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Abstract

A total labelling of a graph over an abelian group is a bijection from the
set of vertices and edges onto the set of group elements. A labelling can
be used to define a weight for each edge and for each vertex of finite
degree. A labelling is edge-magic if all the edges have the same weight
and vertez-magic if all the vertices have finite degree and the same weight.
We exhibit magic labellings for various countable graphs.

For countably infinite stars, countable galaxies and forests, and for
an arbitrary abelian group, we determine when there is an edge-magic
labelling and what group elements occur as constants. In the particular
case where the group is the integers, we determine when there is a vertex-
magic labelling, and which integers occur as constants. We also give
explicit edge-magic labellings of various frieze graphs over the integers.

1 Introduction

A detailed survey of many types of graph labellings can be found in the dynamic
survey by Gallian [8]. A vertex labelling of a graph is an assignment of labels to the
vertices. An edge labelling is an assignment of labels to the edges. A total labelling is
an assignment of labels to the combined set of vertices and edges. The set of labels
is commonly a subset of the integers, so a labelling can be used to define a weight
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for each vertex and edge. For a vertex the weight is the sum of the label of the
vertex and the labels of its incident edges. For an edge, the weight is the sum of
the label of the edge and the labels of its end vertices. A magic labelling of a finite
graph with v vertices and e edges is a total labelling of the graph by the integers
1,2,3,...,v + e with constant edge or vertex weights. Magic labellings have been
considered by various authors: for example vertex-magic labellings by MacDougall
et al [11], edge-magic labellings by Kotzig and Rosa [10], and by Baskaro et al [3],
and labellings which are both vertex-magic and edge-magic by Exoo et al [6]. There
is an extensive list of references about magic labellings of finite graphs in the book
on Magic Graphs by Wallis [12].

A labelling of a finite graph over n consecutive integers can be viewed as a labelling
over a cyclic group of order n. Combe, Nelson and Palmer [2] introduced magic
labellings of finite graphs, where the labels are the elements of an arbitrary abelian
group, of order v+e. Previously some authors considered labelling graphs by groups,
but none were considering total labellings with magic properties. Fukuchi [7] and
Egawa [5] considered vertex labellings of a graph by an elementary abelian group
such that the connected components of the graph had constant weight. Gimbel [9]
and Edelman and Saks [4] considered the relationship between vertex labellings and
edge labellings over abelian groups.

In this paper we consider labellings of countably infinite graphs by countably
infinite abelian groups. The idea of extending magic graph labellings over groups
from the finite to the infinite situation was suggested by Alan Beardon at the 2002
meeting of the Australian Mathematical Society in Newcastle. We are indebted to
Alan for this idea and for many enthusiastic communications about magic labellings.
Beardon [1] has shown that many countable graphs have uncountably many edge-
magic labellings over the integers.

In this paper we are motivated by labellings over the integers. We give inductively
defined labellings (over the integers and over arbitrary countable groups) which are
different to those of Beardon, and in which we emphasise symmetry.

For particular countable graphs, and families of countable graphs, we are inter-
ested in which countable groups can be used to give a magic labelling and we are also
interested in determining the set of group elements which occur as magic constants.
In an earlier paper [2], on magic labelling of finite graphs over abelian groups, we
dealt completely with the example of (finite) star graphs. Here we continue with this
theme and consider edge-magic labellings of countable stars and countable galaxies
over arbitrary abelian groups, and vertex-magic labellings over the integers. We
extend these arguments to magic labellings of countable forests. Finally we use
modulus classes to construct explicit edge-magic labellings of frieze graphs over the
integers.
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2 A-labellings of graphs

2.1 Definitions

Throughout this paper we use countable to mean countable infinite. By a graph G
we mean a countable graph with no loops and no multiple edges. The graph need not
be connected. The vertex set is V' and the edge set E is a (possibly empty) set of
unordered pairs of vertices. The set V' UE is the set of graph elements. When we say
a graph is countable we mean that the set of graph elements is countable, and hence
that the vertex set is countable and the edge set is finite or countable. If z,y € V,
then & ~ y means there is an edge between x and y, and the edge is denoted zy (or
yx). Although we are considering infinite graphs, if the graph is not connected it
may have finite components.

In this paper the group A is always a countable abelian group (with identity
element denoted by 0). Since we are often considering the integers, Z, it is convenient
to consider our groups additively. We use G to denote a finite abelian group.

Let G be a (countable) graph, and A a (countable abelian) group. A total A-
labelling of G, or a total labelling of G over A, is a bijection from V U E to A. Our
A-labellings will always be total, and not only of the vertices or only of the edges,
so, without risk of confusion, we will refer to them as A-labellings of G or labellings
of G over A.

Let A be a labelling of G over a group A. The weight, w = w,, of an edge zy € E
is the sum of the label of zy and the labels of z and y, that is

w(zy) = M) + AMzy) + A(y).

The labelling A is an edge-magic A-labelling of G if there is an element k of A such
that for every zy € E, w(zy) = k. The element k is the edge constant.

Let € V be a vertex of finite degree, then the weight of x is the sum of the label
of x and the labels of the edges incident with z, that is

w(z)=Az)+ > May).
yeV: zry
The labelling A is a vertez-magic A-labelling of G if every element of G has finite
degree and there is an element h of A such that for every € V, w(z) = h. The
element K is the vertex constant.

2.2 Translations and edge-magic labellings

Let G be a graph and A an A-labelling of G. For a € A, define a + A, the translation
of A by a, to be the Alabelling of G such that for t € VU E, (a + \)(t) = a + A(t).
Define —\, the negative of A\, to be the A-labelling of G such that for t € VUE,
(=N)(t) = ~A(D).

The following straightforward lemma is useful as we are interested in which group
elements can occur as magic constants. The first part implies that the set of group
elements which occur as edge-magic constants of the A-labellings of a graph G is a
union of cosets modulo the subgroup 3A = {3a : a € A}.
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Lemma 1. Let G be a graph with an edge-magic labelling A over a group A with
edge constant k, and let a € A. Then
(i) a+ A is an edge-magic labelling with constant k + 3a;
(i1) =X is an edge-magic labelling with constant —k.
Proof. Immediate. a
Corollary 2. For a graph G with an edge-magic Z-labelling \ the following hold.
(i) There is an edge-magic Z-labelling of G with edge constant k =0 or 1.

(13) If G has an edge-magic Z-labelling with edge constant k = 0, then G has an
edge-magic Z-labelling with constant k for all k =0 (mod 3).

(t13) If G has an edge-magic Z-labelling with constant k = 1, then G has an edge-
magic Z-labelling with edge constant k for any k Z 0 (mod 3).

Proof. Immediate. 0

2.3 Example: Star graphs

For n > 0, the finite star with n rays, T}, has a central vertex and n non-central
vertices. There are n edges, one from the central vertex to each of the other vertices.
For n > 1, there are various edge-magic labellings (with labels 1,2,...,2n + 1) and
the edge constants which occur are 2n+4, 3n + 3 and 4n + 2, see for example Wallis,
[12]. Combe, Nelson and Palmer [2] show that for any finite abelian group G of order
2n + 1 there are edge-magic G-labellings of T, and that elements which occur as
edge constants make up the subgroup 3G. Therefore, unless 3 divides 2n + 1, (the
order of the group), each group element occurs as edge constant for some edge-magic
labelling. Consider now the case of the countable star.

Theorem 3. Let Ty be the countable star with vertex set V = {vg,v1,vs,...} and
edge set E = {vgv; : 1 =1,2,...}.

(i) There is an edge-magic Z-labellings of Ty with edge constant 0.
(11) Ty does not have an edge-magic Z-labelling with edge constant 1.

(t1i) The elements of Z which occur as edge constants of edge-magic Z-labellings of
Ty are the elements of 37.

Proof. (i) The map \: VU E — Z given by setting
Aw) =i, i=0,1,2,...

)\(U(ﬂ)i) = —i, 1= 1,2, e

is an edge-magic Z-labellings of Ty with edge constant 0.
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(1) Suppose A is an edge-magic labelling with edge constant 1. Then A(vy) = 2
for some z € Z. By Lemma 1 the Z-labelling (—z + A) is edge-magic, with edge
constant k& = 1 — 3z and with the central vertex labelled (—z + A)(vg) = 0. Now
k € Z,k # 0, so k must label a non-central vertex v; or an edge vov;. However k
cannot label v; since that would not leave a possible label for vyv; to preserve edge-
weight of k. Similarly £ cannot label vgv; since that would not leave a possible label
for v;. Therefore Ty does not have an edge-magic labelling over Z with edge constant
1.

(7i) Since there is an edge-magic Z-labellings of Ty with edge constant 0, by
Corollary 2 the integers which occur as edge constants of edge-magic Z-labellings of
Ty include all of 3Z. Since there is no edge-magic Z-labelling with edge constant 1,
by Lemma 1, there is no edge-magic Z-labelling with edge constant —1, and hence
no edge-magic Z-labelling with edge constant any & % 0 (mod 3). Therefore the set
of edge constants is precisely 3Z. |

More generally, suppose A is a countable abelian group in which there are no
elements of order 2. Then we can take a sequence of non-zero elements a;, as, ...
in the group such that the set of non-zero elements A \ {0} is the disjoint union of
the set of these elements and their set of inverses. Label the central vertex of Ty by
0, and then for each ¢ = 1,2, 3, ... label the ith vertex a; and its incident edge —a;.
This gives an edge-magic A-labelling of Ty with edge constant k& = 0. Then similar
arguments to those in the proof above show:

Theorem 4. Let A be a countable abelian group with no elements of order 2. Then
the elements of A which occur as edge constants of edge-magic A-labellings of the
countable star Ty make up all 3A. Furthermore, for any a € A, any edge-magic
labelling of Ty which labels the central vertex a, has edge constant 3a.

Finally we note the situation when A has elements of order 2.

Theorem 5. Let A be a countable abelian group which contains an element of order 2.
Then there are no edge-magic A-labellings of the countable star Ty.

Proof. Let i € A be an element of order 2. Suppose there is an edge-magic A-
labelling of Ty. Then by translation there is an edge-magic labelling A which labels
the central vertex by 0. Let k be the edge constant corresponding to A. If k& # 0,
then by the above arguments there is no graph element which could be labelled by
k. If E = 0 then there is no graph element which could be labelled by i. Therefore
there are no edge-magic A-labellings of Ty. a

Note that an infinite star has a vertex of infinite degree and hence cannot have a
vertex-magic labelling.

3 Inductively defined labellings

In this section we give examples of inductively defined Z-labellings.
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3.1 Example: Infinite path
Denote by P the infinite path which has V = {v; : i € Z}, and E = {v;u;11 : 1 € Z}.

Example 6. For any k € 37Z, the infinite path P has an edge-magic Z-labelling
which has edge constant k.

Proof. 1t is sufficient to define an edge-magic Z-labelling A of P with edge con-
stant £ = 0, and we do so inductively. We label first vy, then label the next edge
and vertex to the right, then next edge and vertex to the left, then the next edge
and vertex to the right, and so on.

List the integers in the order: 0, 1, —1, 2, —2, etc. Define initially A(vo)
then A(vov1) = 1 and hence A(v;) = —1; then A(v_1v9) = —2 and hence A(v_;) =2
After these initial choices the subsequent choices of label A(vivy) = =3, A(vg) =4
AMv_jv_9) = 3, AM(v_2) = =5; ... are determined, for j = 1,2,..., as follows.

The label for the edge v;v;4; is chosen to be the first integer in the list which
has not yet used as a label, and which is of the same sign as A(v;). The label for its
vertex vj1; will then be determined in order to make the edge weight 0 . Similarly
the edge v_jv_(j11) takes label the first integer in the list which has not yet used as
a label, and which is of the same sign as A(v_;). The label for its vertex v_(j11) will
then be determined in order to make the edge weight 0.

Moving outward left, or outward right, from v, the edge labels alternate in sign,
as do the vertex labels. The choices of edge label ensure that each element of Z is
an edge label. So A is surjective. The edge labels are chosen to be distinct, and in
addition, each vertex label is, inductively, larger in absolute value than any previously
used label. So A is injective. Hence A is bijective. By construction it gives every
edge weight 0.

0

l
l

It is clear from the diagram, and straightforward to prove, that very soon a lovely
symmetry appears:that is for i > 3, A(—v;) = —A(vs), and Mv_jv_(i41)) = — A (ViVig1)-
d

3.2 Example: Semi-infinite path

We denote by S the semi-infinite path with V = {v; : i € N} and E = {vv;41 : 1 €
N}.
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Vo U1 V2 U3

Example 7. For any k € Z, the semi-infinite path S has an edge-magic Z-labelling
which has edge constant k.

Proof. 1t is sufficient to show that there are edge-magic Z-labellings with edge con-
stants £ = 0, 1.

We define, inductively, an edge-magic Z-labelling Ay of S, with edge constant 0.

List the integers in the order of the previous example. Set initially Ao(ve) = 0,
Xo(vov1) = 1 and hence A\g(v1) = —1. Continue labelling edges and vertices, for
1=1,2,..., as follows.

Label the edge v;v;41 by the first integer which has not already been used as a
label and which is of the same sign as Ag(v;). The constant edge weight condition
then determines the label of the next vertex v; ;.

[ S
|
—

3 ) 8

1 -2 2 -3 4

Similarly an edge-magic Z-labelling A; of S, with edge constant 1, can be defined
using the same inductive step, but starting with Aj(vg) = 0, Ai(vovy) = —1, and
hence A\;(v1) = 2.

For both of these labellings the edge labels alternate in sign. So do the vertex
labels. In addition, each vertex label will be (by induction) larger in absolute value
than any previously used label. a

Note that each of the infinite and semi-infinite paths is a countably infinite tree
which contains a semi-infinite path. Beardon [1] has shown that such a tree has
edge-magic Z-labellings with edge-constant & = 0. His algorithm works equally well
for any k € Z. We demonstrate this in the proof of the next example:

Example 8. For any k € Z, the infinite path P has an edge-magic Z -labelling which
has edge constant k.

Proof. Recall that, for the infinite path, V' = {v; : 4 € Z}, and E = {vv;41 : 1 € Z}.
By Corollary 2 and using Example 6, it is enough to show that there is an edge-magic
labelling with edge constant 1. List the integers in some order. Label vy with the first
integer in the list. Label vy and v_s with the next two integers. There are infinitely
many ways of simultaneously labelling the vertices v; and v_; and the connecting
edges v9v1, V1Vg, Vov_1 and v_jv_, with unused labels such that the edges each have
weight 1. Choose one such labelling. Next label vy and v_4 with the first two integers
in the list not yet used as labels. There are infinitely many ways of simultaneously
labelling the vertices vz and v_3 and the connecting edges v4v3, v3v2, v_2v_3 and
v_3v_4 with unused labels such that the edges all have weights 1. Continue in this
way labelling the vertices which are at distance 2 from the labelled part of the graph,
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and then labelling the graph components which connect them to the labelled section
of the graph.
Clearly this produces an edge-magic Z-labelling with edge constant 1.

3.3 Example: Edge-magic Z-labellings of countable galaxies.

We call a graph a countable galaxy if it has countably many connected components,
each of which is a finite or countable star.

Theorem 9. Let G be a countable galazy and k € Z. Then we can construct an
edge-magic Z-labelling of G with edge constant k.

Proof. Each component star of the galaxy has a central vertex. (In a T} component
designate one vertex central and the other non-central). Each central vertex has a
finite or countable number of incident edges. Call the central vertices and the edges
galaxy elements. List the set of galaxy elements in some order such that each edge
occurs in the list after the central vertex of the star in which it occurs. List the
elements of Z in some order. The first entry in the list of galaxy elements is a central
vertex. Label this vertex with the first integer in the list of integers. We now proceed
along the list of galaxy elements, attaching labels according to the recipe below.

(1) If the current galaxy element is a central vertex label it with the first listed
integer not already used as a label.

(#1) If the current galaxy element is an edge then the central vertex of the star
to which it belongs will already have been labelled, z say. Let X be the set
of integers already used as labels, and ¢ = £ — z. Then we can find distinct
a,b € A\ X such that a + b = c. Label the edge b and the non-central vertex
of the edge a.

In this way we label the graph elements of G by Z. The choices in case (i) ensure
the labelling is surjective. The choices in case (i¢) ensure both that it is injective,
and that each edge weight equals k.

Note the existence of suitable a and b as needed in case (ii) above is easy to see,
but is also a particular case of the Lemma 10 to follow. d

Lemma 10. Let X be a finite subset of an infinite abelian group A and c € A.
(i) Suppose 2A # {0}. Then there exist distinct a,b € A\ X such that a + b= c.

(i1) Suppose 2A = {0}. Then there exist distinct a,b € A\ X such that a+b = ¢
if (and only if) ¢ # 0.

Proof. For every c in an infinite abelian group A the equation a4+ b = ¢ has infinitely
many solutions, one for each a € A. Whenever we can show that for infinitely many
of these a we have a # b we are done. For then, since only finitely many such
solutions can have a € X, and only finitely many can have b = ¢ — a € X, there are
in fact infinitely many a + b = ¢ with a # b and a,b € A\ X.
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Case (i): The condition 2A # {0} implies B = {a € A : 2a = 0} is a proper
subgroup of A. The set C = {a € A : 2a = ¢} is either empty or a coset of B in
A. Then A\ C is non-empty disjoint union of cosets of B. If B is finite this will be
a non-finite union, and if B is not finite then each coset is infinite. In either case
A\ C is infinite. Hence there are infinitely many solutions to a + b = ¢ with a and b
distinct. This settles case (7).

Case (i1): When 2A = {0}, every solution to a +b = ¢, ¢ # 0, has a # b, (and
every solution to to a +b =0 has a = b). O

3.4 Example: Edge-magic A-labellings of countable forests.

A star is an example of a tree, a graph with no circuits in which any two vertices
are connected by a finite path. We call a graph a countable forest if it has countably
many connected components, each of which is a finite or countable tree. We extend
the algorithm of Theorem 9 to countable forests and give the complete story for
edge-magic labellings of countable galaxies and forests by countable abelian groups.

Theorem 11. Let G be a countable forest, A a countable abelian group, and k € A.

(i) If 2A # {0} then we can construct an edge-magic A-labelling of G which has
edge constant k.

(i1) If 2A = {0} and G has no isolated vertices then G has no edge-magic A-
labellings.

(173) 2A = {0} and G has an isolated vertex then we can construct an edge-magic
A-labelling of G which has edge constant k.

Proof. For each tree designate a vertex to be called the central vertez. For any edge
xy in the tree there is a unique (finite) sequence of distinct edges forming a path from
the central vertex to xy. Call the the central vertices and the edges of the graph the
forest elements. List the forest elements in some order such that each edge occurs
after the central vertex of its tree and after all the other vertices and edges of the
path connecting it to the central vertex of the tree it is in. List the elements of A in
some order.

The algorithm of Theorem 9 can be applied directly in the case 2A # {0}. When
the current item is an edge, exactly one of its end vertices must already be labelled.
Then Lemma 10 allows us to use rule (i) of the algorithm to label the edge and its
other vertex.

Suppose now 2A = {0}. If a,b,c,€ A and a + b+ ¢ = k, then a, b and ¢ are
distinct if and only none of them equals k. Hence if G has no isolated vertices
it cannot have an edge-magic labelling with edge constant %k, because no edge or
vertex can be labelled k. However if G does have isolated vertices then the extended
algorithm works if we take the first central vertex in the list of forest elements to be
an isolated vertex and the first group element in the list to be k. O
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3.5 Example: vertex-magic labellings of countable galaxies.

Note the following observations about vertex-magic labellings of countable galaxies.

(1) If a countable galaxy includes any infinite stars it cannot have a vertex-magic
labelling over any group.

(ii) If one of the connected components of a graph is the star 77, then there is no
vertex-magic labelling over any group.

(iii) If the graph has any isolated vertex then any vertex-magic labelling must
label the isolated vertex by the vertex-magic constant.

(iv) If a countable galaxy has vertex-magic A-labelling with constant h = 0, the
identity of the group, then 0 must label a central vertex. For if 0 labels a noncentral
vertex there is no possible label for the incident edge, and if 0 labels an edge there
is no possible label for noncentral vertex of that edge.

(v) A countable union of stars T, cannot have a vertex-magic labelling with
vertex constant 0, for if it did then 0 must label the central vertex of one of the T
components. The two edges of this star must be labelled a and —a for some a € A,
forcing the two noncentral vertices to be labelled —a and a, which is impossible.

Therefore, a countable galaxy with a vertex-magic labelling over some group A
must have connected components which are all finite, include at most one Tj, include
no 71, and if the constant is h = 0 there must be at least one 7, with n # 2.

The next theorem shows for Z-labellings of countable galaxies which vertex-magic
constants are possible.

Theorem 12. Suppose G is a countable galazy of finite stars, at most one of which
1s Ty, none of which is Ty. Then:

(i) There is a vertex-magic labelling with h = 0 if and only if there is at least one
connected component T,, with n # 2.

(ii) For h € Z, h # 0, there is a vertez-magic labelling with vertex constant h, except
for the galaxy with one Ty component and each other component a T.

Proof. The “only if” part of the theorem follows from the preceding observations.

Let G be a countable galaxy of finite stars, at most one of which is Tj, none of
which is Ty, and let » > 0. Assume that (i) if ~ = 0, then there is at least one
connected component T, with n # 2 and (i) if A # 0, then G is not the galaxy with
one Ty component and the remainder 75 components.

We define inductively a vertex-magic labelling with vertex-magic constant h.
Taking the negative of this labelling gives a vertex-magic labelling with constant
—h.

If G has a Ty component we label its vertex h. If there is no Ty component or
h # 0 we will not yet have used the label 0. In this case there must then be a T,
component with n > 3. Choose one, and label its central vertex with 0, and its edges
by (distinct) integers zi, z, ..., Z,, with sum A and the non-central vertices of the
edges by respectively h —x1, h —xy, ..., h — x,, with z1, 29, ..., Tp, h — 21, h — 29,
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.., h — x,, all distinct and none equal to 0 or h. For example we can take

ry = h+ ].,
Ty = h+2,
Tpo1 = h+n-—1,
tn = —(n—2)h—%(n—1)n.

We have now labelled any T, component and we have used the label 0. All labels
used so far are distinct and give all vertices of stars labelled so far weight h.

Assume we have labelled the vertices and edges of a finite number of the com-
ponent stars of the galaxy with (distinct) integer labels, and that each vertex has
weight h. We assume also that these stars include any 7Ty component, and that 0 has
been used as a label. Then, by our assumptions, all remaining component stars have
n > 2 edges. Consider such a star. Assume y, is an unused label. Choose (distinct)
integers y1, ¥a, - - ., Yn such that

Yo+yr+--+y,=h,

and Yo, Y1, Y2, -+ Yn, b — Y1, h — ya, -+, h — y, are distinct and not already used
as labels.

For example, let K > 0 be an integer larger than the size of any previously used
label and greater than |y|. Since yo is an unused label yy # 0.

If yo > 0, set

v = K+h+1,
y2 = K+ h+2,

Yn-1 = K+h+n_17

Yo = —(n—1)K —(n—2)h—3(n—1)n—y.
If yo < 0, set
N = -K — 17
Y2 = -K — 27
Yoo = —K—(n-1),

Yn = (n—l)K—i—h—}—%n(n—l)—yo.

Now we can extend the labelling to include the new star, give each vertex of the
new star weight h, and use the label yq, if we label the central vertex of this star
by 7o and the edges by yi, ya, ..., ¥n, and the corresponding non-central vertices,
h—yi, h—yoy ..., h— yp.
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Hence, having made our initial labellings, we can list the remaining stars in some
order and extend the labelling inductively to a labelling of the whole galaxy by a
subset of Z, giving each vertex weight h. If at each stage we choose y, to be a minimal
unused label then the set of labels will be all Z. Thus we will have a vertex-magic
Z-labelling of the galaxy, with vertex-magic constant h. a

4 Z-Labellings using modulus classes

In this section we give examples of explicit edge-magic Z-labellings of some graphs
which we refer to as “frieze graphs” because they can be drawn as frieze patterns.
We refer to these labellings as edge-magic modulus labellings.

4.1 Example: The Infinite Path

Recall the infinite path P has V = {v; : i € Z}, and E = {v;v;41 : 1 € Z}.

Label the vertices A(vy;) = —1+3i, A(vai41) = 14 3i, and the edges A(vg;—1v9;) =
3 - 617 A(U%UZHJ) = —6Z, 1€ Z.

This defines an edge-magic Z-labelling of the infinite path with edge constant 0.

-5 -4 -2 -1 1 2 4 5 7
— ¢ o ¢ o o o o o
12 9 6 3 0 -3 -6 -9 -—-12 —-15

The even indexed vertices are labelled by integers congruent to —1 modulo 3.
The odd indexed vertices are labelled by integers congruent to 1 modulo 3. The
integers divisible by 3 fall into two classes modulo 2 x 3 = 6: those congruent to 0
label the edges v;v;41 with ¢ even, and those and those congruent to 3 modulo 6 label
the edges v;v;41 with ¢ odd.

4.2 Example: Picket Fence

Y2i—1 Yai Y2i+1 Y2i+2
Loi—1 Lo Li41 Li42

V={w,y:1 €2}, E={vwy viwiy1:1€ 7L}

Labelling vertices

May;) =4 =60, Myzi) =1—6i, Mzaipr) = —6i, A(yait1) = —1 — 61,
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and edges
)\(1021'2/22‘) =—4 + 12Z, )\(1‘21']722‘4_1) = —3 + 12Z,

M@oip1Yoir1) = 2+ 120, M@2189i42) = 3 + 124,

defines an edge-magic labelling with edge constant 1.

4.3 Templates

We use these two examples, the infinite path and the picket fence, to illustrate an
elegant representation of these labellings of friezes which avoids excessive notation.
4.3.1 The Infinite Path

The infinite path, together with its labels, can be represented as follows.

-1+ 3 1430 243i=-14+3(i+1)

—6¢ -3 — 61

However, we can reconstruct the diagram above, and hence the infinite path together
with the given labelling, from the following template:

-1 1 2=-1+3

The template consists of the two vertices in bold and the two solid edges. The
labelling was constructed “ +mod 3”. This means that to produce the labelling add
31 to the labels on the vertices and subtract 2 x 3¢ = 6¢ from the labels on the edges.
The label on the open vertex indicates not only the signed modulus, but how copies
of the template fit together to form the original graph.

In this example, and in each of the examples which follow, the labelling is optimal
in the sense that it is not possible to give a labelling of this type with a smaller
template (and hence produced with a smaller modulus).

4.3.2 The Picket Fence (k =1)

The picket fence together with its labelling can be represented as follows:
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1-6¢ -1 —6¢

—4+12i 2+ 12

—3412i 3+12i
4-6i —6i 2 6i=4—6(i+1)

We can reconstruct the diagram above, and hence the picket fence together with
the given labelling, from the following template:

1 -1
—4 2
-3 3
4 0

Note that there are v = 4 vertices and e = 4 edges in the template. This labelling
is produced “ — mod 6” (note that 6 = v + 1e). To produce the labelling subtract
67 from the vertex labels, and add 12¢ to the edge labels. The label —2 =4 — 6 on
the open vertex in this example indicates this labelling is produced “ — mod 6”, and
also how the copies of the template fit together to form the picket fence.

In general, when the template has v (bold) vertices and e edges, the modulus
m for the labelling is m = v + %e. This is because each congruence class appears
either once (as a vertex label), or twice (as edge labels). Therefore, if a graph has
an edge-magic modulus labelling then the number of edges in the template is even.
Whether the labelling is produced “ + mod m” or “ — mod m” is made explicit by
the labelling(s) on the non-bold vertices in the template. These labels also indicate
how the copies of the template fit together to from the original frieze graph. If the
labelling is produced “ + mod m” then it can be determined by adding positive
multiples of m to the vertex labels and subtracting positive multiples of 2m from
the edge labels. If the labelling is produced “ — mod m” then it can be determined
by subtracting positive multiples of m from the vertex labels and adding positive
multiples of 2m to the edge labels.

—2=4-6

4.3.3 The Picket Fence (k = 0)

The diagram below is a template for an edge-magic labelling of a picket fence with
edge constant £ = 0. It uses congruence classes modulo 6.
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3=-3+6

4.4 Example: The Diamond Frieze

V = {azi,yi,zi 11 € Z}, FE = {azzyl, TiZiy Yiliy1, ZiLit1 - ) c Z}
Label the edges:
M) = 100 = L, Maizi) = 100 = 2, Myiwi1) = 100 + 4, A(ziwip1) = 100 + 3.

With this edge labelling, an edge-magic labelling with edge constant 0 can be ob-
tained by labelling vertices A(z;) = =51, A(y;) = —5i+1, My) = —bi+2.
Keeping the same edge labels, an edge-magic labelling with edge constant 1 can be
obtained by labelling vertices A(z;) = =5i 4+ 2, Ay;) = =51, A(y;) = —bi+ 1.

We can represent these labellings, each of which is “ — mod 5”, using templates:

For edge constant £k =0 For edge constant £ =1
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4.5 Example: Ladders
Ladder 1

Ladder 1 has an edge-magic Z-labelling with edge constant k = 0, represented by
the following template, “ + mod 7”.

-2 3 -1 _4 5=-247

O

O

-5 4 1 =3 2=-547

Ladder 2 (with “diagonal reinforcements”)

Ladder 2 has an edge-magic Z-labelling with edge constant £ = 0, represented by
the following template, “ 4+ mod 4”.

1 _g 5=1+4

0 —4

-1 2 3=-1+4

4.6 Triangular Prism

The diagram below is a template for an edge-magic labelling of a frieze graph based
on a triangular prism. There are v = 6 vertices, and e = 12 edges. It uses congruence
classes modulo 12 and has edge constant k = 1,
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-6 3 4 _9 6=—6+12
11 0 -3 s
5 -7
-4 0 8=—4+12
7 -1
@ @ O
-2 1 2 —11 10=—-2+12

4.7 A non-existence result for modulus labellings.

In a graph with an edge-magic Z-labelling with edge constant & there is not neces-
sarily an edge-magic modulus labelling with edge constant k.

Theorem 13. There is no modulus labelling of the infinite path with edge magic
constant k = 1.

Proof. Suppose we had a modulus labelling of the infinite path with edge magic
constant £ = 1. A template for this labelling would have an an even number of edges
and hence an even number of consecutive vertices. Suppose the template has v = 2n
vertices and hence e = 2n edges. Then the modulus class labelling has modulus
m=v+ %e = 3n. Suppose the template is

29 29 Z2n—1 Z2n
[ S N o o o)
Ty T3 T2 Top—1 Ton Top+1 =21 £ 3n

Let the sum of the vertex labels 1 + x5 + -+ - + 22, = X and the sum of the edge
labels z1 + 29 + -+ + 295, = Z.
By assumption, for i = 1,2,...,2n, each edge weight x; + z; + x;11 = 1. Adding
these relations gives
2X+Z=2n (mod 3n).

However, in a modulus class labelling, each congruence class occurs either once (as
a vertex label) or twice (as an edge labels). Hence X + £Z is congruent, modulo 3n,
to the sum of the distinct modulus classes, 0, 1, ..., 3n — 1. This implies

3n(3n —1)

X+3Z=0+1+---+3n—-1= 5

(mod 3n).
Therefore,
2X+Z=0 (mod 3n).

This contradicts the first displayed congruence above. Hence we cannot have a
modulus labelling of the infinite line with edge magic constant & = 1.
1
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