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Abstract

A c-coloring of a graph G is an assignment of ¢ different colors to the
vertices of G such that adjacent vertices receive different colors. In a
given graph G a set of vertices S with a specified coloring is called a
defining set of the vertex coloring of G, if there exists a unique extension
of S toa c-coloring of G. A defining set with minimum cardinality is called
a minimum defining set and its cardinality is the defining number. In this
paper we give exact values of the defining numbers of vertex colorings of
graphs arising from applying Mycielski’s construction to paths, cycles,
complete graphs and complete bipartite graphs.

1 Introduction

A c-coloring of a graph G is an assignment of ¢ different colors to the vertices of G
such that adjacent vertices receive different colors. The (vertex) chromatic number,
X(G), of G is the minimum number ¢, for which there exists a ¢-coloring of G. A
graph with x(G) = ¢ is called a c-chromatic graph. For a graph G and a number
¢ > x(G), a set of vertices S with a specified coloring is called a defining set of vertex
colorings, if there exists a unique extension of the colors of S to a c-coloring of the
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vertices of G. A defining set with minimum cardinality is called a minimum defining
set (of a vertex coloring). The defining number, d(G,c), of G is the cardinality of its
smallest defining set [5, 6]. The concept of defining sets has been studied, to some
extent, for block designs [8, 9] and also under another name, critical sets, for Latin
squares [3] and forcing sets for perfect matchings in graphs [1]. For defining sets in
combinatorics the reader may consult [2].

The concept of defining set for vertex colorings is closely related to the concept of a
list coloring. In a list coloring, for each vertex v there is a list of colors L(v) available
for that vertex. Any defining set S in a graph G naturally induces a list of possible
colors for the vertices of the induced subgraph (G — S). Furthermore, using this list
of colors, (G — S) is uniquely list colorable.

A graph G with n vertices is called a uniquely 2-list colorable graph if there exists
a list L(v) of at least two colors for each v € V(G), such that G has a unique list
coloring with respect to these lists. We make use of the following theorem.

Theorem A [4] A connected graph is uniquely 2-list colorable if and only if at least
one of its blocks is not a cycle, a complete graph or a complete bipartite graph.

For a simple graph G, by graph M(G) we mean the graph arising from applying My-
cielski’s construction [10]. Mycielski’s construction produces a simple graph M(G)
containing G as follows. If V(G) = {v1,vq,...,v,} then V(M(G)) = {v1,v2,...,0,}
U{ur,ug,. .., uy, w}, where V(G) N {uy,ug, ..., up, w} =0 and

E(M(G)) =E(G)U{uwv|v e Ng(v;), 1 <i<n}U{ww|1l<i<n}

Theorem B [10] If G is a c-chromatic triangle-free graph then M(G) is a ¢ + 1-
chromatic triangle-free graph.

Let P,,Cy, K, and K, , be the path, the cycle, the complete graph with n vertices
and the complete bipartite graph with m vertices in one partite set and n vertices
in the other partite set, respectively. In this paper we study the defining numbers
for c-colorings of M(G), where G € {P,,C,, K,, K,, ,}. Throughout this paper c(v)
denotes the color of vertex v.

2 Defining numbers for 3-colorings of M(P,) and M (C5,)

It is well known that x(P,) = x(Cs) = 2 for n > 2. So we have x(M(P,)) =
X(M(Cs,)) = 3 for n > 2 by Theorem B. In this section we find the defining
numbers for 3-colorings of M(P,) and M(Cy,). We always use colors 1, 2 and 3 for
a 3-coloring.

2.1 Defining numbers for 3-colorings of M(P,)

Let P, be a path of length n > 2 with the vertex set V = {v;,vs,...,v,}. Figure 1
shows the graph M(Pyo) which arises from applying Mycielski’s construction to Pig.
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Figure 1: M(Py)

In this subsection we prove that d(M(P,),3) = 3 for n = 2,3,4,5 and d(M(P,),3) =
| 2£2] for n > 6.

Notice that M(P,) contains 5-cycles for n > 2. It is now easy to see that any pair
of vertices of M(P,), with any coloring, can be extended to at least two different
3-colorings of M(F,). Therefore we have:

(Fn)
Lemma 1 d(M(P,),3) > 3 for n > 2.
(Pr)

Lemma 2 d(M(P,),3) =3 forn=2,3,4,5,6.

Proof. For n = 2 define Sy = {w,v1,v2} with ¢(w) = 1, ¢(v1) = 2 and ¢(v2) = 3.
For n = 3,4 define S3 = Sy = {u1,u3,v3} with c¢(u;) = 3, ¢(uz) = 2 and c(v;) = 3.
For n = 5 define S5 = {w, vy, uq} with c(w) = 1, ¢(v1) = c¢(us) = 2. Finally, for n =6
define Sg = {uy,v1,u6} with c(u;) = 3, c(v1) = c(ug) = 2. It is easy to see that S,
is a defining set for a 3-coloring of M(P,) for n = 2,3,4,5 and 6, respectively. Now
the result follows by Lemma 1. m

Now let n > 7. First we find a lower bound for d(M(FP,),3).

Lemma 3 Let S be a defining set for a 3-coloring of M(P,), n > 7. Then SN
{vk+i,uk+i | 0 < 1 < 4} 7& (D for each k = 1,2, ey U — 4.

Proof. By assumption there is a unique 3-coloring of M (P, ) containing S. Without
loss of generality we may assume c¢(w) = 1 in this 3-coloring. When 1 < k <n —4
we checked all the different colors for the vertices ug_1, ugss, vp—1 and vgys, and
noticed that if S N {vgis, ups | 0 <@ < 4} = 0, then for each case either there was
no extension of S to a 3-coloring or there were at least two different 3-colorings of
M(P,). This is a contradiction.

For k =1 (the case k = n — 4 is similar) we must have (c(us), c(ve)) € {(2,2),(3,3),
(2,3),(3,2),(2,1),(3,1)}. It is easy to see that for each case there are at least
two different 3-colorings for the vertices of {vit1,ui11 | 0 < i < 4}, Therefore,
SN {vip1, i1 [0S <4} #0. m

A case-checking similar to that described above leads to the following result.

Lemma 4 If S is a defining set for a 3-coloring of M (P, ), then SN{vy,v2,us, us} # 0
and S N {vp, V1, Up, Up_1} 7 0.
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By Lemmas 3 and 4 we have:

Corollary 5 d(M(P,),3) > 2+ [%2] forn > 7.

Now we find an upper bound for the smallest defining sets in 3-colorings of M(P,).
Lemma 6 d(M(P,),3) < |%2] forn > 7.

Proof. For n = 0 or 4 (mod 5) let S = {vi,us, uspys | 1 < k < [22] — 2} with
c(v1) = c(us) = 2, and c(usp14) = 3 if k is odd and 2 otherwise.

For n = 1 (mod 5) let S = {ur,vi,user | 1 <k < [22] — 2} with ¢(u) = 2,
¢(v1) = 3, and c(usp41) = 3 if k is odd and 2 otherwise.

For n =2 or 3 (mod 5) let S = {up,vs,usp42 | 1 < k < [22] — 2} with c(up) = 2,
c(vy) = 3, and c(usp42) = 3 if k is odd and 2 otherwise.

It is easy to see that .S is a defining set for a 3-coloring of M(P,) in each case. m

By Corollary 5 and Lemma 6 we have:
Corollary 7 If n =0 or 4 (mod 5) and n > 9, then d(M(P,),3) = | %2].
Lemma 8 d(M(Py),3) =4.

Proof. By Lemma 6 we have d(M(Pi1),3) < 4. We examined all 3-subsets of
V(M(Py1)) and noticed that each 3-subset, with any coloring, was in at least two
different 3-colorings of M(P;;1). So the result follows. m

A simple case-checking leads to the following result.

Lemma 9 Let n = 1 (mod 5). Consider a 3-coloring of M(P,) with c¢(w) = 1.
Let S be a subset of V(M(P,)) such that SN {uy,v1} # 0, SN {un, v} # 0 and
151 =2+ 254,

(1) If {up, v} NS # 0 and (c(ux),c(vy)) € {(2,1),(3,1),(2,2),(3,3)} for some &,
then S is in at least two different 3-colorings of M(P,).

(2) If {up, vx} NS #£ 0 and (c(uy), c(vy)) = (2,3) or (3,2), then S is a defining set for
a 3-coloring of M(P,) only if (¢(u—s),c(vk—s5)) = (c(ug+s), c(vits)) = (3,2) or (2,3),
respectively.

Lemma 10 Let n = 1 (mod 5). Let S be a subset of V(M (P,)) with SN{uy,v,} £ 0
and S N {up,v,} # 0. If S is a defining set for a 3-coloring of M(P,) then |S| >
2+ [%51].

Proof. Let n = 5k + 1. The proof is by induction on k. The statement is true for
k =1 and 2 by Lemmas 2 and 8, respectively. Assume k > 3 and that the statement
is true for all 1 < &' < k. We prove that the statement is also true for k. On the
contrary, suppose | S| = 2+ |22 ]. Then by assumption and Lemma 3, SN {ty,, vy } #
() if and only if m = 55+ 1 for some j € {0,1,2,...,k} and w ¢ S. As usual we may
assume c(w) = 1 in the unique 3-coloring arising from S. Now since S is a defining
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set, by Lemma 3 we must have (c(usjt1),c(vsi+1)) = (2,3) or (3,2) for each j.
Furthermore, by Lemma 9 if (c(usjt1), c(vsjr1)) = (2,3), then (c(usjts), c(vsjre)) =
(3,2) and if (c(usjt1), c(vsj1)) = (3,2), then (c(usjre), c(vsjre)) = (2,3). Now
consider the subgraph H of M(P,) induced by vertices {w, u;,v; | i = 11,12,...,n}.
Obviously, H is isomorphic to M(Psj-2+1). Let S" = SNV(H). Then S’ is
a defining set for a 3-coloring of H. Therefore, by inductive hypothesis we have
|/ > 24 |2E=DH=L ) — k1 On the other, |S'] = |S| — 2 = k — 1. This is a
contradiction. So S| # 2+ |22]. Now the result follows by Corollary 5. m

Lemma 11 Let n =1, 2 or 3 (mod 5) and n > 6. Then d(M(P,),3) =2+ [24].

Proof. Assume that [S| =2+ |%:*]|. By Lemma 4 we have three cases.

Case 1. SN {ui,vi} #0 and SN {uy,v,} # 0.
For n = 1 (mod 5) the result follows by Lemmas 6 and 10. For n =2 or 3 (mod 5)
the result follows by Lemmas 3 and 6.

Case 2. SN {uy,v1} #0 and SN {u,_1,v,-1} # 0.

For n = 3 (mod 5) the result follows by Lemmas 3 and 6. For n = 2 (mod 5) we
remove vertices u, and v,. The remaining graph is isomorphic to M(P,_;). Now we
can apply Case 1 sincen—1 =1 (mod 5). For n = 1 (mod 5), by Lemma 3, we must
have |S N {uk,vk}| = ].7 |Sﬂ {uk+4,uk+5,vk+4,vk+5}| =1 and |Sﬂ {uk+9,vk+9}| =1
for some k (see Figure 2). Now a simple case-checking shows that S cannot be a
defining set.

Figure 2: |[SNA|=|SNB|=|5NC|=1

Figure 3: |[SNA|=|SNB|=|5NC|=1
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Case 3. SN {ug,ve} #0 and SN {u,_1,v,-1} # 0.

For n = 3 (mod 5) we remove vertices uy,v1,u, and v,. The remaining graph is
isomorphic to M(P,_5). So we can apply Case 1 since n —2 = 1 (mod 5). For
n =2 (mod 5) we remove vertices u, and v,. The remaining graph is isomorphic to
M(P,—1). So we can apply Case 2 since n — 1 =1 (mod 5). For n = 1 (mod 5), by
Lemma 3, we have either the case shown in Figure 2 or the case shown in Figure 3 for
some k. A case-checking shows that both cases are impossible since .S is a defining
set. m

Now we are ready to state the main result of this section.
Theorem 12 d(M(P,),3) =3 for n = 2,3,4,5 and d(M(FP,),3) = L"T”J for n > 6.

2.2 Defining numbers for 3-colorings of M(Cs,)

Let Cy, be a 2n-cycle, n > 2, with the vertex set V = {vy,vs,...,v2,}. Figure 4
shows the graph M(C}o) which arises from applying Mycielski’s construction to Cio.
In this subsection we prove that d(M(Cy,),3) = 3 for n = 2,3,4 and d(M(Cy,),3) =
[27 if 2n = 1 (mod 5) and d(M(Cy,),3) = [2] + 1 otherwise, for n > 5.

7>

VA v VA VA VA at o v
X X XFAF XXX

oY%

Yo

Figure 4: M(Cho)
Similar to Lemma 1 we have:
Lemma 13 d(M(Cy,),3) > 3 for n > 2.
Lemma 14 d(M(Cy,),3) = 3 for n = 2,3,4.
Proof. For n =2 define Sy = {uy, us,vs} with c(uy) = 3, c(us) =2, c¢(vs) = 3. For
n = 3 define S3 = {w,u1,vs} with c(w) = 1, ¢(u;) = ¢(vs) = 2. For n = 4 define
Sy = {u1, uz, vs} with ¢(u;) = 2, c(uz) = 3 and c¢(vs) = 1. It is easy to see that S, is

a defining set for a 3-coloring of M(Cs,) for n = 2, 3,4, respectively. Now the result
follows by Lemma 13. =

The following result gives a lower bound on d(M(C2y,), 3).

Lemma 15 d(M(Cy,),3) > |—2?"-| for n > 4.
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Proof. An argument similar to that described in the proof of Lemma 3 shows that
if S is a defining set for a 3-coloring of M(Cs,), n > 4, then S N {vpri,upy; | 0 <0 <
4} £ 0 for each k = 1,2,...,n. Now the result follows. m

For 2n = 0 (mod 5) an argument similar to that described in Lemmas 9 and 10
improves the lower bound for d(M(Cy,), 3).

Lemma 16 d(M(Cy,),3) > [2] +1 for 2n =0 (mod 5) and n > 5.
Now we are ready to prove the main theorem of this subsection.

Theorem 17 d(M(Cy,),3) = 3 for n =2,3,4 and

NEE] 2n = 1(mod 5),n > 8;
d(M(Ca),3) = { [2?"1 +1 2n# 1(mod 5),n > 5.

Proof. For n =2,3,4 we apply Lemma 14. Now let n > 5.

For 2n =1 (mod 5) let S = {uy,vg,usps2 |1 < k< f%”] — 2} with e(uy) = c(ve) =3
and c(usgy2) = 3 if k is odd and 2 otherwise.

For 2n =0 or 2 (mod 5) let S = {uy, vy, usps1 | 1 <k < f%"] — 1} with c(uy) = 2,
¢(v1) = 3 and c(usg41) = 3 if k is odd and 2 otherwise.

For 2n = 4 (mod 5) let S = {v,vs3,uspp1 | 1 < k < [2] — 1} with ¢(vy) = 1,
¢(vs) = 3 and c(usg41) = 3 if k is odd and 2 otherwise.

For 2n = 3 (mod 5) let S = {uy,v1,vap—s,uspq1 | 1 < k < f%”] — 2} with e(uy) =2,
c(vy) =3, ¢(van—3) =1 and c(us4+1) = 3 if k is odd and 2 otherwise.

In each case it is easy to see that S is a defining set for a 3-coloring of M(Cs,). So
the result follows for 2n = 1 (mod 5) by Lemma 15 and for 2n = 0 (mod 5) by
Lemma 16.

Now let 2n = 2, 3 or 4 (mod 5). If |S| = [32] then we must have (see Lemma 3) one
of the cases shown in Figure 2, 3 or 5 for some k. A case-checking shows that these
cases are impossible since S is a defining set. m

Figure 5: |[SNA|=|SNB|=|5NC|=1
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3 Defining numbers for 4-colorings of M(P,) and M (C),)

It is well known that x(Capt1) = 3 for n > 1. So we have x(M(Capnt1)) = 4 by
Theorem B. In this section we find defining numbers for 4-colorings of M(P,) and
M(C,). We use colors 1, 2, 3 and 4 for a 4-coloring. A simple case-checking together
with Theorem A shows that:

Then SN

Lemma 18 Let S be a defining set for a 4-coloring of M(P,), 3.
<n—1and

n
{ug, v, Ups1,vpa1} # O for 1 < k < n — 1. Furthermore, if 2 <
{ug,vr} € G — S then |S N {ug_1,v5 1, Ups1, ver1}| > 3.

>
k

Lemma 19 Let S be a defining set for a 4-coloring of M(P,), n > 4. If {uy,ve} C
G — S and {ug_1,v-1} C S for some k, then either {upi1,vp41} C S or there exists
a system of distinct representatives {gy1,..., Tr+e—1} Of the sets {ups1,Vit1}, -
{ugst—1,Vp2¢1} for some 2 <t < n —k, such that {@p41, ..., Trre_1, Ukt Vere} € S.

Proof. Without loss of generality we may assume c(w) = 1. Let {uy, v} CG -5
and {ug—1,v—1} C S for some k. Then [{upt1,ve41} NS| > 1 by Lemma 18. If
{tg+1,vk+1} C S then we are done. Otherwise we have two cases.

Case 1. upy1 € S and vgyg € S.

If |L(vy)| # 1, then {uy, vy, vp41} is not uniquely colorable by Theorem A. So
|L(vg)] = 1. If 1 ¢ L(vg), then uy is not uniquely colorable. So L(v;) = {1}.
If |L(vg+1)|] # 1, then {uy, vy, vp41} is not uniquely colorable by Theorem A. So
|L(vgt1)] = 1 and hence wuyip € S. Now either vgyo € S then we are done or
|L(vgt2)| = 1, hence, ugys € S. Now a simple induction shows that the statement is
true since {uy,,v,} C S.

Case 2. v € S and ugy1 ¢ S.

If |L(vg)| # 1, then {uvg, up41} is not uniquely colorable by Theorem A. So |L(vy)| =
1. If L(vg) = {1} then w4, is not uniquely colorable. So L(vy) # {1} and, hence,
c(vg—1) =1 or e(vg+1) = 1. But then wy is not uniquely colorable. m

By Lemmas 18 and 19 if S is a defining set for a 4-coloring of M (P, ) and {u, v, }NS =
(0 for some k, then there exist ry, s, with rp < k < s; such that:

1. {up, v } CS;

2. {ts,, 05} C S5

3. {u,vi} S| =1forr, <i<sg, i#k.
Now we prove our first main result of this section.

Theorem 20 d(M(P,),4) =5 for n = 2,3 and d(M(P,),4) =n+ 1 for n > 4.

Proof. Notice that {u1,v1,un,v,} C S since S is a defining set for a 4-coloring.
It is now easy to see that the statement is true for n = 2,3. Let n > 4 and let S
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be a defining set. If {uy,vx} NS # 0 for each k = 2,...,n — 1, then |S| > n+ 2.
Otherwise, let A = {{uy, vy }|{us, v} NS = B}. Since for each {uy, vy} € A thereis a
pair {us,,vs, } (see above properties) for which {us,,vs,} € S and [{u;,v;} N S| =1,
k < i < sy, it follows that |S| > n + 1. Now we find defining sets S of cardinality
n+ 1.

Case 1. n =1 or 3 (mod 4).
If n =5 we define S = {uy,v1,us,vs,us,vs} with c¢(u;) = 2, c(v1) = 3, c(uz) =
c(vg) =4, c(us) = 3 and c(vs) = 2. If n > 7 we define

. n . n
S = {ug, Uaiy1, Vi1, Vaiy3, Uajia | 0 <0 < Lsz 1<j< LzJ}
with c(us) = 3, ¢(ugip1) = 2, ¢(vaiy1) = 3 and c(vgiqs) = 4, for 0 <4 < [§], and
c(ugjrs) =4 for 1 < j <[]

Case 2. n =2 (mod 4).
If n = 6 we define S = {uy,v1,us, v3, us, ug, ve} With c¢(uy) = 2, c(v1) = 3, ¢(us) = 4,
c(v3) =2, c(us) =4, c(ug) = 3 and ¢(vg) = 2. If n > 10 we define

. n )
S = {Un—3,Un, Vp, Usiy1, Va1, Vajys, Usprs | 0 < 3,5,k < LZL 4j #n—2, 4k #n—6}

with c(up—3) = 3, c(un) = 2, c(vn) = 4, c(ugir1) = 2 for 0 < i < | 4], c(vgjp1) =3
and c(vgjp3) =4 for 0 < j <[], and c(uapys) =4 for 0 < k< [F] — 1.

Case 3. n =0 (mod 4).
We define

S = {tn, Vp, Usiy1, Vais1, Usiys, Vajps | 0 < 4,5 < LzJ’ 4j #n —4}

with C(Un) = 3a C(Un) = 2a C(u4i+1) = 2’ C(U4i+1) = 37 C(U4i+3) =4 for 0 S i < L%J
and c(vgjy3) =4for0<j< |3/ -1 m

Similar to Theorem 20 we have the following result for 4-colorings of M(C,,).
Theorem 21 d(M(C,),4) =n+1 for n = 3,4,5 and d(M(C,,),4) =n for n > 6.
Proof. We leave the cases n = 3,4,5 for the reader. Let n > An argument

6.
similar to that described above for M (P, ) shows that d(M(C,),4) > n. Now we find
defining sets S of cardinality n.

Case 1. n =0 (mod 4). Define
. n, .
S = {us, Usiy1, Vaig1, Vaigs, Ugjps | 0 < 4,5 < LZL j#0}

with c(usz) = 3, c(uaiy1) = 2, c(vaiy1) = 3, c(vaips) = 4 for 0 < @ < |§] and
c(ugjps) =4 for 1 < j <[]
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Case 2. n =1 (mod 4). Define

.n
S = {us, Un—4, Un—1,Un—2, Un—4, Usiy1, Vais1, Vaits, Usips | 0 <0 < sz -2,
1<j<E -1
4
with c(uz) = c(un—a) = 3, c(up—1) = 4, c(vp—2) = 3, c(vp—a) = 2, c(ugi11) = 2,
c(vaiy1) = 3and c(vgeg) = 4for 0 <0 < | 5] -2, and c(ugjys) = 4for 1 < 5 < [§] -1

Case 3. n = 2 (mod 4). We leave the cases n = 6,10 for the reader. For n > 14
define

. n .
S = {Un—5,Vn-5,VUn—1, Un—3, Uait1, Vajs1, Vaj+3, Uakss | 0 <7 < L1J7 4i#n—6,
0<j<|5)-2,0<k< T -1}

with c(up—5) =3, c(Ua—s) = 2, c(vn—1) =4, c(vy—3) =
and 4i #n — 6, c(vaj41) = 3 and ¢(vajp3) = 4 for 0 <
for 0 < k< |2] - 1.

3, c(ugigr) =2for 0 <i < | 2]
j S L%J - 2, al’ld C(’U/4k+3) =4

Case 4. n = 3 (mod 4). Define
. n . n
S = {Un, Usi+1, Vair1, Uajya, Vajea | 0 <0 < LZJ’ 0<y< LzJ -1}

with c(u,) = 4, ¢(ugig1) = 2 and c(vgiq1) = 3 for 0 <4 <[], and c(ugjy3) = 3 and
C(vgjys) =4for 0<j< |3 -1 m

4 Defining numbers for c-colorings of M (P,) and M (C),), ¢ >5

When ¢ = 5 we have x(M(Cyy41)) + 1 colors for M(Cyytq) and x(M(Cap)) + 2
colors for M(Cy,) and M(P,). Now since deg(v;), deg(v,), deg(u;) < 3 in M(P,) for
i=1,2,...,n it follows that any defining set .S for a 5-coloring of M(P,) contains
v1, 0y, and u; for 1 < ¢ < n. Moreover, {v;,v;11} NS # 0 for i =2,3,...,n— 2. This
leads to d(M(Py,),5) > 3n + 1 and d(M(Pyp11),5) > 3n+ 2.

Theorem 22 d(M(P),5) = 5, d(M(P;),5) = 6 and d(M(Py,),5) = 3n + 1 and
d(M(Pyp11),5) =3n+2 forn > 2.

Proof. We leave for the reader to check d(M(P,),5) = 5, d(M(Ps),5) = 6 and
d(M(Py),5) = 7. Let n > 5. Since d(M(Ps,),5) > 3n + 1 and d(M(Papt1),5) >
3n + 2 we only need to find defining sets of cardinalities 3n + 1 and 3n + 2 for a
5-coloring of M(Py,) and M (Pany1), respectively. First consider M (P, ). Define

S = {Van, Uait1, Vait1, Uajps, Vajes, Uag | 4,5 > 0,
4i+1<2n,4j+3<2n, 1<k<n}

with e(ve,) = 1, e(ug) = 3, e(v1) = 2, c(ugit1) = 2, c(vaip1) = 3fori > 1, 4i+1 < 2n,
c(ugjrs) =4, c(vajrs) =5 for j > 0,443 < 2n and c(ug) = 1 for 1 < k < n. Then
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S is a defining set for a 5-coloring of M (Pa,41) of cardinality 3n + 1.
Now consider M(Psy41). Define

S = {Wait1, Vaig1, Uajps, Vajps, Uoy | 5,5 > 0,
4i+1<2n+1,4j4+3<2n+1, 1<k <n}

with c(uy) = 3, c(vi) = 2, c(ugiy1) = 2, c(vaip1) = 3fori > 1, 4i+1 < 2n+1,
c(ugjys) =4, c(vgjps) =5 for j > 0,45 +3 <2n+1and clug) =1for 1 <k <n.
Then S is a defining set for a 5-coloring of M(Pap41) of cardinality 3n +2. m

Similar to Theorem 22 we have the following result for defining numbers for 5-
colorings of M(C,,).

Theorem 23 d(M(C3),5) = 6, d(M(Cs),5) = 10, d(M(Cy,),5) = 3n for n > 2,
n # 3, and d(M(C2p+1),5) = 3n + 2 for n > 2.

Proof. We leave for the reader to check d(M(Cs),5) = d(M(C4),5) = 6 and
d(M(Cs),5) = 10. As described above for M (P, ) one can see that d(M(Cs,),5) > 3n
and d(M(Can41),5) > 3n+2. Now we find defining sets of cardinalities 3n and 3n+2
for a 5-coloring of M(Csy,) and M(Capny1), respectively.

Case 1. 2n =0 (mod 4).

Define
S = {us, Vs, Uaig1, Vair1, Uajps, Vajgs, g | 0 <4 <n /2,0 # 1,
0<j<n/2, 1<k<n/2}
with c(us) = 3, c(vs) = 2, c(uaiy1) = 2, c(vagp1) = 3 for 0 < i <n/2 and i £ 1,

c(ugjrs) =4, c(v4j+3) =5 for 0<j< n/2 and c(ug) =1for 1 <k < n.

Case 2. 2n =2 (mod 4).
Define

S = {U2n—17 V2n—1,V2n—5, U2n—3, V2n—3, U2n—6, U2n—4, U2n—2, U2n,
a1, Vaj1, Uajtrs, Vajas, Yoy | 0 <0< (2n —6)/4,
0§j§(2n—10)/47 0§k§n—4}

with c(usn—1) = 1,¢(van—1) = 4, c(van—3) = 1, c(uzn—3) = 5,c(van—3) = 3, c(uzn—s) =
c(usp—1) = c(tan—2) = c(uan) = 2, c(ugit1) = 2 for 0 < i < (2n — 6)/4, c(vajy1) = 3,
c(ugjy3) = 4 and c(vgjy3) =5 for 0 < j < (2n — 10)/4 and c(ug) =1 for 1 < k <
n—4.

Case 3. 2n+ 1 =1 (mod 4).
Define

.o n—2 .
S = {uan, Van, Uant1, Uait1, Vait1, Uaits, Vaiys, zj | 0 <4 < 5 0<j<n—-1}

with c(us,) = 4, c(v2n) = 1 c(u2n+1) 5, c(Uait1)
) 1

2, C(U4i+1) = 3, C(U4i+3) =4 and
¢(vaips) = 5 for 0 < i < 22, and c(ug;) = 1 for J

 <n—1.
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Case 4. 2n + 1 =3 (mod 4).
Define

S = {u2n71, Von—1, U2n+1, Udit+1, Vi1, Wait3, V443,

-1
0<j< 5= 1<k<n)

with e(ug, ) c(vap— ) 2, c(uznt1) = 1, c(ugir1) = 2, c(vgir1) = 3 and
c(u4i+3) S < 23 (v4j+3) =5 for 0 < j < 271 and c(ug) = 1 for
1<k< [ |

Finally, when ¢ > 6 we obviously have:

2n if 6<e<n+2
d(M(Pn),¢) = d(M(Cx),c) = { 2n+1 if ¢ ;n+2.

5 Defining numbers for c-colorings of M (K,)

In this section we study the defining numbers of vertex colorings of M(K,) with ¢
colors, where ¢ > x(M(K,)) = n+ 1. Throughout this section we assume n > 2.

Lemma 24 Let S be a defining set for a vertex coloring of M(K,,) with n+ 1 colors
and U = {ug,ug,...,up} € S, then w € S.

Proof. On the contrary, assume that w ¢ S. Let u;, € U\ S. Then u; has at most
n — 1 colored neighbors in K,,. So L(u) has at least two colors. Since for each color
for uy we can find a color for w, the coloring is not unique. This is a contradiction.

|

Theorem 25 d(M(K,),n+1)=n+ 1.

Proof. Let S be a defining set for an (n+1)-coloring of M(K,,). Obviously, |S| > n.
Assume |S| = n. By Theorem A, the set U cannot be a defining set for a vertex
coloring of M(K,). So S # U and, hence, w € S by Lemma 24. Without loss of
generality we can assume c¢(w) = 1. Since |S| = n we have {ug, v} NS = @ for some
1 < k < n. Without loss of generality we may assume k& = 1. This forces v; € S
and ¢(v;) # 1 for 2 < i < n, otherwise u; is not uniquely colorable. Now since there
are n + 1 colors, vertex v; is not uniquely colorable. Hence any defining set S has at
least n + 1 vertices. On the other hand, if S = {w,v1,vs,...,v,} with ¢(w) =1 and
c(v;) =i+ 1for 1 <i<mn,then S is a defining set of cardinality n+ 1. =

Theorem 26 d(M(K,),n+i)=n+i+1lfori=2,...n

Proof. Let S be a defining set for a vertex coloring of M(K,,) with n + i colors.
Since deg(w) = deg(u;) = n, the vertices w and u; must be in S for 1 < j < n. If
|S| < n+1i, then any vertex z € V'\ S is not uniquely colorable, a contradiction. So
S >n+i+1. Now define S = {w,u;,v; | 1 <j<n, 1<k <} with c(w) =1,
c(u;)=j+1for1<j<n,c(vy) =1and c(vy) =n+kfor 2 <k <i Then Sisa
defining set of cardinality n +i+ 1. =
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6 Defining numbers for c-colorings of M (K, )

In this section we study the defining numbers of vertex colorings of M(K,, ). Since
X(Kmn) = 2 we have x(M(K,,,)) = 3 by Theorem B. First we settle the case
m = 1.

Let V = V(Ky,) = {v1,...,v,,0} and U = {uy, ..., u,,0'}, where deg() = 2n and
deg(¢') =n+ 1.

Theorem 27 d(M(K,,),3) = 3.

Proof. It is obvious that d(M(Ky,),3) > 2. One can also notice that the vertex
w and a vertex of V or of U, a vertex of V and a vertex of U, two vertices of V,
or two vertices of U cannot uniquely determine a 3-coloring of M(Kj,). Hence
d(M(K1,),3) > 3. On the other hand, S = {w,6,6'} with ¢(w) =1, ¢(d) = 2 and
¢(¢') = 3 is a defining set. So the result follows. m

Let S be a defining set for a vertex coloring of M(Kj,) with at least four colors.
Then u;,v; € S for 1 < i < n (note that deg(u;),deg(v;) = 2). Now define S =
{uwi,vi | 1 <@ < n} with e(ur) = c(v1) = 1, c(ug) = ¢(v;) = 2 for 2 < j < n and
c(ug) = 3 for 3 < k < n. Then S is a defining set. Therefore, d(M(K:,),4) = 2n.
Similarly, d(M(K1,),¢) = 2n for 5 < ¢ < n+1, d(M(Ki,),n+2) = 2n + 1,
d(M(Ky1p),¢)=2n+2forn+3<c¢<2n+1and d(M(K,,),2n+2) =2n+ 3.

Now we study the defining number for vertex colorings of M(K,,,) with 3 colors,
where 2 < m < n. First we partition the vertices of M(K,,,) as follows (see Figure
6). The sets B and D are the partite sets of our original K,,, with |B| = n and
|D| = m. The set A has m and the set C' has n vertices. Moreover, w is adjacent to
every vertex of A and C. Notice that (A, B) = (B, D) = (D,C) = K.

I
JZ800
A

Figure 6: M(Kug)

Lemma 28 Let 2 < m < n and let S be a subset of vertices of M(K,,,) with

|S| < m. Then S is not a defining set for a 3-coloring of M (K, ,,).

Proof. On the contrary, let S be a defining set for a 3-coloring of M(K,,,). It is
easy to see that:
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1) S\ {w} € X for X € {A,B,C,D};

2) SNX #£0for X € {A,B,C,D};

3) If x,y € SNX then c¢(z) = c(y).

Now it is straightforward to check that for every coloring of the vertices of S there are
at least two different 3-colorings of M(K,,,) containing S. This is a contradiction.

Theorem 29 Let 2 < m < n. Then d(M(K,,»),3) =m+ 1.

Proof. By Lemma 28 we only need to find a defining set of size m + 1. Let

S =

DU {w} with c¢(w) = ¢(d) = 1 for a fixed vertex d € D, and ¢(z) = 2 for every

vertex & € D\ {d}. Then S is a defining set of cardinality m + 1. ®
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