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Abstract

An LRHTS(v) is a large set consisting of 4(v — 2) disjoint resolvable
hybrid triple systems of order v. In this paper, we present recursive
constructions for LRHTSs and show some new existence results.

1 Introduction

Let X be a finite set. A cyclic triple on X is a set of three ordered pairs (z,y), (y, 2)
and (z,z) of X, which is denoted by (z,y,z) (or (y,z,z), or (z,z,y)). A transitive
triple on X is a set of three ordered pairs (z,y), (y,2) and (z,z) of X, which is
denoted by (z,y, 2).

An oriented triple system of order v is a pair (X,B) where X is a v-set and
B is a collection of cyclic or transitive triples on X, called blocks, such that every
ordered pair of X belongs to exactly one block of B. There are three types of oriented
triple systems of order v, i.e., Mendelsohn triple system of order v (briefly, MTS(v))
in which the blocks are all cyclic triples, directed triple system of order v (briefly,
DTS(v)) in which the blocks are all transitive triples, and hybrid triple system of
order v (briefly, HT'S(v)) in which the blocks are permitted to be either.

Most problems on hybrid triple systems can be settled by considering only cyclic
or transitive triples. However, in what follows, the hybrid triple systems are always
required to contain both cyclic triples and transitive triples.

An oriented triple system (X, B) is called resolvable if its block set B can be
partitioned into subsets (called parallel classes), each containing every element of X
exactly once. A resolvable MTS(v) (or DTS(v), or HTS(v)), denoted by RMTS(v)
(or RDTS(v), or RHTS(v)), is easily checked to contain v — 1 parallel classes.
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A large set of MTS(v) (or DTS(v), or HTS(v)), denoted by LMTS(v) (or
LDTS(v), or LHTS(v)), is a collection {(X, B;)}, where every (X, B;) is an MTS(v)
(or a DTS(v), or an HT'S(v)) and all B;’s form a partition of all cyclic triples (or all
transitive triples, or all cyclic triples and all transitive triples) on X. An LRMTS(v)
(or LRDTS(v), or LRHTS(v)) denotes an LMTS(v) (or LDTS(v), or LHTS(v)) in
which each MTS(v) (or DTS(v), or HTS(v)) is resolvable.

In [7, 10], it is conjectured that every MTS(v) supports three disjoint DTS(v)s
and four disjoint HTS(v)s. But in the absence of a proof, we may consider the three
types of large sets separately. What’s more, the large set of HT'Ss is itself interesting
since the number of small systems in an LHTS(v) is 4(v — 2) (as expected, the sum
of the small systems’ number v — 2 in an LMTS(v) and 3(v — 2) in an LDTS(v)). In
1996, Kang and Lei gave the existence spectrum of LHTS(v):

Theorem 1.1 ([6]) There exists an LHTS(v) if and only if v is a positive integer
such thatv >3 andv =0, 1 (mod 3).

In this paper, we focus on the construction for LRHTSs. Obviously, we can
employ LKTS(v)s to generate LRHTS(v)s. So by the latest known LKTSs listed in
[3], we have the preliminary result on LRHTSs.

Theorem 1.2 There exists an LRHTS(3*5°mlII;_, (213" + 1)II_,(2- 7™ 4 1)) for
me M = {1, 11, 17, 35, 43, 67, 91, 123} U {22F125° + 1 : [, s > 0}, a, n;, m; > 1
(1<i<r,1<j<p),br,p>2whenb>1andm#1.

In [11], an LRMTS(12) is constructed and the three cyclic shifts form an
LRDTS(12), then by slight changes we can obtain an LRHTS(12). The specific
blocks are listed in appendix.

Theorem 1.3 There is an LRHTS(12).

2 Preparations for construction

A quasigroup of order v is a pair (X,0), where X is a v-set and (o) is a binary
operation on X such that equations a o x = b and y o a = b are uniquely solvable
for every pair of elements a,b in X. A quasigroup (X, o) is called idempotent if the
identity z o x = z holds for all z in X. An idempotent quasigroup of order v is
denoted by IQ(v). Furthermore, an idempotent quasigroup (X, o) is called resolvable
if all v(v — 1) pairs of distinct elements of X can be partitioned into subsets T;,
1 <4 < 3(v—1), such that every I'; = {(z,y,z09) : (z,y) € T;} (called parallel
class) is a partition of X. A resolvable idempotent quasigroup of order v is denoted
by RIQ(v).

An 1Q(v) is called first-transitive, if there exists a group G of order v acting

transitively on X which forms an automorphism group of (X, o). A first-transitive
RIQ(v) is denoted by TRIQ(v).
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Take any fixed ordered pair (4, j) (i # 7). For an IQ (X, o) and the given ordered
pair (i, 5), define a set TX (i, §) of transitive triples of X x {i,j} as follows: for each
ordered pair (z,y), * # y € X, let t(z,y,x o y) be the three transitive triples of
X x {i,j} defined by

t(z,y,zoy) = {((2,1), (4,9), (woy,J)), ((z,9), (woy, ), (v, ), (woy,j), (z,9), (y,(iz))l})-

T*(@6,5) = U tlz,y,z0y). (2.2)

cFAyeX

The 1Q (X, o) is called second-transitive provided that TX(i, j) can be partitioned
into three sets T:X (4, ), T5X (4,§) and T5% (4, 7) such that

Set

(a) the three transitive triples in ¢(z,y, 2 o y) belong to different TX (4, §)s (k = 1,
2,3);

(b) if a # b € X, each of the ordered pairs ((a,?), (b,7)) and ((b,7), (a,)) belongs
to exactly one transitive triple in each of 7YX (4, 5), T5X (¢, 7) and T3 (i, 5)-

An IQ(v) (X, o) with both first- and second-transitivity is called doubly transitive.

A doubly transitive RIQ(v) is denoted by DTRIQ(v).
The existence of DTRIQ(v) is known as follows.

Theorem 2.1 ( [14]) A DTRIQ(v) exists if and only if v is a positive integer such
that 3lv and v 2 (mod 4).

Another important concept is LR-design, which is introduced by Lei in [8].

Let X be a v-set. An LR-design of order v (briefly LR(v)) is a collection {(X, A}) :
1<k <2, j=0,1} of v — 1 KTS(v)s with following properties:

(i) Let the resolution of AJ be Iy = {A}(h): 1< h < v=1}. There is an element
in each I, say, A7(1), such that

v—1 v—1
2 2
U 4i(1) = U 4i(1) = 4
k=1 k=1
and (X, A) is a KTS(v).
(ii) For any triple T = {z,y,2} C X, © # y # 2z # =, there exist k, j such that
T € A,

The known existence results on LR-design are as follows.

Theorem 2.2 ([3]) There exists an LR((3*5"mII[_ (2 - 13" + 1)IIj_,(2 - 7™ + 1))
form,m;>1(1<i<r,1<j<p),abrp>0uithatr+p<l.

With the aid of the above mentioned structures, we obtained tripling construction
and product construction for LRMTSs and LRDTSs .
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Theorem 2.3 ([1, 14]) If there exist both an LRMTS(v) (or LRDTS(v)) and a
TRIQ(v) (or DTRIQ(v)), then there exists an LRMTS(3v) (or LRDTS(3v)).

Theorem 2.4 [15]) If there exist an LRMTS(u) (or LRDTS(u)) and a TRIQ(u)
(or DTRIQ(u)), and there exists an LR(v), then there exists an LRMTS(uv) (or
LRDTS(uv)).

In Section 3, we present similar constructions for LRHTS, in which the concept
of complete mapping is needed.

A complete mapping of a group (G, -) is a bijection mapping z — 0(z) of G upon
G such that the mapping n(z) = x - 6(z) is again a bijection mapping of G upon G.

Lemma 2.5 ([1, Lemma 2.7]) If there exists an IQ(v) (X, o) with a sharply transi-
tive automorphism group G, then G has a complete mapping.

Remark 2.6 Suppose that X1 is a u-set and (X1, 0) is a DTRIQ(u). By the defini-
tion of DTRIQ), we have:

(A) There is a sharply transitive automorphism group G = {og,01,-+,0u_1} On
(X1,0). By Lemma 2.5, G has a complete mapping, say, ¢, and let o* =
[¢(c)]7t for o € G. Then by the definition of complete mapping, we have

{o(c*) ' :0€G}=G. (2.3)

(B) All u(u — 1) pairs of distinct elements of X1 can be partitioned into subsets
Si (1 <4< 3(u—1)), such that every T'; = {(z,y,x0y) : (z,y) € Si} is a
partition of X;.

(C) For any fived ordered pair (i,j) (i # j), TX'(i,j) = Uspyex, t(®,y,2 0 1),
where t(x,y, o y) is defined in (2.1). TX1(i,j) can be partitioned into 3 sets
T (i, §), T3 (6,5) and T3 (i, §) satisfying:

(a) the three transitive triples in t(z,y,z o y) belong to different T;**(i,j)s
(1=1,2,3);
(b) if a # b € Xy, each of the ordered pairs ((a,?), (b, j)) and ((b,j), (a,?))
belongs to exactly one transitive triple in each of T (i, ), T5 (i, 7) and
T3 (i, 5)-
Furthermore, suppose that Xs is a v-set with a linear order “<” (i.e., for any
T #y, x,y € Xy, eitherx < y ory < z). And suppose that {(Xs, A}) : 1 < k <
41,7 = 0,1} is an LR(v) satisfying condition (D):
(D) (i) Let the resolution of Al be I, = {AL(h) : 1 < h < v=1}. There is an
element in each T, say, A}(1), such that

U 40 = U 430 =

and (Xo, A) is a KTS(v).
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(ii) For any triple T = {z,y,2} C Xy, v # y # z # =, there exist k, j such
that T € AJ,.

The symbols and properties in Remark 2.6 will be used in the proof of Theorem
3.1. In addition, we stipulate some notations for the use in the following proof.

In (2.2), we give a symbol T% (i, ). For the convenient proof of the following
theorem, we introduce an analogous symbol C*(i,5) in an 1Q (X, o). For a fixed
ordered pair (i, 7), define

U (), (y,9), (oy, i)}

cFAyeX

Moreover, if 7 is a permutation of X, we denote by 7CX (i, §) (or nT;X (i, j), 1 <1 < 3)
the set of the cyclic (or transitive) triples in CX (4, 5) (resp., TX(4,5), 1 <1< 3) by
replacing each occurrence of (z, j) with (m(x), j) but keeping those occurrences with
the second component “4” unchanged, say, 1C% (i,7) = Uppyex{((,%), (y,7), (r(z o

NS

3 Recursive construction for LRHTSs

Theorem 3.1 (Product Construction) If there exist an LRHTS(u) and a DTRIQ(u),
and there exists an LR(v), then there exists an LRHTS(uv).

Proof Suppose that (X;,0) is the DTRIQ(u) in Remark 2.6. Let {(X5, A2) : 1 <
k < %1 j =0,1} be the LR(v) satisfying condition (D). Let {(X1,8;) : 1 <j <
4(u—2)} be an LRHTS(u). We will construct an LRHTS(uv) on the set Y = X; x Xo.
The construction proceeds in 3 steps.

Step 1: For any {a,b,c} C X, with a < b < ¢, for 0;,0; € G and z € X, define

B = {{(z,a), (0;(2),b), (010 (), )}

We can take three fixed elements x;, x2, x3 € X; such that x; # xo # x3 # x; and
define

P = {((w1,0), (05(21),b), (0105 (21), ©)), (030} (1), ), (0(21), D), (21, @),
((22,0a), (0;(22),b), (0i07 (@ 2),(:)),(( i(22),¢), (05(22),b), (22,0)),
((z3,a), (0;(x3),b), (0:07 (x3), ¢)), ((0i0} (z3), ), (0(x3), ), (x3,@))}

eex;  {{u,v,w), {(w,v {u, v, w} € Bffzbc)}),

)

( F21,22,23

P = {((@1,a), (05(21),), (0507 (21), 0)), (0307 (21), €), (0 (1), b), (21, 0))}
(U=
(

U ENE

U(Usexa {0, w), (w,0,0) : {u,v w}eBl:;”)}x
C

{
PZ(ZbC) { (va )v (aj('T?)a b)v (Uia;('T?)v ))v <(0i0;(x2)v C), (Uj(x2)v b): (x% (1))}
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U(Uaex, {(u,w,0), (v, w,u) : {u,v,w} € BG&Y),

gy

PG = {{(ws, 0), (0(w5),), (0107 (w3), ©)), (030 (w3), ), (05 (), b), (3, @)}

U(U”ixl{(wauav)a (v,u,w) {U v IU} € Bz]aa:bC)})'
wtTy

Then set
abc) U P(abc) 0<l<3)

] G

For each o' € X,, we have 4(u — 2) disjoint RHTS(u)s (X; x {a'}, B](-a’)) for
j =12, 4u — 2), where B](-“’) = {{(z,a),(y,a"), (2,ad)) : (z,y,2) € B;} U
{((x’,a’), (y,aal)a (Zlaa',)) : (Ilay’azl) € B]}

For given [ and j,0 <! <3 and 1 <j <u—2, take {a,b,c} € Aanda < b <,

define
Clj:( U Alabc) U U B£§)3+l

{a,b,c}eA a’'€X2

Then it is not difficult to check that each (Y,C;;) is an HTS(uv) for 0 <1< 3, 1 <
1<u-—2.

(Y, Cy;) is resolvable because Cj; is the union of the uv — 1 parallel classes in the
following 2 parts.

Part I: For given i and k, 0 < i <u—1land 1 < k < &1, U{abc}GAO(l)F)lz]) be)
consists of 2 parallel classes. So this part gives u(v — 1) parallel classes.

Part II: Uyex, Bfg% 4; can be partitioned into u — 1 parallel classes because of
the resolvability of B;.

This step gives 4(u — 2) disjoint RHTS(uv)s on Y.

(The remaining A" and Al(“ub 9 ({a,b,c} € A, a < b < c) are saved for the
use in the following two steps. Note that each .A(abC (0<1<3,0<i<u-—1)
contains both cyclic triples and transitive triples.)

Step 2: (making use of the block set A{"?)

For a given 0; € G, j =0, 1, -+, u — 1, define 3 permutations on X;, namely
oz;S)(s € Z3) as follows:

ago) =0, ag.l) = O'OU;O';I, (2) = (000})~ ! (a(l)a(o))

For given k and j, 1 < k < ** and 0 < j < u — 1, take {a,b,c} € AN(1),
a < b < c. Define

Cé‘;j’” = a;-O)C'Xl(a, b) U aEI)Cxl(b, c)U a§2)CX1 (c,a),

Co = a1 (@, ) U o T (b, 0) U 0P T (e,0), 11533,
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and

o= U ®Euc)Ul U A o<is<s,

{a,b,c}€A(1) {a,b,c}eA2\A2(1)

Then it can be checked that each (Y, Dl(,sj)) is an RHTS(uv) for 1 <k < %1, 0<j <
u—1and 0 <1 < 3. Now we explain its parallel classes in 2 parts:

Part I Uggpepear () P,OJ’ ) consists of two parallel classes.

By the property (B) in Remark 2.6, for a given i, 1 <i < 3(u—1),[; = {(z,y,zo0
y) : (z,y) € S;} is a partition of X;. Define 7(S;) = {( (z),7(y)) : (z,y) € S;} for
some m € G. Since a< lea (s € Zs), a <2) = (a ;-1) ;-0 )~! and A(1) is a parallel class
of X,, we can conclude that

U @25 a,b)ual?cs”" ) (b,e) Ua® 0 =" (c,a))
{a,b,c}GAg(l)

is a partition of Y where CR( af) = U(z,y)ER{«xa 6), (ya 6), (I °Y, f)>} for R € {Sza
(1), af 'l (8:)} and (e, ) € {(a,b), (b,¢), (¢, a)}. Note that

(u—1) 3(u—1) © 3(u—1) 1) (0
U Coe. )= U e, )= U 079 e, f).
i=1 i=1

It is easy to see that U{a’b,c}eAg(l)Cé;’b’c) can be partitioned into 3(u — 1) parallel
classes.

Moreover, An obvious observation that Cl((‘f]?b’c) is just same with C(()g}-b’c) if we

disregard the orientation of the triples, yields that each C(abc for 1 <1 < 3 also
consists of 3(u — 1) parallel classes.

We have 3(u — 1) + 2 parallel classes in this part.

Part II: For given m and i, 2 <m < ”T and 0 <@ < w—1, Upapepeam) Diji
provides 2 parallel classes. So, we get u(v — 3) parallel classes in this part.

abc)

Obviously, Dl(,? is the union of all the uv — 1 parallel classes in Part I and II.

By formula (2.3), we have {a(s) 0<j<u-1} =G (s € Z3). With this fact,
we can check that these 2u(v — 1) RHTS(uv)s are pairwise disjoint and they are
obviously disjoint with those obtained in Step 1.

Step 3. (making use of the block set Al(zlfi))
For a given 0; € G, j =0, 1, ---, u — 1, define 3 permutations on X;, namely

ﬂ](-s)(s € Z3) as follows:

BY =oua0), B =oj(ouo) BT = (o) = (BVB)

For given k and j, 1 < k < *7* and 0 < j < u — 1, take {a,b,c} € Ai(1),
a < b < c. Define
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C(a,b,c) _ BJ(O)CXI (a, c) U ﬁ](‘l)CXI (C, b) U ﬁ](‘Z)CXI (b, a),

0,u—1,5

) = BT (a,b) U BT (b,¢) U BP T (¢a), 1 <1< 3,

lu—1,5

and

Dl(;:j,l) _ [ U (P(a,b,c)‘ U (b0 )] U [ U A(a,b,C)]’ 0<1<3.

Lu—1,5 lLu—1,5 lj
{a,b,c}GAg(l) {a,b,c}({Ag \Ag(l)

The similar arguments as in Step 2 give 2u(v—1) RHTS(uv)s (Y, D,(:j*l)) for0 <1<3,
1<k< % and 0 < j < u — 1. Furthermore, these RHTS(uv)s are disjoint and
also disjoint with those obtained in Step 1 and 2.

We obtain a total of 4(uv — 2) disjoint RHTS(uv)s, a large set. This completes
the proof. a

Note: There is an LR(3) by Theorem 2.2. Take LR(3) in Theorem 3.1, then we
can obtain the tripling construction as follows.

Theorem 3.2 (Tripling Construction) If there exist an LRHTS(v) and a DTRIQ(v),
then there exists an LRHTS(3v).

4 Existence result
By Theorem 2.1 and Theorem 3.1, we get the following result.

Theorem 4.1 Let v be a positive integer such that v # 2 (mod 4). If there exist
both an LRHTS(v) and an LR(u), then there exists an LRHTS(uv).

Applying Theorem 4.1 recursively with the LRHTS(v)s from Theorem 1.2, The-
orem 1.3 and the LR(u)s from Theorem 2.2, we obtain the updated existence result
on LRHTSs.

Theorem 4.2 There exists an LRHTS(3*5 mlII}_ (2 13™ + 1)ITF_,(2- 7™ + 1)) for
me M ={1,4,11,17, 35, 43, 67, 91, 123} U{22+125°+1 : [, 5 > 0}, a, n;, m; > 1
(1<i<r,1<j<p),br,p>2whendb>1andm#1.
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Appendix

An LRHTS(12) on Zjp U {001, 002} can be developed by eight base RHTS(12)s by
+2 (mod 10). In each square is the block set of a base RHTS. In each RHTS, every
row is a parallel class.

(00154) (179) (00208) (623) [(c0154) (791) (80020) (623)
(00229)  (604) (003 73) (158) [(00229) (604) (001 73) (158)
(678) (00253) (124) (00109)| (678) (00253) (124) (001 009)
(103) (00128 (659) (c0p74)| (103) (00328 (659) (c0y74)
(4500;) (l600y) (072) (389) [(4500;) (1600y) (072) (389)
(9200y) (6100y) (705) (834) [(9200y) (61ocoy) (705) (834)
(876) (oogo0p 1) (250) (943) | 876) (conoor 1) (250) (943)
(301) (coy0026) (527) (498) | (301) (cop0026) (527) (498)

(8000y) (37o001) (421) (956) [(0o0p8) (37o00;) (421)
(326) (851)  (90001) (47005)| (326) (851) (90 00;) (47 00y)
(door) (179  (08o00y)
(2900;) (046) (73 00y)

(
E
(971) (406) (35 cop) (?2001) (197 (406)  (35003) (82001)
4
(
(

(

(

(

8

(

4
236) [(door5) (917) (00208) (362)

581) [(90022) (460) (3001 7) (

9

4

(

(

(

(

(786) (53003) (241) (0900y)| 867) (30025) (412) (9 00y 0)
(031) (28001) (596) (T4dooy)| (310) (80012 (965) (40027)
(001 45) (600p1) (720) (893) [(5oor4) (c0316) (207)  (938)
(0292 (looy6) (057) (348) [(20029) (001 61) (570) (483)
(687) (coplooy) (502) (439) | (768) (loogooy) (025) (394)
(130) (cop6001) (275) (984) | (013) (600;1005) (752) (849)

(971) (640) (00235) (00182)] (719)  (064) (50023) (2001 8)
(00280) (00137) (142) (695) [(8000y) (To013) (214) (5609)

(632) (185 (00,90) (00247)| (263)  (518) (000, 9) (7 00z 4)
(001 58)  (173) (204) (629 [(00158) (731) (40020) (629
(00223) (608 (001 79) (154) [(00223) (608) (003 79) (154)

(674) (00259) (128) (00103)| (674) (00359) (128) (001 03)
(109) (001 24) (653) (00278)| (109) (003 24) (653) (00y78)
(85001) (00261) (270) (349) [(85001) (00261) (270) (349)
(32003) (o0116) (507) (894) [(32003) (c0116) (507) (894)
(476) (Loopooy) (052 (983) | (476) (Loogooy) (052) (983)
(901) (6002001) (725) (438) | (901) (600z001) (725) (438)
(371)  (806) (9500y) (42001)| (137)  (806) (95005) (4200y)

(4000;) (9700;) (821) (356) [(0oozd) (97oc0y) (821) (356)
(92 6) (451) (30001) (87o0s)| (926)  (451) (3000;) (87 oon)

(58001) (173) (0dooy) (296) [(8o0r5) (317) (c0z04) (96 2)

(2300;) (086) (7900;) (541) [(3c0z2) (860) (9001 7) (415)

(746) (59003) (281) (0300y)| (467) (90025) (812) (3001 0)
(091) (2400;) (536) (7800)| (910) (400,2) (365) (800y7)
(01 85) (61o0y) (702) (493) [(5ooy 8) (Looz6) (027)  (934)
(0232 (16001) (075 (948) [(20023) (6001 1) (750) (489)
(647) (copo0p1) (520) (839) | (764) (coplooy) (205) (398)
(190) (cop0016) (257) (384) | (019) (coy600y) (572) (843)

(371) (680) (00295) (00142)| (713) (068  (50029) (2001 4)
(00240) (00197) (182) (635) [(4000y) (7001 9) (218  (563)
(692) (145 (00,30) (00287)| (269)  (514) (000, 3) (7002 8)




122 JUNLING ZHOU
References
[1] Y. Chang, Transitive resolvable idempotent quasigroup and large sets of resolv-

able Mendelsohn triple systems, Discrete Math., to appear.

J. Denes and A.D. Keedwell, Latin square and their applications, Academic
Press, New York, 1974.

L. Jiand J. Lei, Further results on large sets of Kirkman triple systems, preprint.

Q. Kang, Large sets of resolvable MTS and DTS of order p™ + 2, J. Combin.
Designs 4 (1996), 301-321.

Q. Kang and J. Lei, On large sets of resolvable and almost resolvable oriented
triple systems, J. Combin. Designs 4 (1996), 95-104.

Q. Kang and J. Lei, On large sets of disjoint hybrid triple systems, J. Statistical
Plann. Inference 51 (1996), 181-188.

Q. Kang and Z. Tian, Large sets of oriented triple systems with resolvability,
Discrete Math. 212 (2000), 199-221.

J. Lei, On large sets of Kirkman triple systems, Discrete Math. 257 (2002),
63-81.

C.C. Lindner and A.P. Street, Construction of large sets of pairwise disjoint
transitive triple systems, Europ. J. Combinatorics 4 (1983), 335-346.

Z. Tian, On large sets and overlarge sets of combinatorial designs (in Chinese),
Hebei Normal University, Doctoral Theisis, 2003.

R. Xu and Q. Kang, A construction for LRMTS(12) and LRDTS(12), J. Hebei
Teachers College (in Chinese), 2 (1997), 8-13.

S. Zhang and L. Zhu, Transitive resolvable idempotent symmetric quasigroups
and large sets of Kirkman triple systems, Discrete Math. 247 (2002), 215-223.

S. Zhang and L. Zhu, An improved product construction for large sets of Kirkman
triple systems, Discrete Math. 260 (2003), 307-313.

J. Zhou and Y. Chang, Tripling construction for large sets of resolvable directed
triple systems, Acta Mathematica Sinica 22 (2006), 311-318.

J. Zhou and Y. Chang, Product construction for large sets of MTSs and DTSs,
Australas. J. Combin. 33 (2005), 47-56.

(Received 29 Apr 2005)



