Lower bound on the paired domination number of a tree

Joanna Raczek

Department of Technical Physics and Applied Mathematics Gdańsk University of Technology Narutowicza 11/12, 80-952 Gdańsk Poland gardenia@pg.gda.pl

Abstract

We prove that the paired domination number $\gamma_p(T)$ of a tree T on n > 1 vertices and with n_1 end-vertices satisfies the inequality $\gamma_p(T) \ge (n+2-n_1)/2$ and we characterize the trees for which $\gamma_p(T) = (n+2-n_1)/2$.

1 Introduction

In this paper, all graphs considered will be finite and without multiple loops or edges. A set $D \subseteq V(G)$ is a dominating set of a graph G if every vertex in V(G) - D is adjacent to least one vertex in D. A set $D \subseteq V(G)$ is a paired dominating set of G if it is dominating and the induced subgraph $\langle D \rangle$ has a perfect matching. The paired domination number $\gamma_p(G)$ is the cardinality of a smallest paired dominating set D in G. This type of domination was introduced by Haynes and Slater in [4, 5] and is studied, for example, in [1, 7, 8, 9].

Let n(G) be the cardinality of the vertex set V(G). The open neighbourhood of a vertex $x \in V(G)$, denoted by $N_G(x)$, is the set $\{v \in V(G) : d_G(v, x) = 1\}$, where $d_G(v, x)$ is the distance between v and x in G. The set $N_G[x] = N_G(x) \cup \{x\}$ is called the closed neighbourhood of x in G. For a set $X \subseteq V(G)$, the closed neighbourhood $N_G[X]$ is defined to be $\bigcup_{x \in X} N_G[x]$. The private neighbourhood of a vertex x with respect to a set $D \subseteq V(G)$ is the set $PN_G[x, D] = N_G[x] - N_G[D - \{x\}]$. Let $\Omega(G)$ be the set of all end-vertices of G, that is the set of vertices degree 1, and let $n_1(G)$ be the cardinality of $\Omega(G)$. A vertex v is called a support if v is a neighbour of an end-vertex. The diameter diam(G) of a connected graph G is the number $\max_{u,v\in V(G)} d_G(u,v)$. A double star S(p,r), where p and r are positive integers, is the tree obtained from stars $K_{1,p}$ and $K_{1,r}$ by adding the edge joining one central vertex of $K_{1,p}$ with one central vertex of $K_{1,p}$.

For unexplained terms and symbols see [2, 3].

Lemańska [6] has given a lower bound on the domination number of a tree T in terms of n(T) and $n_1(T)$. In this paper we present a similar lower bound on the

paired domination number of a tree. We have two aims in this paper: to prove that the paired domination number $\gamma_p(T)$ of a tree T on n(T) > 1 vertices satisfies inequality $\gamma_p(T) \ge (n(T) + 2 - n_1(T))/2$ and to give a constructive characterization of the trees for which $\gamma_p(T) = (n(T) + 2 - n_1(T))/2$.

2 Results

We begin with a basic property of a paired dominating set.

Observation 1 If v is a support in G, then v is in every paired dominating set of G.

Let D be a minimum paired dominating set of a tree T. By $\Omega_l(T)$ we denote the set of all end-vertices which belong to any longest path in T. We say that D has property \mathcal{F} if the number $|\Omega_l(T) \cap D|$ is as small as possible.

Lemma 1 If T is a tree with $\gamma_p(T) > 2$, then there exists an edge $e \in E(T)$ such that $\gamma_p(T) = \gamma_p(T_1) + \gamma_p(T_2)$, where T_1 and T_2 are the components of T - e.

Proof. Let T be a tree with $\gamma_p(T) > 2$ and let D be a minimum paired dominating set with property \mathcal{F} in T. Then $\operatorname{diam}(T) > 3$ and we consider two cases:

Case 1. If $\Omega_l(T) \cap D \neq \emptyset$, then there exists a longest path $S = (s_0, s_1, \ldots, s_l)$ in T such that s_0 and s_1 belong to D. In this case s_2 also belongs to D, as otherwise $D' = D - \{s_0\} \cup \{s_2\}$ would be a minimum paired dominating set of T with $|\Omega_l(T) \cap D'| < |\Omega_l(T) \cap D|$, a contradiction. Now it is easy to observe that if T_1 and T_2 are the components of $T - s_1 s_2$ containing s_1 and s_2 respectively, then $\{s_0, s_1\}$ and $D - \{s_0, s_1\}$ are minimum paired dominating sets in T_1 and T_2 respectively, and therefore $\gamma_p(T_1) = 2$, while $\gamma_p(T_2) = \gamma_p(T) - 2$.

Case 2. Assume now that $\Omega_l(T) \cap D = \emptyset$, and let $S = (s_0, s_1, \dots, s_l)$ be a longest path in T. In this case $s_0 \notin D$, $s_1, s_2 \in D$, and s_1s_2 is an edge of a perfect matching of $\langle D \rangle$. We claim that $d_T(v) = 1$ for each vertex $v \in N_T(s_2) - V(S)$. Suppose on the contrary, that there exists $v \in N_T(s_2) - V(S)$ with $d_T(v) > 1$. Thus, since S is a longest path in T, every vertex belonging to $N_T(v) - \{s_2\}$ has degree 1. Therefore, v is a support and from Observation 1, $v \in D$. Since $v \in D$ and $\Omega_l(T) \cap D = \emptyset$, the edge vs_2 belongs to a perfect matching of $\langle D \rangle$, which is impossible as the edge s_1s_2 already belongs to the same perfect matching. This proves the claim. We consider two subcases: $s_3 \in PN_T[s_2, D]$ and $s_3 \notin PN_T[s_2, D]$.

Subcase 2.1. If $s_3 \in PN_T[s_2, D]$, then it is easy to observe that $d_T(s_3) = 2$. In addition, if T_1 and T_2 are the components of $T - s_3 s_4$ containing s_3 and s_4 respectively, then $\gamma_p(T_1) = 2$ and $\gamma_p(T_2) = \gamma_p(T) - 2$.

Subcase 2.2. If $s_3 \notin PN_T[s_2, D]$ and if T_1 and T_2 are the components of $T - s_2 s_3$ containing s_2 and s_3 respectively, then $\gamma_p(T_1) = 2$ and $\gamma_p(T_2) = \gamma_p(T) - 2$.

Thus, in any event the statement holds.

Theorem 2 If T is a tree on n(T) > 1 vertices, then

$$n_1(T) \ge n(T) + 2 - 2\gamma_p(T).$$

Proof. We proceed by induction on $\gamma_p(T)$. If T is a tree with $\gamma_p(T) = 2$, then T is a star or a double star, and it is easy to observe that $n_1(T) \geq n(T) - 2 = n(T) + 2 - 2\gamma_p(T)$.

Assume now that the result is true for all trees T' with $2 \le \gamma_p(T') \le j$ and let T be a tree with $\gamma_p(T) = j+2$. Let D be a minimum paired dominating set of T. In this case diam(T) > 3 and by Lemma 1, there exists an edge $e \in E(T)$ such that $\gamma_p(T) = \gamma_p(T_1) + \gamma_p(T_2)$, where T_1 and T_2 are the components of T - e. It is immediate that $n(T_1) + n(T_2) = n(T)$ and $n_1(T_1) + n_1(T_2) \le n_1(T) + 2$. By induction hypothesis, $n_1(T_1) \ge n(T_1) + 2 - 2\gamma_p(T_1)$ and $n_1(T_2) \ge n(T_2) + 2 - 2\gamma_p(T_2)$. Therefore

$$\begin{array}{ll} n_1(T) + 2 \geq n_1(T_1) + n_1(T_2) & \geq & (n(T_1) + 2 - 2\gamma_p(T_1)) + (n(T_2) + 2 - 2\gamma_p(T_2)) \\ & = & (n(T_1) + n(T_2)) + 2 - 2(\gamma_p(T_1) + \gamma_p(T_2)) + 2 \\ & = & n(T) + 2 - 2\gamma_p(T) + 2 \end{array}$$

and consequently,

$$n_1(T) \ge n(T) + 2 - 2\gamma_p(T).$$

We are now in a position to provide a constructive characterization of the trees T for which $n_1(T) = n(T) + 2 - 2\gamma_p(T)$. For this purpose, we introduce the following operation: if T_1 and T_2 are vertex disjoint trees, then by $T_1 \oplus T_2$ we denote a tree obtained from T_1 and T_2 by adding an edge joining an end-vertex of T_1 with an end-vertex of T_2 .

Let \mathcal{R}_p denote the family of trees such that:

- (i) Every double star S(p,r) belongs to \mathcal{R}_p ;
- (ii) $T_1 \oplus T_2$ belongs to \mathcal{R}_p if only T_1 and T_2 belong to \mathcal{R}_p .

Observation 2 If T is a tree belonging to the family \mathcal{R}_p , then either T is a double star or there are double stars S_1, \ldots, S_j $(j \geq 2)$ such that $T = (\ldots (S_1 \oplus S_2) \oplus \cdots \oplus S_{j-1}) \oplus S_j$.

Lemma 3 If T is a tree belonging to the family \mathcal{R}_{p} , then

$$n_1(T) = n(T) + 2 - 2\gamma_p(T).$$

Proof. If T is a double star, then $\gamma_p(T) = 2$, $n_1(T) = n(T) - 2$ and certainly $n_1(T) = n(T) + 2 - 2\gamma_p(T)$. Otherwise, if T is a tree obtained from j double stars S_1, \ldots, S_j $(j \geq 2)$, then it is easily seen that $\gamma_p(T) = 2j$. Moreover,

$$n(T) = \sum_{i=1}^{j} n(S_i) = \sum_{i=1}^{j} (n_1(S_i) + 2),$$

and

$$n_1(T) = \sum_{i=1}^{j} n_1(S_i) - 2(j-1).$$

It is easy to check that the equality $n_1(T) = n(T) + 2 - 2\gamma_p(T)$ holds.

Lemma 4 If T is a tree with n(T) > 1 and $n_1(T) = n(T) + 2 - 2\gamma_p(T)$, then T belongs to the family \mathcal{R}_p .

Proof. We proceed by induction on $\gamma_p(T)$. If $\gamma_p(T) = 2$ then $\operatorname{diam}(T) \leq 3$ and $n_1(T) = n(T) + 2 - 2\gamma_p(T) = n(T) - 2$. Hence $n(T) \geq 4$ and there are exactly two supports in T. Therefore T is a double star.

Assume now that the result is true for all trees T' with $2 \le \gamma_p(T') \le j$, and let T be a tree with $\gamma_p(T) = j + 2$ and such that $n_1(T) = n(T) + 2 - 2\gamma_p(T)$.

Lemma 1 implies that there exists an edge $e \in E(T)$ such that $\gamma_p(T) = \gamma_p(T_1) + \gamma_p(T_2)$, where T_1 and T_2 are the components of T - e. It is immediate that $n(T_1) + n(T_2) = n(T)$. Moreover, $n_1(T_1) + n_1(T_2) \le n_1(T) + 2$. By Theorem 2, $n_1(T_1) \ge n(T_1) + 2 - 2\gamma_p(T_1)$ and $n_1(T_2) \ge n(T_2) + 2 - 2\gamma_p(T_2)$. Therefore,

$$n_1(T) \ge n_1(T_1) + n_1(T_2) - 2 \ge n(T) + 2 - 2\gamma_p(T).$$

As $n_1(T) = n(T) + 2 - 2\gamma_p(T)$ we conclude that

$$n_1(T) = n_1(T_1) + n_1(T_2) - 2 = n(T) + 2 - 2\gamma_p(T),$$

which implies that

$$n_1(T_1) + n_1(T_2) = n_1(T) + 2$$

$$n_1(T_1) = n(T_1) + 2 - 2\gamma_p(T_1)$$

$$n_1(T_2) = n(T_2) + 2 - 2\gamma_p(T_2).$$

Thus, by induction T_1 and T_2 belong to the family \mathcal{R}_p and, if e = uv was the edge we removed from T to obtain T_1 and T_2 , then $d_{T_1}(u) = d_{T_2}(v) = 1$, that is u and v are end-vertices in T_1 and T_2 respectively. Therefore, $T = T_1 \oplus T_2$ and we conclude that $T \in \mathcal{R}_p$.

The following result is obvious from Lemmas 3 and 4.

Theorem 5 If T is a tree on n(T) > 1 vertices, then

$$n_1(T) = n(T) + 2 - 2\gamma_p(T)$$

if and only if T belongs to the family \mathcal{R}_p .

References

- O. Favaron and M. A. Henning, Paired-domination in claw-free cubic graphs, Graphs Combin. 20 (2004), 447–456.
- [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York 1998.
- [3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Domination in graphs. Advanced Topics*, Marcel Dekker Inc., New York 1998.
- [4] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32 (1998), 199–206.
- [5] T. W. Haynes and P. J. Slater, Paired-domination and the paired-domatic number, Congr. Numer. 109 (1995), 65–72.
- [6] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory, 24(2) (2004), 165–169.
- [7] K. E. Proffitt, T. W. Haynes and P. J. Slater, Paired-domination in grid graphs, Congr. Numer. 150 (2001), 161–172.
- [8] H. Qiao, L. Kang, M. Cardei and Ding-Zhu, Paired-domination of trees, J. Global Optimization 25 (2003), 43–54.
- [9] E. Shan, L. Kang and M. A. Henning, A characterization of trees with equal total domination and pared-domination numbers, Australas. J. Combin. 30 (2004), 31–39.

(Received 19 Sep 2004)