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Abstract

The d-relaxed game chromatic number of a graph G is the minimum
number & such that Alice has a winning strategy in the following game:
Alice and Bob alternately colour the vertices of G with colours from a set
X with | X| = k. We say a colour ¢ is legal for an uncoloured vertex z if
after colouring x with colour 7, no vertex of colour ¢ is adjacent to more
than d vertices of colour i. Both players can only colour vertices with legal
colours. Bob wins the game if at a certain step, there is an uncoloured
vertex which has no legal colour. Alice wins the game if all the vertices
are coloured with legal colours. The d-relaxed game chromatic index of
a graph G denoted by d—X'g(G) is the d-relaxed game chromatic number
of the line graph of G. This paper studies the d-relaxed game chromatic
index of k-degenerate graphs. Suppose G is a k-degenerate graph with

maximum degree A. This paper proves that if d > 2k® + 5k — 1, then
d‘X’g(G) S 2k+ A+k—1)(k+1

d—2k2—4k+2 °

1 Introduction

Let G be a finite graph, X a set of colours and d a non-negative integer. A d-relaxed
colouring game on G with colour set X is played by two players Alice and Bob. The
players take turns colouring the vertices of G with legal colours from X, with Alice
moves first. Here a colour i is a legal colour for an uncoloured vertex v, if after
colouring v with colour 7, each vertex of colour i has at most d neighbours of colour
i. In other words, colour 7 is legal for an uncoloured vertex v if (1) v has at most d
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neigbours coloured by colour ¢, and (2), if v’ is a neighbour of v coloured by colour
i, then v’ has at most d — 1 neighbours (other than v) coloured by colour i. If all
the vertices are coloured after |V (G)| turns, then Alice wins the game. Otherwise,
at a certain step, some uncoloured vertices have no legal colour. In this case, Bob
wins the game. So Alice’s goal is to produce a legal colouring of all vertices of G and
Bob tries to prevent this from happening. The d-relazed game chromatic number
d-x4(G) of a graph G = (V, E) is the least cardinality of a colour set X for which
Alice has a winning strategy in the d-relaxed colouring game on G. This parameter
is well-defined, since Alice always wins if | X| > |A(G)| + 1. In case d = 0, then the
0-relaxed colouring game is called a colouring game. The 0-relaxed game chromatic
number is called the game chromatic number and is denoted by x4(G).

The game chromatic number and the relaxed game chromatic number of various
classes of graphs have been studied in the literature [9, 13, 16, 17, 18, 19]. In this
paper, we are interested in the relaxed game chromatic number of line graphs. Given
a graph G, let L(G) be the line graph of G. The d-relaxed game chromatic number
of L(G) is called the d-relazed game chromatic index of G and denoted by d-x;,(G).

The d-relaxed game chromatic index of graphs have been studied in [1, 2]. The
main focus has been on k-degenerate graphs. A graph G = (V, E) is call k-degenerate
if there is a linear ordering L of V(@) such that for each vertex = of G, the number
of neighbors of z that precede x in L is less than or equal to k. Suppose G is a
k-degenerate graph of maximum degree A(G). It was proved in [1] that x(G) <
A + 3k — 1, and proved in [2] that d-x,(G) < A+ k — 1 if d > 2k? + 4k. Moreover,
if T is a forest, i.e., 1-degenerate, then d—X;(T) <A+1ifd>1and d-X;(T) <Aif
d>3in[2].

All the upper bounds for the d-relaxed game chromatic index of a k-degenerate
graph are greater than the maximum degree. However, it is natural that when d is
large, the d-relaxed game chromatic index of G should be much smaller than A(G).
In this paper, we prove an upper bound for d—X;(G) which improves earlier upper
bounds for large d and A(G). Suppose G is a k-degenerate graph. The main result

of this paper is that if d > 2k? 4+ 5k — 1, then d—X'g(G) <2k+ %.

2 Alice’s winning strategy

In this section, we prove the main result:

Theorem 1 Suppose G is a k-degenerate with mazimum degree A. If d > 2k* +

5k — 1, then d-x',(G) < 2k + Gtk ),

Let m = 2k + Lﬁfz—k,;%%l. To prove Theorem 1, we need to give a winning
strategy for Alice in the d-relaxed edge colouring game on G with a colour set of size
m. In the following, G = (V, E) is a k-degenerate graph, and X is a colour set with

| X| =m.
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First we define some terms needed in the description and the proof of the cor-
rectness of the strategy. Let L be a linear ordering of the vertices of G such that for
any vertex v € V, [NT(v)] < k. Here N*(v) = {z : ¢ < v,z ~ v} is the set of
neighbours of v that precede v in the ordering L. The linear ordering L induces an
orientation of G: an edge e = zy is oriented from z to y if y <y . For simplicity,
we also use G = (V, E) to denote the orientation of G, but each element of E is an
ordered pair (z,y) and is called an arc of G. So in the colouring game, the players
are colouring the arcs of G. For a vertex u of G, let N (u) = {(u,v) : (u,v) € E}
and let Nz (u) = {(v,u) : (v,u) € E} and let Ng(u) = Nj(u) U N5 (u). We extend
the linear ordering L to the arc set E as follows: Suppose e = (z,y) and €' = (2/,y').
We write e <, € if either y <g ¢ or y =y and z < 2.

Suppose the arcs of G are partially coloured. We shall denote by C' the set of
coloured arcs and denote by U the set of uncoloured arcs. For a coloured arc e € C, we
shall denote by c(e) the colour of e. For a set F' of arcs, let ¢(F) = {c(e) : e € FNC}.
For an arc e, N(e) denote the set of arcs adjacent to e (in the line graph of G).

We say a colour « is permissible to an arc (z,y) if « is a legal colour to (z,y)
and moreover a ¢ c¢(Nj (z) UNz(y)). Alice will colour arcs with permissible colours
only. However, Bob may colour an arc with a non-permissible colour (but still Bob
can only colour arcs with legal colours).

During the play of the game, Alice will keep record of a set A of active arcs.
When an arc e is put into A, we say that e is activated. Once an arc is activated,
it will remain active forever. Initially Alice activates and colours the minimum arc
(with respect to the linear order L).

Suppose Bob has just coloured an arc (z,z) with colour a. Let
Y = {ye N"(z):(z,y) € C and c((z,y)) = a}
Y’ {ye Y :Ni(y) cCor acc(Ngi(y))}
Y* {yeY:ad¢c(Ni(y) and Je € N5 (y) NU
such that « is permissible to e}.

Alice will first activate arc (z,z) if it is not active yet, i.e., let A:= AU{(z,z)}.
Then starts from (z,z), Alice searches the arc to be coloured.

1. f Ni(z)NU =0 and Y' =Y and Y* # 0, then let y* be an arbitrary vertex
of Y*. Let h be an arc in Ng(y*) N U whose permissible colours contain a.
Colour h with colour o and activate h if it is not active yet.

2. If N (z)NU = Band Y' =Y and Y* = 0, then colour the minimum uncoloured
arc h with an arbitrary permissible colour and activate h if it is not active yet.

3. If Nf(z)NU # 0, then Alice jump to the minimum uncoloured arc, say e, of
Nz (z) and go to the recursive stage. If Nf(z) NU = and Y # Y, then
let y =minY \ Y’ and Alice jumps to the minimum uncoloured arc, say e, of
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Ni(y) and go to the recursive stage. In the former case, we say (z,r) made
a contribution to e, and e received one contribution from (z,z); in the latter
case we say (z,y) made a contribution to e, and e received one contribution
from (z,y).

Recursive Stage

e Assume Alice arrived at an arc (a,b). If (a,b) is active, or (a,b) is not active
but N (b)NU = 0, then colour (a,b) with an arbitrary permissible colour (and
activate it if it is not active yet). If (a,b) is not active and Nz (b) NU # 0,
then activate (a,b) and jumps to the minimum uncoloured arc, say e, of N3 (b),
return to the recursive stage. In this case we say (a,b) made a contribution
to e.

This completes the description of Alice’s strategy. Now we show that this is a
winning strategy for Alice. For this purpose, it suffices to show that any uncoloured
arc has a permissible colour. Assume to the contrary that e = (a, b) is an uncoloured
arc and e has no permissible colour. Let X' = X \ (¢(Ng(a) U N£(b))). A colour
a € X' is not permissible to e only if either there are d + 1 arcs adjacent to e that
are coloured by « (i.e., |c7*(a) N (Ng(a) U Ng(b))| > d + 1), or there is an arc €
adjacent to e such that €' is coloured by colour o and moreover, €’ is adjacent to d
other arcs of colour a. Let

X, = {ae X :jcHa)NN(e)| >d+1}
X, = {ae X' :3 € Ngb),c(e) = a,|cH(a) N N()| > d}.
X, = {a€ X3¢ € Ng(a),c(e)) = a,|c (a) N N(e)| > d}.

Since all the colours of X' are not permissible to e, we have X' = X] U X} U X.
Since |X| = m = 2k + % and |c(N#(a) U NZ (D)) < 2k — 1 (note that
(a,b) € N£(a) and (a,b) is uncoloured), to derive a contradiction, it suffices to show

that | X'| < (Atk—1)(k+1)

d—2k7—2k+2 °
Lemma 1 If Ni(z) contains uncoloured arcs, then |Ng(z) N C| < 2k.

Proof. As Nj(z) contains uncoloured arcs, when an arc e € Nz () is activated,
it will make a contribution to an arc in N (z). Each arc can receive at most 2
contributions: the first time an arc receives a contribution, it is activated, the second
time an arc receives a contribution, then it is coloured, and coloured arcs will not
receive any contribution. As |N#(z)| < k and Nj(z) contains uncoloured arcs, the
arcs in N3 (z) received at most 2k contributions. As each coloured arc is active,
Ng (z) contains at most 2k coloured arcs. |

By Lemma 1, we have Ng(a) contains at most 2k coloured arcs. To derive an
upper bound for the cardinality of X} and X3, a more careful analysis is needed.
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Lemma 2 Suppose (w',w) is an arc coloured by colour a. If Ng(w') contains 2k* +
2k arcs coloured by colour o, then all the arcs in N (w) are coloured.

Proof. By Lemma 1, when the first 2k arcs of N (w') are activated, all the arcs of
N+ (w') are coloured. After all the arcs of N*(w') are coloured, each time another arc
of Nz (w') is coloured by colour «, one of the arcs in N (v) is activated or coloured,
where v € Nt (w') and (w',v) is coloured by colour a.. Since the number of such arcs
in the set Upen+(w),e((wv)=aNg (v) is at most k2, it follows that when 2k? + 2k arcs
of Nz (w') are coloured by colour «, then after Alice finish her move, all the arcs of
N (v) are coloured for all v € N*(w') with ¢((w’,v)) = . In particular, all the arcs
in N (w) are coloured. |

Corollary 1 Ify € X}, then Nz (a) contains at least d—2k? —2k+1 arcs of coloury.

Proof. Assume 7y € Xj. Then there is an arc ¢ = (w,a) € Ng(a) such that
c(e') =1, [ () N N(€')| > d. By Lemma 2, |Ng(w) N (y)| < 2k* 4+ 2k — 1 (as
the arc (a, b) is uncoloured). Therefore N (a) contains at least d — 2k? — 2k + 1 arcs
of colour 7. |

Suppose a € X is a colour, u is vertex of G. An arc (u,v) is called a a-saturated
arc (respectively, nearlya-saturated arc if the following hold:

1. ¢((u,v)) = a and (u,v) is adjacent to d (respectively, d — 1) arcs of colour a.
2. NE(v)Net(a) = 0.

3. There exists w € N~ (v) such that (w, v) is uncoloured and Nz (w)Ne™ ! (a) = 0.

Lemma 3 Assume (u,v) is a nearly a-saturated arc and N~ (v) contains no a-sat-

urated arc. Then Nz (v) contains at least f%ﬂl’”ﬂ arcs of colour a.
Proof. Let vy, vs,---,v; be all the out neighbours of u such that ¢((u,v;)) = a,

where v = v;. By definition, there is an arc (w,v) € N (w) which is uncoloured. By
Lemma 2 that [Nz (w) N C| < 2k. Moreover, if (w',w) is an arc in Nz (w) coloured
by colour «, then by Lemma 2, N (w') contains at most 2k* + 2k — 1 arcs coloured
by colour @. As N*(w') contains at most k — 1 arcs other than (w’,w), we conclude
that (w',w) is adjacent to at most 2k* + 5k — 2 < d arcs of colour . As (u,v)
is a nearlya-saturated arc and N~(v) contains no a-saturated arc, it follows that
no arc in N~ (v) of colour « is adjacent to d arcs of colour a. This implies that «
is a permissible colour for (w,v). So after all the arcs of U_; N*(v;) are coloured,
whenever an arc e € N (u) is coloured by colour a, Alice applies choice (1) in her
strategy. Hence some arcs in U;ZIN z (v;) will be coloured by colour . Assume
Ng (u) contains p arcs coloured by colour «, and for j = 1,2,---,¢, let g; be the
number of arcs in N~ (v;) that are coloured by colour a. By Lemma 2, when the
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first 2k* + 2k arcs in N~ (u) are coloured by colour a, all the arcs in Uj_; N (v;) are
coloured. Therefore, Z§:1 q; > p— 2k* — 2k.

The number of arcs of colour « adjacent to (u,v)is p+t—14 ¢ — 1 (note that
(u,v) contributes 1 to the quantity ¢;). Since (u,v) is adjacent to d — 1 arcs of colour
a, we have p 4+ ¢; +t — 1 = d. Similarly, we have p +¢; +¢t —1 < d+ 1 for all j
(for otherwise (u,v;) is adjacent to more than d arcs of colour «). Thus we have
q1 +1 > g;. Hence

1+, L P2k 2%k 41
t = t
d—q—t+1-2k*—2k+1 _ d—q —2k —3k+2
t - k '
d—2k%—4k
> do2dlet? |

@ +1

Y

This implies that g¢;

Corollary 2 If a € X3, then Ng(b) contains at least f%ﬂ“‘“] arcs of colour a.

Proof. Assume o € X}. It follows from the definition that there is an arc (w,b)
which is an a-saturated arc. Assume (w,b) is the first arc in N~ (b) that becomes
a-saturated. Before the last arc adjacent to (w,b) is coloured by «, (w,b) was a
nearlya-saturated arc. Hence the conclusion follows from Lemma 3.

Now we can derive an upper bound for | X'|.

Corollary 3 |X'| < G blt]),

Proof. For each colour a € X7, it follows from the definition that there are at least
d+ 1 arcs in N (a) U N5 (b) that are coloured by colour a. For each colour g € X},
by Corollary 2, there are at least d_%,:%f“z arcs in N (b) coloured by colour j3. For
each colour v € X}, by Corollary 1, there are at least d — 2k* — 2k + 1 arcs in Nz (b)
coloured by colour v. As Nz (b) contains at most A — [Nz (b)| — 1 coloured arcs and
Nz (a) contains at most 2k coloured arcs, we conclude that

A= |NF(b)] =1+ 2k

d—2k* — 4k + 2
> |X{|(d+1)+\Xg|k—+1+|X§\(df2k272k+1)
d—2k* — 4k + 2
> (1X3]+ [ Xs] + |X§|)k—+1'
Since | Nz (b)| < k, we have | X'| < %5—';%%2. |

Thus we have proved that the strategy described at the beginning of this section
is a winning strategy for Alice. This completes the proof of Theorem 1.

How good is the upper bound in Theorem 1?7 Our next result shows that if £k = 1,
then the upper bound is not too far from the lower bound.
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Theorem 2 For any positive integer d < A — 2, there is a tree T with mazimum

degree A for which d-x;,(T) > dz—fg-

Proof. Before proving this result, we observe that if d > 6, then it follows from
Theorem 1 that d-x;(T) < 2+ ;TA4. So the upper bound and the lower bound are
not too far away.

Let n = A and let T be the rooted tree with root vertex vy which has n sons,
U, Us,y -+, U, and each of u; (i =1,2,---,n) has n — 1 sons.

Let m = [f—fﬂ — 1 and suppose the game is played on 7" with colour set X =
{1,2,---,m}. Bob’s strategy is to make sure that the following is true:

(*): For each colour 7 € X, there is a vertex b; € {uy, us, - -, U, } such that (b;, vy)
is coloured by colour i and |Ng (b;) N c™1(i)| > |Ng (vo) N e 1(3)] — 2.

Assume (*) holds. Let iy be the colour used the most number of times on the
arcs Nz (vg). Then |Ng(vp) N e (ig)] > n/m. By (*), this implies that (b, vp) is
coloured by colour %o, and |Ng (by,) N ¢ (ig)| > n/m — 2. Thus (b;,, vo) is coloured
by colour ip and adjacent to at least (n/m — 1) + (n/m — 2) = 2n/m — 3 edges
of colour 4y. As the colouring is a d-relaxed edge colouring of T', we conclude that
d > 2n/m — 3, and hence m > 2n/(d + 3), which is a contradiction.

To ensure that (*) always holds, Bob needs to find, for each i € {1,2,---,m}, a
vertex b; € {u1, U, -, u,} for which (*) holds. Let I C {1,2,---,m} be the set of
indices such that b; has been found already. Initially I = (), and eventually I will be
the whole set {1,2,--+,m}.

Suppose Alice has just coloured (z,y) with colour j and it is Bob’s turn. Let
I'={iel:|Ngb)Nc @)+ |Ng(vo) Nec (i) <d+1}.

1.If j ¢ I and (z,y) = (ur,v9) € Ng(vo) for some r, then Bob colours an
uncoloured arc of N (u,) with colour j and let b; := u,.

2. If j € I' and (z,y) € Ng(vp), then Bob colours an uncoloured arc of Ng (b;)
with colour j.

3. If (z,y) € Ng(b;) for some i € I’, then Bob colours an uncoloured arc of Ng (;)
with colour 3.

4. Assume (1), (2) and (3) do not apply. If there is an index ¢ ¢ I, then let
R = {r: (urv) € U} and choose r € R such that Ng(u,) contains the least
number of coloured arcs and colour (u,,v) with colour ¢ and let b; := u,.

5. Assume (1), (2), (3) and (4) do not apply. If I’ # 0, then choose ¢ € I' and
colours an uncoloured arc of Nz (b;) with colour i.

6. Assume all the above rules do not apply. Then arbitrarily colours an uncoloured
arc with a legal colour, if possible.
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With this strategy, for each 4, (b;,vo) is the first edge of Nz (v) that is coloured
by colour i. At the time b; is defined, |Ng(b;) N ¢ 1(3)] > |Ng(vo) N e2(7)] —
1. After b; is defined, whenever Alice colours an edge of Nj(vy) with colour 4,
Bob immediately coloured an edge of N (b;) with colour 4, provided that [N (b;) N
¢ (@) + |Ng(vg) Nc(i)| < d. This implies that (*) always hold. This completes
the proof of Theorem 2. |

3 Colouring k-degenerate graphs with 2 colours

In the previous section, the number of colours needed in the edge colouring game
for k-degenerated graphs is always greater than 2k. On the other hand, it is natural
that if d is close to the maximum degree, the the d-relaxed game chromatic index
will be close to 2. In this section, we consider the problem how big should be d so
that d-x;,(G) = 2. For this purpose, we consider a slightly different game: Suppose
G is a graph and k is a positive integer. Alice and Bob take turns colouring the edges
of G with colours from a set X of k& colours. After all the edges are coloured, the
deficiency d(e) of an edge e is the number of edges that are coloured the same colour
as e and are adjacent to e. The score of the game s is defined to be the maximum
deficiency of all edges. In other words, the score s is the minimum d such that the
resulting graph is a d-relaxed edge colouring of G. Alice’s goal is to minimize the
score of the game and Bob’s goal is to maximize it. Let u;(G) be the minimum s for
which Alice has a strategy to ensure that the score of the game is at most s.

Lemma 4 If ux(G) = s, then for d > s, d-x,(G) < k.

Proof. Alice simply uses her winning strategy in the later colouring game which
ensures the score is at most d. This is also a winning strategy for the former d-relaxed
colouring game on G with k colours. |

The converse of Lemma 4 is not true (see example at the end of the paper) . A
winning strategy for Alice to win the d-relaxed colouring game on G with k colours
is not necessarily a winning strategy for her to win the later colouring game, because
Bob may have chances to increase the deficiency of an edge in the later game, which
is illegal in the d-relaxed colouring game.

Theorem 3 Let G be k-degenerate with mazimum degree A. Then ps(G) < 2k +
28k + 1.

Proof. Let X = {1,2} and L be the linear ordering of V(G) in Theorem 1. In her
first turn, Alice colours an arbitrary edge. Assume Bob colours (z,y). If N (y)NU #
0, Alice chooses a colour ¢ such that |[Ng(y) Nc™(7)] < |[Ng(y) Ne (3 — )| and
colours an arc (z,y) € Ng(y) N U by colour i. Otherwise Alice arbitrarily choose a
vertex z for which Nz (2) NU # 0, and choose a colour  for which | Nz (z) N7 ()] <
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|Ng(2) N¢™(3 —1)|, and colours an arc (w, z) € Ng(z) N U by colour 4. It is easy
to see that using this strategy, for any vertex z, —2 < |Ng(2) N¢™!(i)] — [Ng(2) N
c1(3 —1)| < 2 at any time. Let |N#(z)| = k; and |N{(y)| = k. To show that
the resulting colouring is legal, we observe that for any arc (z,y) of colour i, N (z)
and N7 (y) contains, respectively, at most |25% | + 1 and [43%2| + 1 arcs that are
coloured by colour . Together with the arcs in N (z) U N (y), there are at most
ki+ko+ 255+ [A5E2 | + 1 arc adjacent to (z,y) that are coloured the same colour
as (z,y). Since ki, ko < k. We have ky + ky + [ 855 | + 8552 | <2k +2[87% ]| + 1.
So the resulting colouring is indeed a d-relaxed edge colouring of G. |

Corollary 4 Let G be k-degenerate with mazimum degree A. If d > 2k+2L¥J +1,
then d-x,(G) < 2.

It can be proved that for the tree T constructed in the proof of Theorem 2, we
have . (T) > n — 1 for k <n/2. But d-x;(T') is roughly 2n/d. This shows that the
converse of Lemma 4 is not true.
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