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Abstract

The decycling number V(G) of a graph G is the smallest number of
vertices that can be deleted from G so that the resultant graph contains no
cycle. Here we study the decycling number for the Fibonacci cubes, which
are a family of graphs with applications in interconnection topologies. We
present lower and upper bounds of the decycling number for the Fibonacci

cubes.

1 Introduction

In 1986, Erdos, Saks and Sos presented the problem of finding, for a given graph G,
the size ¢(G) of a maximum subset T of V(G) that would induce a tree [5].
also studied the problem of finding the path number, i.e. the maximum size of a
vertex subset that would induce a path. Meanwhile, the more general problem of
finding the size of maximum subset F' of V(G) that induces a forest was beginning to
receive attention for various types of graphs, such as cubic graphs [4, 12] and planar

graphs [1, 2].

Finding a maximum subset F of V(@) that induces a forest can be expressed as
the problem of determining a minimum subset S of V(G) for which G — S is acyclic.
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Any vertex subset S for which G — S contains no cycles is a decycling set. The size
of a minimum decycling set S in a graph is the decycling number of G and will be
denoted by V(G). A decycling set of size V(G) is called a V-set. Finding a minimum
decycling set of a graph is quite difficult even for some simple graphs, and has been
proved to be NP-complete in general [8].

In [3], various introductory decycling results were presented, followed by investi-
gation into hypercube and 2-dimensional grid graphs. The hypercube of dimension
n, denoted by @, consists of 2" vertices labelled with distinct n-bit (0,1) strings (or
binary strings); two vertices are adjacent if and only if their labels differ in exactly
one bit. Further results concerning the decycling number of the n-th order hypercube
were presented in [6, 11] .

The hypercube is a popular interconnection topology for parallel processing since
it has many appealing properties. However, the number of vertices in the hypercube
must be a power of 2, which restricts the permissible size of the hypercube. In [7],
Hsu introduced a new interconnection topology — Fibonacci cubes, which have a
slower growth rate than hypercubes and can be embedded in hypercubes.

Recall that the Fibonacci numbers form a sequence of positive integers {f,,}52,
where fo =1, fi =2 and f, = fo—1 + fa—2. Given that ¢ is a non-negative integer

such that ¢ < f,_1 — 1, then ¢ can be uniquely represented as a sum of distinct non-
n—1

consecutive Fibonacci numbers (Zeckendorf’s Theorem [14]) in the form i = Z b fi

j=0
where b; is either 0 or 1, for 0 < j < n — 1 with the condition b;b;4; = 0 for
0 < j <n—1. The sequence [bp—1, -+ ,b1,bo] is called the order-n Fibonacci code
of 7, and uniquely determines i. For example, i = 12 = f5; — 1 has Fibonacci code
10101.

The Fibonacci cube Ty, of order n is the graph (V;,, E,,) where V,, = {0,1,--- , f,—
1} and two vertices 7 and j are adjacent if and only if their Fibonacci codes differ
in exactly one bit. The Fibonacci cubes for the first few values of n are depicted in
Figure 1. A number of properties of Fibonacci cubes are described in [7, 9, 10, 13].
In this paper, we study the decycling number of the Fibonacci cubes. To simplify
notation, we write V,, for V(I,,).
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Figure 1. The n-dimensional Fibonacci cubes I';, for n =0,1,2,3.

In Section 2 of this paper, we will discuss lower bounds on V, as well as, for
small values of n, the exact value of V,,. In Section 3, we present upper bounds on
V. Our results, as they apply to I',, for 1 < n < 14, are summarised in Table 1.
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Table 1. Decycling number of ;.

n |Vn | | E, | Va

1 2 1 0

2 3 2 0

3 5 5 1

4 8 10 1

5 13 20 3

6 21 38 6

7 34 71 11

8 55 130 19

9 89 235 33

10 144 420 53-55
11 233 744 86-94
12 377 1308 139-158
13 610 2285 225-264
14 987 3970 364-439

2 Lower Bound

To establish our first lower bound, we will take advantage of some properties of ',
that we now review.

LEMMA 2.1 [7] (Decomposition of Fibonacci cube) Let I',, = (V,,, E,) denote the
Fibonacci cube of order n where n > 2. Let LOW(n) (resp. HIGH(n)) denote the
subgraph induced by the set of vertices {0,1,-- | fr1 —1} (resp. {fo-1, fam1+1,---,
fa—1}). Then

1. LOW(n) = T,_y;
2. HIGH(n) =T, _,.

Moreover, if we let LINK(n) = {{i,j} : |i — j| = fa-1,{i,j} € E.}, then the two
disjoint subgraphs LOW(n) and HIGH(n) are connected exactly by the set of edges
LINK (n).

By Lemma 2.1, the Fibonacci cube T',, of order n can be decomposed into two
disjoint subgraphs I';,_; and I';,_s. Therefore, to decycle I',,, we need to decycle each
of the two subgraphs, yielding the following lower bound for the decycling number
of T',.

COROLLARY 2.2 V, >V,_1+ V,_s.

In [7], Hsu gave a formula to calculate the number of edges in I',, just in terms

2(” + ]-)fn B (n + 2)f’ﬂ*l>

. In order to establish

of the Fibonacci numbers <|En| = 5
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lower bounds and exact values of V,, for small n, we will also want to know about
the degree sequence of I',,. If we let d,(i) denote the degree of vertex i in I',,, then
we have the following lemma:

LEMMA 2.3 Forn 2 2,

dnfl(i) + 1a 0 < 1< fn727
du(i) = dn-1(3), Jon2 <8< fa,
dn72(i_fn71)+1a fnfl <i<fna

where do(0) = 0, d1(0) = 1, and di(1) = 1. The mazimum degree A(T'y,) = n, and
vertex 0 is the only vertex of degree n. For n > 4, vertices 1 and f,_1 are the only
vertices of degree n — 1.

Proof. For d,(i), the proof follows immediately from Lemma 2.1. The remaining
statements easily follow by induction, again using Lemma 2.1. d

We next prove a sequence of lemmas that will provide the decycling number of
the n-dimensional Fibonacci cubes for n < 7.

LEMMA 2.4 V4 =1, and there is only one V-set (for which the corresponding maz-
imum induced forest is isomorphic to the path Pr).

Proof. The value of V, follows from Corollary 2.2 and Figure 2 in which the vertex
surrounded by O is in S. It is easy to see S = {0} is the unique V-set for Iy, and
the left-over graph I'y — S is a path of order 7, so we also find the path number of
ry. d

Figure 2. Decycling set of ['4.

LEMMA 2.5 V5 = 3.

Proof. By Corollary 2.2, Vs > 2. To decycle I's, we need to decycle the two
disjoint subgraphs LOW(5) and HIGH(5). If V; = 2, then we need to remove the
unique V-set in LOW(5), and one more vertex in HIGH(5) to decycle HIGH(5), i.e.
vertex 8,9, 11 or 12. In each case it is a simple exercise to see that I's contains a
cycle even after deleting both vertex 0 and vertex i, for i € {8,9,11,12}. Hence
Vs > 3. Figure 3 shows that there exists a decycling set of size 3 in I's. Note in
Figure 3, the maximum induced forest is a path of order 10, so we also get the path
number for T's. O



DECYCLING OF FIBONACCI CUBES 35

Figure 3. A decycling set of ['s.

By an exhaustive search in I's, we found 6 decycling sets of size 3. Two of them
({0,4,9} and {0,9,11}) are independent; the other four are {0,1,11}, {0,1,12},
{0,4,8}, and {0,8,12}.

LEMMA 2.6 Vg = 6.

Proof. By Corollary 2.2, Vg > 4. If Vg =4, then by Lemma 2.3 at most A(Tg) +
2(A(Tg) — 1) + (A(T'6) — 2) = 20 edges are removed, and at least 18 edges remain,
which is too many for a forest on 17 vertices. Hence Vg > 5.

If Vg = 5, we count the number of vertices and edges in the left-over graph. Let
S be a putative decycling set of size 5 in I'g. If the degree sequence of S is 6, 5, 5,4, 4,
then observe that all the vertices of degree 5 have a neighbour of degree 6. Also
it is easy to verify that each vertex of degree 4 in I's has at least one neighbour of
degree 5 or 6. So £(S) > 4 (where £(5) denotes the number of edges in the induced
subgraph I',[S]), and at least 18 edges are left in I'¢ — .5, which is too many for a
forest on 16 vertices. If the degree sequence is 6,5,4,4,4, we have ¢(S) > 1, and
at least 16 edges remaining, which is still too many for a forest on 16 vertices. Any
other degree sequence will also result in I's — S having at least 16 edges. So we have
Ve > 6. However {0,4,7,8,14, 18} is a decycling set of size 6 for T. O

By computer search, we found 19 decycling sets of size 6 for I's (of which 5 are
independent decycling sets). More details are available online at
www.math.mun.ca/"yubo/research/fib_cube/.

LEMMA 2.7 V7 =11.

Proof. By Corollary 2.2, we have V; > 3+ 6 = 9. By using techniques similar to
those described in Lemma 2.6, we can easily improve the lower bound to get V; > 10.

Assume that V; = 10 and S is a decycling set of size 10 in I';. Since |V7| = 34,
|E7| =71, and I'; — S has 24 vertices, that means at most 23 edges are left in I'; — 5.
Define E' = E; — E(I'7 — S). In order for I'; — S to be a forest, it is necessary that
|E’| > 71 — 23 = 48. By observation, we also have the following useful information
in I'7: all the neighbours of vertex 0 have degree 6 or degree 5; there are 8 vertices of
degree 5; each of vertices 1 and 21 has 2 neighbours of degree 5; {3,4}, {8,29} € E-.
There are the following 5 cases:



36

J.A. ELLIS-MONAGHAN, D.A. PIKE AND Y. ZOU

1. All the vertices of degree 7 and 6 are in S. There are two subcases:

(a)

(b)

There exists no degree 4 vertex in S. Notice that each vertex of degree
5 has a neighbour of degree 6 or 7, then £(S5) = |E(F7[S])| > 6. Hence
|E'| < 47.

There exists at least one degree 4 vertex in .S. We have (S) > 6. Hence
|E'| < 47.

2. Vertex 0 is in .S, exactly one of vertices 1 or 21 is not in S.

(a)
(b)

All vertices of degree 5 are in S. Then £(S) > 6 and |E'| < 47.
At least one of degree 5 vertex is not in S. Then |E’| < 47.

3. Vertex 0 and exactly one of vertices 1 or 21 are not in S.

(a)
(b)

All vertices of degree 5 are in S.

At least one vertex of degree 5 is not in S.

For above two subcases, it is easy to verify that |E’| < 47.

4. Vertices 1 and 21 are in S, vertex 0 is not in .S. There are several subcases:

(a)

(f)

All vertices of degree 5 are in S, which means that I'; — S has at least 2
components, and (S) > 4. Hence |E'| < 48, and at least 23 edges remain
in I'; =S, which is too many for a forest on 24 vertices with 2 components.

Exactly one vertex of degree 5 is not in S. Then ¢(S) > 4. Hence
|E'| < 47.

Exactly two vertices of degree 5 are not in S. Then either I'; — S has at
least two components and |E’| < 48, or ¢(S) > 4 which means |E’| < 46.

Exactly three vertices of degree 5 are not in S. Either ¢(S) > 2 which
means |E’| < 47, or I'; — S has at least 3 components and |E’| < 49.
Hence 22 edges remain which is too many for a forest with 3 components
and 24 vertices.

Exactly four vertices of degree 5 are not in S. Either I';[S] has an edge,
o} |E’| < 47, or this forces using vertices 12, 25, 30, and 32 (all of degree
4) to avoid any edges in I'7[S], but then this isolates, for example, vertex
9 or 24, and hence increases the number of components.

More than 5 vertices of degree 5 are not in S. In this case,

> di(v) < 4T.

vES

E'| <

5. Vertices 0, 1 and 21 are not in S. The only possibility is all the vertices of
degree 5 are in S. Hence £(S5) = 2 and |E’| < 46.
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In all of the above cases, there are not enough edges removed for decycling, and
therefore V; > 11. By a computer search, we find 192 decycling sets of size 11 in I';
(of which 18 are independent). These decycling sets are listed online at

www.math.mun.ca/"yubo/research/fib_cube/. O

Computer Search Heuristics. For n < 7, an exhaustive computer search to
find all the decycling sets of size V,, in I, is possible. For n > 8, Lemma 2.1 suggests
the following heuristic to find V(T',)

Step 1. Find all the decycling sets of size V,,_s + ¢ in [',_5 without any sub-
decycling set, where ¢ = 0,1,---. Do the same thing in I',,_;, obtaining all the
decycling sets of size V,,_; +j (7 = 0,1,---) without any sub-decycling set.

Step 2. By the Decomposition Lemma(2.1), if S is a decycling set in ', then
SNV (LOW(n)) must be a decycling set in T',_1, and SNV (HIGH(n)) must be
a decycling set in I';,_5. Therefore, to find a decycling set of size V,,_1+V,_o2+k
in ', we test all the combinations of a decycling set of size V,,_» + ¢ in [';,_,
and a decycling set of size V,,_1+j in I',,_; together with x more vertices in the
left-over graph of I',,, where i + j + 2 = k, and i, j, x are non-negative integers.

Such a computer search shows that there is no decycling set of size less than 19
and 33 for I's and I'g respectively, so Vg = 19 and Vg = 33. The details of the
results are listed in Table 2, for n < 9. Blank entries in the table correspond to
computational tasks that are prohibitively time consuming.

Table 2. Computer search results of decycling sets for I',,

r, ‘Vn| v, Number of decycling sets, without sub-decycling sets, of size V,, +
i=0 i=1 i=2 1=3 i1=4 i=5 i=6 i=7 i=8

5 13 3 6 58 36 4 0 0 0 0 0

6 21 6 19 704 1933 639 65 0 0 0 0

7 34 11 192 8528 113175 454916 453985 112185 7996 96 0

8 55 19 33 10649 778540 21836552

9 89 33 58

Based on the computer search, we found that V,, = V,,_1+V,_s+p(n) where u(n)
is small integer value (for n = 4,5,6,7,8,9 it would be 0,1,2,2,2,3 respectively).
This observation leads to the following conjecture:

CONJECTURE 2.8 V,, = V,_1 + V,_2 + u(n), where u(n) is a non-decreasing func-
tion of n.

From Table 2, we found that there are still too many choices to test to feasibly
find the decycling number of [';, if n > 10. In order to decrease the number of choices,
we then consider the independent decycling sets, denoting the independent decycling
number of T', by V2. We have already noted that V2 = 3, V3 = 6 and V9 = 11.
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By Corollary 2.2, we know that V9 > 6+ 11 = 17, and from the results summarized
in Table 2, VI > 19. However, it can also be argued theoretically that VI = 19 by
considering a line of reasoning similar to that presented in the proof of Lemma 2.7.

As with V,,, determining exact values of V9 becomes increasingly difficult as
n increases. We can, however, make some progress by using the same method de-
scribed earlier, and noting that if S is an independent decycling set of I',, then
S NLOW(n) (resp. SN HIGH(n)) must be an independent decycling set for I';_,
(resp. I'y—5). By such an exhaustive search, there is no independent decycling
set of size less than 55 and 94 for I'yp and I'y; respectively, so V?O = 55 and
VY, = 94. The details of the results for the independent decycling sets for T,
are presented in Table 3 and the corresponding decycling sets are listed online at
www.math.mun.ca/"yubo/research/fib_cube/.

Table 3. Computer search results of independent decycling set for I',,

T |V ‘ Vo Number of independent decycling sets, without sub-decycling sets, of size VO + i
" " "li=0 i=1 =2 i=3 i =4 1=35 i=6 1=7 =8

5 13 3 2 11 7 1 0 0 0 0 0

6 21 6 5 16 7 0 1 0 0 0 0
7 34 11 18 53 34 4 1 0 0 0 0

8 55 19 6 162 586 392 92 4 0 0 0
9 89 33 6 818 6325 10437 7358 2455 394 13 0
10 | 144 | 55 1 135 9100 102334 444544 899721 273817

11 | 233 | 94 166

Based on Table 3, we found that the decycling number and the independent
decycling number of I',, are equal for n < 9, which suggests this conjecture:

CONJECTURE 2.9 For the n-dimensional Fibonacci cube I',,,V,, = V2.

3 Upper Bound

In Section 2, we studied the lower bound of the decycling number of Fibonacci cubes,
and got the exact decycling number of I';, when n is small. In this section, we will
discuss the upper bound of the decycling number of I',,.

By the Decomposition Lemma, we have the following upper bound:

LEMMA 3.1 V, < Vo1 + ngJ )

Proof. T, can be decomposed into two disjoint subgraphs which are isomorphic
to [’y and [',—» respectively. And these two subgraphs are connected by LINK(n)
(Lemma 2.1). Consider the subgraph induced by a maximum induced forest in
LOW(n) and a maximum independent set in HIGH(n); such a graph is clearly acyclic.
Since I',, is a bipartite graph, it contains a maximum independent set of size at least
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[%-‘, and in [10] it was proved that [, has independence number a(T',) = [%-‘
S0V K Vo1 + faoa — {%-‘ , and the upper bound follows. O

Furthermore, we found several independent decycling sets of size 94 in I'y;. After
analyzing these 166 decycling sets, we observed that there always exist 19 components
in the left-over graph I'y; —S. This may be used to decrease the upper bound of V,,
when n > 12. Here is the idea:

Consider the induced forest F' formed by the method described in Lemma 3.1.
The number of components in F' cannot be less than the number of components in
the induced forest in LOW(n). Let (X,Y") be the bipartition of HIGH(n), in which
one of X or Y consists of n-bit strings (each beginning with 10) having an odd
number of 1’s (i.e. having odd Hamming weight), and the other set consists of n-bit
strings having an even number of 1’s. Let Z € {X,Y}, such that each vertex of Z
is in F and let Z' = V(HIGH(n)) — Z be the other set in {X,Y}. For each vertex
v € Z', if no two of the undeleted neighbours of v in T', are located in the same
component of F, then we can undelete v, and the resultant graph clearly remains
acyclic. This decreases the upper bound of V, by one. The vertices in Z' whose
neighbours are in different components of F’ form a vertex subset we denote by A. Let
C denote the components of F' and then form a bipartite graph B with bipartition
(A, C), where each component in F and each vertex in A will be a vertex in B, and
E(B) = {(i,C;) : i € A,Cj € C,|Nr, (i) N V(C;)| = 1}. Here Ng(v) denotes the
neighbours of vertex v in G. We then find a minimum decycling set Sy of B with
the property that S4 C A. Then in '), remove the vertices in A — Sy from S; the
resultant graph is acyclic.

Since B has fewer vertices than I',,, we can easily find a minimum decycling set of
B by choosing vertices in A. Also we noticed that the size of A is relatively smaller
than the size of C'in B = (A, C).

By pursuing this idea we were able to reduce the upper bound on Vis to 158
from the value of 166 obtained from Lemma 3.1; this new upper bound is reflected
in Table 1. Examples of decycling sets matching the presented upper bound for I'ys,
I';3 and I'y4 are archived online at www.math.mun.ca/~yubo/research/fib_cube/.
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