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Abstract

We consider degree sum conditions and the existence of vertex-disjoint
cycles in a graph. In this paper, we prove the following: Suppose that G
is a graph of order at least 3k +2 and 03(G) > 6k — 2, where & > 2. Then
G contains k vertex-disjoint cycles. The degree and order conditions are
sharp.

1 Introduction

We will generally follow notation and terminology of [1]. Let G be a simple graph.
For a vertex « of a graph G, the neighborhood of z in G is denoted by Ng(x), and
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dg(z) = |Ng(z)| is the degree of z in G. For a subgraph H of G and a vertex
xz € V(G) — V(H), we also denote Ny(z) = Ng(z) N V(H) and dg(z) = |Ng(z)|.
For a subgraph H and a subset S of V(G), duy(S) = >_,csdu(x), the subgraph
induced by S is denoted by (S), and G — S = (V(G) — S). We often identify an
induced subgraph with its vertex set. For a graph G, |G| = |V(G)| is the order of
G, w(G) is the number of components of G, 6(G) is the minimum degree of G, a(G)
is the independence number of G and

01(G) = min {ng(az) : S is an independent set of G with |S| = k.}
z€S
(When o(G) < k, we define 05(G) = o0.)
For X,Y C V(G), E(X,Y) denote the set of edges of G joining a vertex in X
and a vertex in Y. If X = {z}, we denote E(z,Y") instead of E({z},Y).

K, denotes a complete graph of order n and P, denotes a path of order n. For
graphs G and H, GU H denotes the union of G and H, and G + H denotes the join
of G and H. For a graph G, mG denotes the union of m copies of G. If a graph G
is isomorphic to a graph H, we denote G ~ H.

A forest is a graph each of whose components is a tree. A leaf is a vertex of a
forest whose degree is at most 1.

In this paper, we consider degree sum conditions and the existence of vertex-
disjoint cycles. The classical result of this problem was proved by Corradi and
Hajnal.

Theorem 1 (Corradi and Hajnal [2]) Suppose that |G| > 3k and 6(G) > 2k.
Then G contains k vertex-disjoint cycles.

Justesen improved Theorem 1 as follows.

Theorem 2 (Justesen [4]) Suppose that |G| > 3k and 09(G) > 4k. Then G con-
tains k vertex-disjoint cycles.

The degree condition in Theorem 2 is not sharp. Later, Enomoto and Wang
independently improved Theorem 2 and got a sharp degree bound.

Theorem 3 (Enomoto [3], Wang [5]) Suppose that |G| > 3k and 0»2(G) > 4k—1.
Then G contains k vertez-disjoint cycles.

Since Go = K1 + mK; does not contain k vertex-disjoint cycles, and §(Gg) =
2k — 1 and 09(Go) = 4k — 2, the degree conditions in Theorems 1 and 3 are weakest
possible.

In this paper, we prove the following theorem.

Theorem 4 Suppose that k > 2, |G| > 3k+2 and 03(G) > 6k—2. Then G contains
k vertex-disjoint cycles.
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The sharpness of the degree condition is also shown by the graph Gy since
O'3(G0) =6k — 3.

K31 U K; (1 = 1,2) satisfies the degree condition of Theorem 4 since the inde-
pendence number of this graph is 2, but does not contain %k vertex-disjoint cycles.
Hence |G| > 3k + 2 is also weakest possible.

Suppose that n > 5. Then o3(P,) =4 = 6 x 1 — 2 but P, does not contain a
cycle. Hence k > 2 is necessary.

Note that the degree condition of Theorem 4 is weaker than those of Theorems
1 and 3:

If 6(G) > 2F, then it is easy to see that oo(G) > 4k — 1 and o3(G) > 6k — 2.
Suppose that 09(G) > 4k—1. If we take three independent vertices 1, 22 and z3 of G,
then dg(z1)+da(ze) > 4k—1, dg(xs) +dg(zs) > 4k—1 and dg(xs)+dg(z) > 4k—1.
Hence we have 2(dg(21)+dg(z2)+da(x3)) > 12k—3, and dg(z1)+de(zs) +de(as) >
6k — 3/2. This implies that o3(G) > 6k — 2.

Before proving Theorem 4, we will give some definitions.

Suppose that C1, ..., C, are r vertex-disjoint cycles of a graph G. If C{, ..., C! are
7 vertex-disjoint cycles of G and |UJ._, V(C})| < |Ui-, V(C})|, then we call Cf, ..., C,
are shorter cycles than C4,...,C,. We call {C1,...,C,} is minimal if G does not
contain r vertex-disjoint cycles C1,...,CL such that [|J_, V(C))| < |Ui_, V(Ci)].
We call a cycle of order 3 a triangle.

We will use C[u,v] to denote the segment of the cycle C from u to v (including
v and v) under some orientation of C, and Cfu,v) = Clu,v] — {v} and C(u,v) =
Clu,v] — {u,v}. Given a cycle C' with an orientation, we let v* (resp. v~) denote
the successor (resp. the predecessor) of v along C' according to this orientation.
Analogously, v?* = (vF) T, v*, 02~ = (v7)7,v37,. .. are defined.

2 Proof of Theorem 4
The following lemmas will be used several times in this section.

Lemma 1 Let r be a positive integer and Cy,...,C, be r minimal vertex-disjoint
cycles of a graph G. Then de,(x) < 3 for any x € V(G) — U;:1 V(C;) and for any 1,
1 <i < r. Furthermore, dc,(x) = 3 implies |C;] = 3 and d¢,(z) = 2 implies |C;] < 4.

Proof. This is easily seen by the minimality of {C,...,C,} O

Lemma 2 Suppose that F is a forest with at least two components and C is a tri-
angle. Let x1, x5 and x3 be leaves of F from at least two components. If do({z1,xa,
x3}) > 7, then there are two vertez-disjoint cycles in (FUC) or there exists a triangle
C'" in (FUC) such that w((FUC) — C") < w(F).
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Proof. Let C = vivyvzv; and Fi, Fy and F3 be components of F'. Suppose that
x1, 22 € V(Fy) and x5 € V(Fy). If do(zy) = 3, then do({@s, 23}) > 4 and Ne(zz) N
Ng(ws) # 0. Hence we may assume that v € No(@2) N Ne(ws). Then C' = w0101
is a triangle such that w((FUC) — C") < w(F). If dc(z3) = 3, then do({z1,22}) > 4
and Ng(z1) N Neo(zs) # 0. Hence we may assume that v3 € No(z1) N No(xs). Then
x3v1v2x3 and v3Pp [21, 22]vs are two vertex-disjoint cycles, where Pp, |21, 2] is the
unique path in F} connecting x; and zs.

Next, suppose that 1 € V(Fy), 2 € V(Fy) and z3 € V(F3). We may assume
that do(z1) = 3 and v3 € Neo(ws) N Ng(23). Then C' = zyviv92; is a triangle such
that w((FUC) — C') < w(F). O

Lemma 3 Let C be a cycle and X be a set of three independent vertices. Suppose
that (CUX) does not contain a cycle C' such that |C'| < |C|. If |[E(C,X)| > 7, then
|C] =3, and (C' UX) can be partitioned into a vertez-disjoint triangle and a path of
order 3 connecting two vertices of X.

Proof. Since |[E(C,X)| > 7, dc(z) > 3 for some z € X. This implies that |C] =3
by Lemma 1. Let C' = v1vv3v; and X = {z1, 29, x3}. We may assume that de(z;) =
3. Since do({zy,z3}) > 4, No(x2) N No(z3) # 0. Without loss of generality, we may
assume that v; € Ng(z2) N Ne(x3). Then (C' U X) is partitioned into a triangle
r1v9v32, and a path of order 3 wovi23. O

Lemma 4 Let C be a cycle and T be a tree with three leaves xi,xs and x3. If
do({z1,22,23}) > 7, then there exists a cycle C' in (C'UT) such that |[V(C')| <
[V(C)|, or (CUT) contains two vertea-disjoint cycles.

Proof. This is immediate by Lemma 3. O

Lemma 5 Let G be a graph satisfying the assumption of Theorem 4 and C1,...,
Ci_1 be k — 1 minimal vertex-disjoint cycles of G. Suppose that there exists a tree T
with at least three leaves, which is a component of G — Ui.”;l V(C;). Then G contains
k vertez-disjoint cycles.

Proof. Let L =" V(C;) and X = {&1, 25,23} be a set of leaves of T. Since X
is independent and dr(z) = 1for all z € X, d(X) > 6k—2—-3=6k—5> 6(k—1).
Hence d¢,(X) > 7 for some i, 1 < i < k — 1. By Lemma 4, there exist two
vertex-disjoint cycles in (X U C;) since {C},...,Cj—_1} is minimal. Hence we have k
vertex-disjoint cycles of G. O

Lemma 6 Let G be a graph satisfying the assumption of Theorem 4 and let C1,. . .,
Cy_1 be k—1 minimal vertez-disjoint cycles of G. Suppose that |G — Ui.”;l V(Cy)| =4
and G — U2 V(Cy) is not connected and is not isomorphic to 2K,. Then there
eist k — 1 minimal vertez-disjoint cycles C4,...,Cy | such that G — |JIZ} V(CY) is
connected.

Proof. Let L=J2'V(Ci), H=G — L and V(H) = {21, 25,23, 74}. We have to
consider the following three cases;



DEGREE SUM CONDITIONS AND VERTEX-DISJOINT CYCLES 241

(i) H~PUK,,

(i) H ~ K, U2K}, and

(iii) H ~ 4K,.

Without loss of generality, we may assume that @@y, 2023 € E(G) for (i), and
129 € E(G) for (ii). In each of three cases, X = {1, 23,24} is independent and
dy(X) < 2. Hence dp(X) > 6k —2 —2 =6k —4 > 6(k — 1) and this implies that
de;(X) > 7 for some i, 1 < i < k— 1. Then by Lemma 3, we can take minimal
vertex-disjoint cycles C,...,C}_, such that w(G — ! V(CY)) < w(H). Moreover,
G — U v(C)) contains a path of order 3 connecting two vertices of X. Hence
G- Ui‘;ll V(C!) # 2K,. By repeating this argument, we can get a conclusion. O

Proof of Theorem 4. Let G be an edge-maximal counterexample. Since a com-
plete graph of order at least 3k+2 contains k vertex-disjoint cycles, G is not complete.
Let « and y be non-adjacent vertices of G. Then G' = G + zy, the graph obtained
from G by adding the edge zy, is not a counterexample by the maximality of G.
Hence G’ contains k vertex-disjoint cycles C1, ..., Cy and without loss of generality,
we may assume that zy € E(Cy). This means that G contains k — 1 vertex-disjoint
cycles Cy,...,Cy_y such that S V(Cy)| < n—3. Let L = (U V(C))) and
H = G — L. Take k£ — 1 minimal vertex-disjoint cycles C1,...,Cj_1 so that

w(H) is as small as possible. (1)
Claim 1 FEach component of H is a path.
Proof. This is immediate by Lemma 5. O
Claim 2 H is connected, or |H| =4 and H ~ 2K,

Proof. Suppose that H is not connected.

If |H| > 5 and w(H) > 3, then we can take three leaves 1, 22 and x3 from three
different components. If |H| > 5 and w(H) = 2, then there exists a component H' of
H such that |H'| > 3. Since H' is a path by Claim 1, we can take two leaves w1, z»
from H', and take a leaf x3 from another component. In each case, X = {x1,xs, 23}
is independent and dy(X) < 3. Hence d,(X) > 6k —2—-3 =6k —5 > 6(k — 1)
and this means that d¢,(X) > 7 for some 4, 1 < ¢ < k — 1. Then d¢;(z) > 3 for
some z € X and |C;| = 3 by Lemma 1. By Lemma 2, we have k& — 1 minimal vertex-
disjoint cycles C1,...,C}_; such that w(G — U;”;ll V(C})) < w(H) because G does
not contain k vertex-disjoint cycles. But this contradicts the choice of cycles (1).

If |H| = 4 and H # 2K,, then we can get the conclusion by Lemma 6.

Hence we may assume that |H| = 3. Let 2 and y be non-adjacent vertices of G.
Then G + zy contains k vertex-disjoint cycles Dy, ..., Dy. Without loss of generality,
we may assume that zy € E(Dy). If |Dy| > 4, then | UL V(D;)| < |L|, but this
contradicts the minimality of L. Hence |Dy| = 3. If G — UL, V(D;) # 0, then
|UIZ VD)l < |2 since |G = UiZ) V(Dy)| > 4. Therefore, V(G) = U, V(Dy),
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{Dy,..., D41} is minimal and G — J¥=] V(D;) is connected. By the choice of cycles
(1), H is connected. O

We distinguish two cases according to the value of |H|.

CASE1 |H|>5

By Claims 1 and 2, H is a path. Let xjazy---x;, where [ = |H|, and let X =
{z1,z3,2;}. Then X is independent.

Claim 3 d¢,(X) <6 foranyi, 1 <i<k—1.

Proof. Suppose that d¢,(X) > 7 for some 4, 1 < i < k— 1. Since d¢,(z) > 3 for
some z € X, |C;] = 3 by Lemma 1. Let C; = v1vav3v1.

Suppose that dg,(z1) = 3. Since dg, ({zs,2:}) > 4, Ng,(z3) N Ng,(z;) # 0 and
we may assume that v € Ng,(z3) N N, (2;). Then z1vv92; and vszsz - - - xv3 are
two vertex-disjoint cycles in (H U C;), and we have k vertex-disjoint cycles of G, a
contradiction.

Hence d¢,(21) < 2. Similarly, we have d¢,(z;) < 2. This means that d¢,(z3) = 3
and dg,(z1) = de,(z) = 2.

Suppose that N¢,(z1) # Ne, (z;). Without loss of generality, we may assume that
v1 € Ng,(x1) and ve,v3 € Ng,(x;). Then zi1zyz3v121 and zvav3x; are two vertex-
disjoint cycles in (HUC;), and we have k vertex-disjoint cycles of G, a contradiction.
Hence we have Ng,(21) = Ng,(2;) and we may assume that {vy,vs} = N, (z1). If
we take C} = ryvivpz, and Cf = C; for j # i, then {C,...,C}_,} is minimal and
G- U;”;ll V(C%) is a tree with three leaves s, r; and v3 since otherwise we can find
two vertex-disjoint cycles in (H UC;). By Lemma 5, we have k vertex-disjoint cycles
of G, a contradiction. Hence the proof is completed. O

By Claim 3, we have
dy(X) < 6(k—1).

On the other hand, since dg(X) =4,
dy(X)>6k—2—4=6(k—1).

Hence d(X) = 6(k — 1) and d¢,(X) =6 for all ¢, 1 < i < k—1. By Lemma 1, we
have |C;| < 4 since d¢,(z) > 2 for some z € X.

Claim 4 |C;| =3 foralli, 1 <i<k-1.
Proof. Suppose that |C;| = 4 and let C; = vjvpvzv4v;. By Lemma 1, dg,(z) = 2

for all x € X.

Suppose that N¢,(z1) # Ne,(z3). Then we may assume that N¢,(z1) = {v1,vs}
and Ng,(z3) = {vs,vs}. Note that there do not exist two vertex-disjoint cycles in
(H U C}), since otherwise we have k vertex-disjoint cycles of G, a contradiction.
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Take C} = x1v1vv371 and C} = Cj for j # i. Then {C],...,C}_,} is minimal
and G — U;‘;ll V(Cj) is a tree with three leaves xs,z; and vy. By Lemma 5, we have
k vertex-disjoint cycles of GG, but this is a contradiction.

Hence Ng,(z1) = Ng,(x3). Similarly, we have N¢,(x3) = Ng,(x;). Without
loss of generality, we may assume that Ng,(z) = {v1,vs3} for all x € X. Taking
Cf = z1wpa3v17; and CF = Cj for j # i, then {Cf,...,C}_,} is minimal and G —
U;”;ll V(Cj) is a tree with three leaves z4,v; and vy. By Lemma 5, this is also a
contradiction. O

Claim 5 Let z € {z,2;}. If A C N¢,(z) and |A| = 2, then Ng,(z3) \ A = 0.

Proof. Let C; = vivovzv;. Suppose that the claim does not hold, and let z = z;.
Without loss of generality, we may assume that vy, vy € Ng,(21) and v3 € Ng,(z3).
Take C} = zyv1v92; and Cé- = (j for j #i. Then {C1,...,C}_,} is minimal and
G- U;‘;ll V(C}) is a tree with three leaves x4, r; and vs since there do not exist two
vertex-disjoint cycles in (H U C;). By Lemma 5, we have k vertex-disjoint cycles of

G, a contradiction.

For the case x = z;, we can prove similarly. O

Claim 6 There exist only two type of configurations between H and C; for all ¢,
1<i<k—1. (See Figure 1.)

Proof. Suppose that d¢,(z1) = 3. By Claim 5, we have d¢,(x3) = 0 and d¢, () = 3
since d¢;(X) = 6. (This is Type 1.)

Next, suppose that d¢,(z1) < 1. Since de,(X) = 6, de;({z3,2;}) > 5. But this
contradicts Claim 5.

Finally, suppose that d¢,(z;) = 2. By Claim 5, we have N, (1) = N, (z3). Since
dc,(X) = 6, we have d¢,(x;) = 2 and Ng,(x;) = N¢,(x3). (This is Type 2.)
Hence the claim is proved. O

In each configuration, we find that de;(zs) = de,(z4) = 0forany i, 1 <i < k-1,
since otherwise we can find two vertex-disjoint cycles in (H U C;). This means that
dG(Ig) = dG(SC4) =2.

Let C = vivyvgvy. Since {2, x4, v3} is independent,

6k — 2 < dg({ws, x4,v3}) <24+2+3(k—2)+4=3k+2,
but this is a contradiction since k& > 2. This completes the proof of CASE 1.

CASE 2 |H|<4.

Let V(H) = {z1,..., 74} By Claims 1 and 2, we may assume that z,25, 2,25 €
E(G) if |H| = 3 and that 2129, 2324 € E(G) if |H| = 4.
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I ) L3 Ly - Iy Iy T2 T3 Ty " Iy
H @ @ L H @ @
C; C;
(%1 V3 (% Vg V3
Type 1 Type 2

Figure 1: Configurations Type 1 and Type 2

Claim 7 There exists i, 1 <i < k—1 such that |C;| > 4 and |E(y,C;)| < 3 for any
y € V(C;) and j # i.

Proof. Since |G| > 3k+2 and |H| <4, |L| > 3k—2 > 3(k—1). Hence there exists
i, 1 <i <k —1such that |C;] > 4.

We define a directed graph D = (V(D), E(D)) as follows:
{(C;,C;) - |E(y,C;)| > 4 for some y € V(C;) and j # i}

Suppose that D contains a directed cycle. Without loss of generality, we may
assume that (Cy,Cy),(Ca, Cs),. .., (Cp,C1) € E(D), where m > 2. Take y; €
V(C;) so that |E(y;, Cis1)| > 4. (Hereafter in the proof of this claim, let Cp,qy =
Cy.) Then there exist v, wi1 € Ne,,,(y;) such that y; 11 € Ciy1[viyr, wig1) and
Cit1(Vit1, wip1) N Neyy, (1) = 0. For 1 <@ < m, we define new cycles as

Ci = yiCip1[Vig1, wig1]yi-

Then |JX, V(C))| < |U, V(Cy)|, but this contradicts the minimality of L since
V(Cj;,) misses at least one neighbor of Ng,,,(y;) for each 4, 1 < i < m. Hence D
does not contain a directed cycle and an endvertex of a directed path is a desired
cycle. O

Without loss of generality, we may assume that C; satisfies the property of
Claim 7.

Claim 8 |{y € V(C1): |E(y,C;)| =3} <2 forany j, 2<j<k-L1

Proof. Suppose not. Without loss of generality, we may assume that |E(y, C;)| = 3
for any y € {y1,¥2,y3} C V(C1). Let vy, vy, v3 € N, (y1) and suppose that vy, v, and
vy appear in this order in Cj.



DEGREE SUM CONDITIONS AND VERTEX-DISJOINT CYCLES 245

Suppose that y,v; ¢ E(G). If [Ng,; (y2) N Cj(vi,v3)] > 2, we can find two shorter
cycles than Oy and Cj. Since dg,(y2) = 3, we have |Ng, (y2) N Cjlvs, v1)| > 2. In this
case, we also find two shorter cycles than C) and C; since v; € N, (y1).

Hence y,v; € E(G). By symmetry, vi,vs,v3 € Ng,(y) for y € {y2,y3}. But we
can find two shorter cycles than C; and C; since |C1| > 4. O

Claim 9 E(z,C)) # 0.

Proof. Suppose that E(zy,Cy) = 0. Let Y = {y1, y2, 3,94} C V(C1) and suppose
that y1,y2,y3 and y4 appear in this order in Cj.

Subclaim 9.1 f = 2|E(z2, C))|+ |E(Y,C;)| <12 for any i,2 <i<k—1.

Proof. Suppose that f > 13 for some i, 2 < i < k — 1. Since |[E(Y, ;)| < 10 by
the choice of €} and Claim 8, |E(z2,C;)] > 2. On the other hand, |E(z,, C;)| < 3
by Lemma 1.

Case A |E(z2,C;)| = 3.

In this case, we have |C;| = 3 by Lemma 1. Furthermore, we have |E(v,Y)| <2
for any v € V(C;), since otherwise we can find two shorter cycles than Cy and C; in
(HUCyUC;). Then

F<2x3+2x3=12,

a contradiction.
Case B |E(x,,C))| = 2.
In this case, |C;| < 4 by Lemma 1. Since f > 13, we have
|E(Y,Ci)| > 9. (2)

Hence d¢,(y) > 3 for some y € Y. Without loss of generality, we may assume that
de,(y1) > 3. Moreover, dc,(y1) = 3 by the choice of C;. Let Y’ = {ya, y3,ya}.
Case B.1 |C;|=4.

Let C; = v1vov3v4v;. We may assume that vy, vy, v3 € N, (y1). Then |E(v;, Y")| <
1for j € {1,3,4} and |E(v,Y")| < 2 since otherwise we can find two shorter cycles
than €y and C; in (C; U C;). Hence

|E(Y,Ci)| = dy({v1,v2,v3,04}) <2+34+2+1=8,
but this contradicts (2).

Case B.2 |C;|=3.

Let C; = v1vov3vy. In this case, Ng,(y1) = {v1,v2,v3} and we may assume that
Ng,(z9) = {v1,v2}. Then |E(v;,Y")| < 2for 1 < j < 2and |E(vs,Y")| < 1, since
otherwise we can find two shorter cycles than C; and C; in (C; U C; U {«2}). Hence

|E(Y,Cs)| = dy({v1,v9,v3}) <3+3+2=8,
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but this contradicts (2). Hence Subclaim 9.1 is proved. O

Since each of {z»,y1,y3} and {z2,y2,ys} is independent,

<
< 12(k—2)+4+8+|E(Y, H — {z,})|

by Subclaim 9.1. Hence |E(Y, H — {z,})| > 8. Since |H| < 4, |E(Y,z)| > 3 holds
for some € V(H) — {z2}, but this contradicts the minimality of L by Lemma 1.
Hence the proof of Claim 9 is completed. O

First, we consider the case |H| =4 and H ~ 2K,.
CASE 2.1 H ~2K,.

By Claim 9, E(z,C;) # 0 for all x € V(H). Then it is easy to see that |C1| < 6.
Let z1y € E(G) for y € V(C}). We give an orientation to C; so that z,y~ ¢ E(G) if
it is possible. Since at least one of z3 and z4 is not adjacent to y~, we may assume
that z3y~ ¢ E(G). Then Z = {z,z3,y " } is independent. Let H' = (H U C}).

Claim 10 |E(Z,C;)| <6 foranyi, 2 <i<k—1.

Proof. Suppose that |E(Z,C;)| > 7 for some 4, 2 < ¢ < k — 1. We consider the
following two cases.

Case A 5 < |Cy| <6, or |C1] = 4 and there exists a cycle of order 4 containing
L1 in H'.

In this case, we may assume that x,y’ € E(G) for y' = yU=3% If we take
C1 = 21C1[y, y'|v2zy and C} = Cj for 2 < j < k—1, then {C],...,C}_,} is minimal.
Note that y~ does not lie in Cj. By Lemma 1, d¢;(y~) < 3 for 2 < j <k —1and
de;(y~) = 3 implies |C}| = 3. Since |E(Z,C;)| > 7, d¢,(2) > 3 for some 2 € Z, and
we have |C;] = 3. Let C; = v1vau30;.

Suppose that d¢,(z1) = 3. Since dg, ({3, }) > 4, d¢,(x3) > 1 and we may
assume that zzv3 € E(G). Take C] = xjv1v2; and Of = C; for j # i. Then
{C1,...C}_,} is minimal and G — U;”;ll V(C;) is connected or G — U;’;ll V(C}) =
P;UK;. By Lemma 6, this contradicts the choice of cycles (1). Therefore, d¢,(z1) <
2. Similarly, we have d¢,(z3) < 2.

Hence d¢,(y~) = 3 and d¢,(21) = d¢,(x3) = 2. Without loss of generality, we may
assume that zzv3 € E(G). Taking O] = 2,C1[y,y']zsw1, Cf = y~vivpy~ and Cf = Cj

K3

for j # 1,4, then {C},...C}_;} is minimal and G — U;”;ll V(Cj}) is connected, or

G- U;”;ll V(C}) =~ P3 U K. But this contradicts the choice of cycles (1) by Lemma
6.

Case B || =4 and there exists no cycle of order 4 containing z1xs in H'.
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By symmetry, we may assume that there exists no cycle of order 4 containing
x3xy in H'. In this case, z,y*" € E(G) and d¢,(z) = 1 for all x € V(H).

By the choice of C4, d¢,(y~) < 3 holds. Then dg,({z1,23}) > 4, and we have
dc,(x1) > 2 or dg,(x3) > 2. By Lemma 1, we have |C;| < 4.

Case B.1 |Cy| =4.

Let C; = v1v2v3v4v;. By Lemma 1, de, (1) < 2 and d¢,(23) < 2. Hence we have
de,(y~) =3 and dg,(z1) = de,(z3) = 2.

Since de;(y~) = 3 and d¢;(z3) = 2 without loss of generality, we may assume
that vi,v,v3 € Ng,(y7) and vy € Ner(ws). If we take Cf = z,Ci[y,y* |aaa,
Ci = y~vivey” and C} = C; for j # 1,i, then {C},...,C}_,} is minimal and

G- U;‘;ll V(C%) is connected. This also contradicts the choice of cycles (1).

Case B.2 |Cy| =3.

Let C; = v1vpv3v1. Since de,(y~) < 3, we have d¢, ({z1,23}) > 4. Suppose that
de,(z1) = 3. Then d¢,(z3) > 1 and without loss of generality, we may assume that
vz € Ng,(x3). If we take C] = 21010971 and O = Cj for j # 4, then {C},...C}_,}
is minimal and G — (Ji=} V/(C}) is connected, or G — U2} V(C}) ~ Py U K. By
Lemma 6, this contradicts the choice of cycles (1). Hence dg¢,(x1) < 2. Similarly,
we have d¢,(z3) < 2. Then d¢,(y~) = 3 and d¢,(21) = de;(2z3) = 2, and we may
assume that vi,v2 € Ng(21). If v3 € Ng,(z3) N Ng,(24), then C! = zv1v9a,
Cy = w3z4v373 and C; = Cj for j # i are k vertex-disjoint cycles in G. Hence
vz ¢ Ne, (1) N Ney(z3). If 2903 ¢ E(G), then Cf = zyv1v2, and Cf = C; for
j # i are k — 1 minimal vertex-disjoint cycles and G — U;‘;ll V(C}) =~ Ky U2K, or
P; U K; since vz ¢ Ng,(z1) N Ng,(23). By Lemma 6, this contradicts the choice of
cycles (1). Therefore, zov3 € E(G). Since d¢,(y~) = 3, y v3 € E(G). Furthermore,
since there is no cycle of order 4 containing z3x4 in H' and the minimality of L,
E({z3,24},{y,y"}) # 0. If we take C] = zov3y~y*tzs, C} = 21010571 and C; =0
for j # 1,4, then {C1,...,C}_,} is minimal and G — U;”;ll V(Cj) is connected. But
this contradicts the choice of cycles (1). This completes the proof of Claim 10. O

Claim 11 |E(Z, H')| < 9.

Proof. Suppose that |E(Z, H')| > 10. Since dg(y~) < 4, we have dg:({z1,z3}) >
6. On the other hand, dg/({z1,23}) < 6 since d¢,(z) < 2 for & € {w;,23}. Hence
dg({z1,23}) = 6 and dg/(y~) = 4. Especially, dg,(z1) = dg,(z3) = 2. Then we
have x1y%", 3y, 239>+ € E(G). Since dg/(y~) = 4, we have zoy~, 24y~ € E(G). By
the choice of an orientation of Cy, xoy™ € E(G). But this gives two vertex-disjoint
cycles in H', 129yt yz, and 2324y~ y? 23, a contradiction. O

By Claims 10 and 11, we have
6k —2 <dg(Z) <6(k—2)+9=6Fk—3,

a contradiction. This completes the proof of CASE 2.1.
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In the following, we consider the case 3 < |H| < 4 and H is connected. Other
than the assumptions we put at the beginning of Case 2, we may further assume
that wox3 € E(G) if |H| = 4. By Claim 9, we may assume that 2,y € E(G) for some
y € V(C). Let X = {w1, 22,23} and Y = {y7,y,y"}.

Claim 12 g = |E(X UY,C;)| <12 for anyi, 2 <i < k—1.

Proof. Suppose that g > 13 for some 4, 2 < i < k—1. Then we have |[E(X,C;)| > 5
since |E(Y,C;)| < 8 holds by the choice of C; and Claim 8. Hence d¢,(z) > 2 for
some z € X and we have |C;| < 4 by Lemma 1.

Subclaim 12.1 |E(Y,C;)| < 7 if |Ci| = 4.

Proof. Suppose that |C;| = 4 and |E(Y,C;)] > 8. Then d¢,(y') > 3 for some
y" € Y. On the other hand, d¢,(y') < 3 for any ' € Y by the choice of C;. Hence
de,(y') = 3 for some y' € Y. Let C; = v1v2030401.

Suppose that dc,(y~) = 3. Without loss of generality, we may assume that
v1, 02,03 € Ng,(y~). Since |E(Y, C;)| > 8, we have |[E({y,y*},Ci)| > 5 and N¢,(y) N
N¢,(y*) # 0. But this implies that we can find two shorter cycles than C; and C; in
(C1 U (), a contradiction.

Hence d¢,(y~) < 2. Similarly, we have d¢,(y*) < 2. But this means that
|E(Y,C;)| <7, a contradiction. O

Suppose that |C;| = 4 and let C; = vjvav3v4v;. Since |E(Y, C;)| < 7 by Subclaim
12.1, we have |E(X, C;)| > 6. On the other hand, |E(X,C;)| < 6 holds by Lemma 1.
Hence |E(X, C;)| = 6 and |E(Y, C;)| = 7. Without loss of generality, we may assume
that {v1,v3} = N¢,(21) = Ng,(z3) and {ve,v4} = Ng,(z2). Note that there exists a
cycle of order 4 in ((H U C;) — {v;,vj41}) for any j, 1 < j < 3. Since |E(Y,C;)| =7,
de,(y') = 3 for some y' € Y and {vj,v;41} C N, (y') for some j, 1 < j < 3. This
means that we can find a triangle and a cycle of order 4 in (H U Cy U C;). This
contradicts the minimality of L.

Hence we may assume that |C;| = 3. Let C; = vivquszvy and H' = (HUCy U Cy).

Suppose that d¢, (y~) = 3. Then N, (z1)NNg; (z2) = 0 and N, (22)NNe, (z3) = 0,
since otherwise we can find two vertex-disjoint triangles in H". Hence |E(X, C;)| < 6.

Also N¢,(y) N Ne,(y) = 0, since otherwise we can find two vertex-disjoint triangles
in (C; U ;). Then |E({y,y"},C:)| < 3 and we get g < 12, a contradiction.

Hence d¢,(y~) < 2 and we have d¢,(yt) < 2, similarly. Furthermore, since we
do not use the existence of the path Ci[y™,y~] in the above argument, we have also
de,(21) < 2 and dg,(23) < 2 by the same argument. Therefore, |E({z1, 3,y ,y"},
Ci)| < 8 and this implies that |E({z2,y}, Ci)| > 5.

Suppose that d¢,(y) = 3. Since |E(Y,C;)| < 7, we have |E(X,C;)| > 6. Also,
since dg,(z1) < 2 and dg,(x3) < 2, we have dg,(z2) > 2 and this implies that
Ng,(21) N Ng,(z2) # 0. Then we can find two vertex-disjoint triangles in H”, a
contradiction. Hence d¢,(y) < 2. Again, we do not use the existence of the path
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C1ly™,y~], then we have d¢,(z;3) < 2 by the same argument. But this means that
g < 12, a contradiction. This completes the proof of Claim 12. O

Since each of {x1,23,y} and {z2,y",y } is independent,

2(6k — 2)

A

< dg(XUY)
< 12(k-2)+ 10+ (|H| - 3) + |E(X,C)| + |E(Y, H)|.

Hence
13 <|H|+ |E(X,C)| + |E(Y, H)|. (3)

We consider the following two cases.
CASE 2.2 H~P,.

By (3), 9 < |E(X,C1)| + |E(Y,H)| and at least one of |E(X,Cy)| > 5 and
|E(Y, H)| 2 5 hold.
Let H' = (H U (). Note that there is no triangle in H' by the minimality of L.

Claim 13 |C4| = 4.

Proof. Suppose that |E(X,C)| > 5. Then dg,(z) > 2 for some € X and we
have |C}] =4 by Lemma 1.

Next, suppose that |E(Y, H)| > 5. This inequality implies that dy(z) > 2 for
some x € H and also means that |C}| =4 by Lemma 1. O

Let C; = yyTy'y"y. By symmetry of z» and w3, we have E(z3,C1) # 0 by
Claim 9.

Suppose that z3y" € E(G). Then de,(22) = de,(x3) = 1 since otherwise we can
find a triangle in H'. If 1y, x4y € E(G), then x1zyyy~ @1 and @3zay™y'z; are two
vertex-disjoint cycles in H', and we have k vertex-disjoint cycles of G, a contradiction.
If 2y, 24y~ € E(G), then zy20yyTx; and 2324y~ 323 are two vertex-disjoint cycles
in H'. Hence |E(G) N{z1y ,zayt}| < 1 and |E(G) N{z1yT, 24y~ }| < 1. But this
implies that |E(X,Cy)| + |E(Y, H)| < 8, a contradiction.

Hence Ng¢,(z3) C {y~,y"}. By symmetry of y© and y~, we may assume that
xz3yt € E(G). By replacing Cy with @sx3yTyxs, we may assume that {21, 24,y7,9'}
induces Py. Since z1z4 ¢ E(G), we have either {z1y~,y'z4} C E(G) or {z1y',y x4}
C E(G). However, in the former case, (H U C;) has two vertex-disjoint cycles
xz11oyy~x, and T3w4y'y T T3, a contradiction. Thus, the latter case occurs. We have
already seen y'zs ¢ E(G). By symmetry, we also have 2oy~ ¢ E(G). Then since
(H U C) has no triangle, we deduce E(H,C}) = {z1y', 22y, 23y™, vay}. However,
this implies that |E(X,C1)| + |E(Y, H)| < 6. This is a contradiction and completes
the proof of CASE 2.2.

CASE 2.3 |H|=3
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Figure 2: The configuration between H and C}

By (3), we have 10 < |E(X, Cy)|+|E(Y, H)|. Since there is no triangle in (HUC})
because of the minimality of L, dg(y) = 1 and dg(yo) < 2 for yo € {y~,y"}. Hence
|E(Y,H)| <5, and this implies that |E(X,C;)| > 5. Then |C;| = 4 by Lemma 1
since d¢, (z) > 2 for some z € X.

On the other hand, we have |E(X,C;)| < 6 by Lemma 1. This implies that
|B(X,Cy)l + |E(Y, H)| < 1.

Since each of {z1, z3,y} and {z2,y~,y "} is independent,

26k —2) < dg(XUY)

-1
< SIBXUY.0)|+ 10+ [E(X,Cr)| + B 1)
< {;2(19—2)+10+11
< 12k-3
by Claim 12. Therefore,
11 < |E(XUY,C;)| <12 (4)

holds for any 7,2 <i < k— 1.

Let C; = yyty'y~y. Then we may assume that {z1y~, 21y, 22y, 23y, 23yt } C
E(G) since |E(X,C1)| > 5 (see Figure 2). Let Z = {x1, v3,y} and Z' = {z9,y ,y" }.

Claim 14 |E(Z,C;)| <6 for anyi, 2 <i<k—1.

Proof. Suppose that |E(Z,C;)| > 7 for some i. If we take C] = z2923y~2; and
Cj=Cjfor2 <j<k—1,then {C},...,C}_,} is minimal. By Lemma 1, d¢;(y) < 3
for 2 < j < k—1 and dg,(y) = 3 implies |Cj| = 3. Since |E(Z,C;)| > 7 and
dc,(z) > 3 for some z € Z. Then |C;| = 3, and let C; = v1vav30;.

Suppose that de,(z1) = 3. If de,(y) = 2, then dg,(2') = 0 for any 2’ € Z'
since otherwise we can find two vertex-disjoint triangles in (H U Cy U C;). Then
|[E(ZU Z',C;)| = |[E(XUY,C;)| <9, but this contradicts (4). Hence d¢,(y) < 1,
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and we have d¢,(z3) = 3. In this case, we have also d¢,(2') = 0 for any 2’ € Z’ and
this means that |E(X UY,C;)| < 7, a contradiction.

Hence d¢,(x1) < 2. Similarly, we have d¢,(x3) < 2. This means that d¢,(y) = 3
and dg,(z1) = dg,(z3) = 2. In this case, we have d¢,(z') = 0 for all 2’ € Z' again,
and this implies that |E(X UY,C;)| < 7, a contradiction. This completes the proof
of Claim 14. O

Since Z is independent, we have
6k —2<deg(Z)<6(k—2)+9=6k-3

by Claim 14, but this is a contradiction. This completes the proofs of CASE 2.3 and
Theorem 4.
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