! ¢ A set m = m + 1 in the iterative
part of algorithm 4.4 and

B1 = B1.(a®)* mod n Bt =6t (a®) mod n
By = Ba.(a?) mod n Gyt = 65 .(a%) modn
B3 = 63.((12)51 mod n Byt =By .(az)gz mod n

Bn = Bn-(a®)® mod n B#n = ,B#n (a®)¢ mod n

Thus, we are no longer just searching A for ¢ but for 5;, (1 < i < #n) as well,
and so the chances of finding a match are increased.

. Choose larger e. Because each iterative step increments the index of ¢ by 2¢e?,
the larger e is, the fewer iterative steps that are needed to find ¢ in the array
A. The upper bound for e is 22 — |\/n] — 1.

. From theorem 6 and equation (1) if 4|(n+1) then build array A = [(a*)* mod n],
1 < z < €2 Determine ¢ = (o)~ L mod n and h = (a*)"¢* mod n
and follow algorithm 4.4. If ¢ is found after m iterations then ¢ = (a*)? mod n
for some z and so we have

(at) WD e = 1 od

and 1 < ged((a?) 5= (Val+D=me’~= 4 1 ;mod n,n) < n provided
(a2)"F ~(WalHD)=me*== £ 41 mod . If (a2)"F ~(WEHD=-me*=2 = 41 mod n
then
1 < ged(a™F ~(Wal+0-me® 2 4 1 mod n,n) < n provided
o F - (Val+)-me* 2 £ 41 mod n.

If o —(Wrl+D)-me® =2 = 41 mod n then proceed as in section 4.6.

In this scenario the number of iterations required decreases. Applied to the
example in section 4.5 the number of iterations is halved to 2.

. From theorem 7 and equation (1) if 8|(n+1) then build array A = [(a®)* mod n],
1 < z < €. Determine ¢ = (as)%’LWJ mod n and h = (a®)"¢" mod n
and follow algorithm 4.4. If ¢ is found after m iterations then ¢ = (a®)* mod n
for some z and so we have

(a8)"F ~LVrltD)-me*=2 = | od p

and 1 < ged((a*) 5 —(Val+D=me*~= 4 1 ;mod n,n) < n provided
(af)F - (WrlH)-me* == £ 41 mod . If (o) (WAlHD-me® 2 = 41 modn
then

1 < ged((a)Lﬂ’(t\ﬂ“)’mez” +1 mod n,n) < n provided

(a2)" % ~(LVal+)=me?—= = 41 mod n.

304 BANI HAMMAD, CARTER, DAWSON, MULLER AND HITCHCOCK

If (a?)"¢ ~(WaltD-me®—2 = 41 modn then 1 < ged(a™s ~(LVal+)-me?— 4
nt1

1 mod n,n) < n provided a’s (Lvnl+1)-me?—2 # +1 mod n.
If o5 ~(WVRl+D)-me*~2 = 11 110d n then proceed as in section 4.6.

In this scenario the number of iterations required also decreases. Applied to
the example in section 4.5 no iterations are needed as ¢ appears in the precom-
putation phase.

Improvements 6 and 7 suggest a generalisation for the construction of array A.
However, in the case 16|(n + 1) it does not necessarily follow that 16|(p+¢). p
of the form 169 + 3 and ¢ of the form 16f + 5 provide a counter example.

9 Conclusion

9.1 Summary

The new algorithm, RAK, for factoring numbers of the form n = pq, p and ¢ distinct
primes has been presented. The speed of the algorithm is largely dependent on the
difference ¢ — p, of primes p and ¢q. However the base element “a” and its order
mod n also play a part as indicated in section 4.3. One advantage of the algorithm
is the terminating conditions in the precomputation phase. In addition a number
of techniques can be used to speed up the algorithm making it more efficient, as
detailed in section 8. The algorithm offers significant improvement over the Fermat
factoring algorithm especially where the difference between p and ¢ is significant.
However, it should be noted that RAK like Fermat, is most efficient where p and ¢
are close. RAK can fail but does so with small probability.

9.2 Future Work

There are some areas of the algorithm that need more investigation and these will be
the subject of future work. There is more investigation to be done on determining
the optimal size of the array A and giving this aspect a more theoretical basis. In
addition, the choice of the base element in the array and the trade off between its size
and its order modulo n needs further research. We plan to investigate the instances
of failure of RAK and determine the type of numbers that cause failure. We also plan
to adapt the algorithm for composite moduli of the form p?q [13] and pgr as these
have been proposed as alternative moduli for RSA type algorithms. Finally we will
invetigate the methods to improve the running time of the algorithm as described in
section 8.

References

[1] AXK. Lenstra and H.-W. Lenstra, Jr., The Development of the Number Field
Steve, Spring-Verlag, 1993.

[2] Chales P. Pfleeger, Security in Computing, Prentice Hall, 1997.

RAK FACTORING ALGORITHM 305

[3] David M. Burton, Elementary Number Theory, 1989, Wm. C.Brown.

[4] Hans Riesel, Prime Numbers and Computer Methods for Factorization,
Birkhauser, 1985.

[5] H.E. Rose, A Course in Number Theory, Oxford Science Publications, 1994.
[6] I.M. Vinogradove, Elements of Number Theory, Dover, 1954.

[7] J.H. Loxton, Number Theory and Cryptography, Cambridge University Press,
1990.

[8] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions With
Formulas, Graphs and Mathematical Tables, U.S. Govt. Print. Off. 1964.

[9] N. Koblitz, A Course in Number Theory and Cryptography, Springer, 1991.

[10] R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital sig-
natures and public-key cryptosystems; Communications of the ACM, Vol. 21,
Nr.2, 1978, S.120-126.

[11] R.A. Mollin, Fundamental Number Theory with Applications, CRC Press,
1998.

[12] R.A.Mollin, RSA and Public-Key Cryptography, CRC Press, 2003.

[13] T. Okamoto and S. Uchiyama, An efficient public-key cryptosystem, in Ad-
vances in Cryptology—Eurocrypt 98, Springer-Verlag, 1998.

(Received 5 Feb 2004)

