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Abstract

The critical group of a connected graph is a finite abelian group whose
order is the number of spanning trees and whose structure is a subtle
isomorphism invariant of the graph. In this paper we study the structure
of the critical group on the M&bius ladder, and we prove that the Smith
normal form of the critical group is not cyclic but is always the direct
sum of two or three cyclic groups.

1 Introduction

The critical group of a connected graph is a finite abelian group whose structure is
a subtle isomorphism invariant of the graph. It is closely connected with the graph
Laplacian as follows:

Let G be a finite simple graph with n vertices. Then its Laplacian matrix L(G) =
D(G) — A(G), where D(G) = diag(dy,ds, -+ ,d,) is the degree matrix and A(G) is
the adjacency matrix of G. Thinking of L(G) as a map Z" — Z™, its cokernel has
the form

coker L(G) =Z"/L(G)Z" = Z & C(G)

where C(G) is defined to be the critical group of G.
It follows from the Matrix-tree Theorem that the order |C(G)| is the number 7(G)
of spanning trees in G. The critical group C(G) has also been called the Picard group,
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the Jacobian group, the tree group, the sandpile group, and has a close connection
with the critical configurations in a certain chip-firing game on G, and known as
abelian sandpile in the physics literature, see e.g. [1, 2, 5, 6, 8, 9].

In general, it is difficult to say much more about the critical group structure of
a graph. There are relatively few results describing the critical group structure of
C(G) in terms of the structure of G. There are interesting infinite families of graphs,
such as wheel graph, complete multipartite graphs, Cartesian products of complete
graphs, threshold graphs, lattice graphs P, x P3, and ladder graphs P, x C,,, for which
the critical group structure has recently been completely determined [2, 3, 7, 10].

The aim of this paper is to describe the critical group of the Mobius ladder M,
(see Fig. 1). We give an explicit expression for the Smith normal form of the sandpile
group of M,, which is always the direct sum of two or three cyclic groups. That is,
if n =2m + 1, then

C(M,) = Znhm) © L D Z snim_,

(nohm)
where the sequence h,, is defined as hg = 1,h; = 3, hyy = 4hyy 1 — o for m > 2
and if n = 2m and m is odd then

C(Mn) = Z!n,km @ Zka EB Z(gn,]: ;
2 n,km

and if n = 2m is even and m is even then
C(Mn) = Z(n,km) 5% ka (&) Z(Zn}:m)’

where the sequence k,, is defined as kg = 1,k; = 2, k,, = 4k 1 — ko for m > 2.

Our main tools will be the use of the Smith normal form for an integer matrix,
which can be achieved by row and column operations that are invertible over the
ring Z of integers. Given a square integer matrix A, its Smith normal form is the
unique diagonal matrix S(A) = diag(Si1, S22, ..., Snn) Whose entries are nonnegative
integers and S;; divides S;;1,11. Note that, for each ¢, the product S;159---S;; is
the greatest common divisor of all ¢ x ¢ minor determinants of A, and we will use this
fact to determine the Smith normal form of an integer matrix. Say that two matrices
A, B € Z™*" are unimodular equivalent [12] (written A ~ B) if there exist matrices
P € GL(m,Z),Q € GL(n,Z) such that B = PAQ. Equivalently, B is obtainable
from A by a sequence of row and column operations mentioned above.

It is easy to see that A ~ B implies cokerA = cokerB, and if A = diag(a,as, -,
ay) then

cokerA X Z, ® Z,, -+ ® Z,,,

where Z, = Z/aZ. (Of course, Z; is the trivial group and Zy, = Z.)
2 A system of relations for the critical group on M,
Let M, be the Mobius ladder and its vertex set be V = {x1,Za, ..., Tn; Y1, Y2, .-, Yn }

(see Fig. 1). Graph M, is the Cayley graph Cay(Zs,, {1, —1,n}), it is different from
ladder P, x C), only two edges. However, P, x C, is planar, but M,, non-planar. In
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T1 T2 Z3 Tp—1 Tn
\\>//
\
A Y2 Ys Yn—1 Yn

Fig 1. Mobius ladder M,

this paper we will prove that the critical group of M,, has a similar group structure
as Py x C,[7].

Let the image of z; and y; in the cokernel ZIY!/imL(M,) of L(M,) are T;,7;,
respectively. For 3 < i < n, we have

Ty = 3Ti1—Tio— Y
_ _ _ =z 1
{ Ui = i1~ Vio— Ti-1 (1)

Thus the cokernel Z!"!/imL(M,) = Z @® C(M,) of L(M,) can be generated by
EI;EQaylayT
For 7 > 3, let
T; = Q;To— b,il — Ci?Z + dzyl (2)
By induction, we have

Y = ;s — by, — ¢;To + d;Ty, for i > 3. (3)

and a;, b;, ¢;, d; obey the following recurrence relations:

a; = 3a;_1 —a;_3+ci_y,
b = 3bi_1—bi_o+diy, (4)
¢ = 3Ci-1— Ci—g+ a1,

di = 3di1—di >+ b1,

for 7 Z 3, and ay = 0,@2 = 1,b1 = *1,[)2 = O,Cl = O,Cz = 0,d1 = O,dz =0.
By solving the Eq. (4), we get

b,-:ai,l,di:c,—,l,aifc,-:ifl,bifdi:ifl (5)

Lemma 1 Letn > 3. Then Ty, Ts, Ty, T, s a generating set of C(M,,) and the relation
matriz A, of the generating set Ty, T2, Yy, Yo 1S

bn+1 _an+1 _(dn+1 - ]-) CnJrl
A — _(dn+1 - 1) Cn+1 bn+1 —Qp+1
" d, —3 —(cp,—1) —(b,—1) ay

—(b, — 1) a, d, —3 —(cp — 1)
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Proof. Since y,, = 3Ty — Y, — T2, Tp, = 3Y; — T1 — Yy, We have

U1 = @p1T2 — bny1T1 — Cui1¥s + dn1y,
ZTi = Qpt1Yy — bp1¥y — Cn41T2 + dn 1T,
351 — yl — 52 = an% — bnyl — Cnfg + dnfl,
3?1 - El - ?z = anf2 - bnfl - Cn?z + dngl
Hence, we have
bn1T1 — Any1T2 — (dpg1 — 1)Yy + i1l =
—(dnt1 — )Ty + co1T2 + bps1Ty — @ni17s

(dn = 3)T1 — (¢ = VT2 — (b — V)7, + a0y, =
_(bn - 1)f1 + a,%T2 + (d" - 3)?1 - (Cﬂ - 1)@2 -

cooo

Thus lemma 1 follows. O
In order to obtain the structure of group C(M,), it suffices to give the Smith
normal form of A,. In order to do this, we give
Lemma 2 Let s, = a, — a,_1. We have
Sp=48,_1 — Sp_o — 1,80 = 2,81 = 1, (6)

and

Sp42 = 3Spi1t+N  Spp1—Sptn—1
Uy = 5 = 5 : (7)

Proof. Since a,, = 3a,,—1—Gp—2+Cpn_1 = 3ap_1—Ap_ota,_1—n+2 = 4a,_1—ayp_2—n+
2, we have a,,—a,_1 = 4a,_1—4a,_2—0p_2—a,_3—1. Thus s,, = 4s,_1—S,_2—1,5 =
2,51 = 1. Since a,, = 4ay—1—ap—2—n+2 and ap—ap—1 = 3(Gp-1—0n-2)+20,_2—n+2,
n— 3Sn_ -2

i 5 21 tn . Therefore

sn+2_38n+1+n _ Sn+1 _3n+n_ 1

a, = = O
2 2

we have s, = 38,1 + 20,2 — n + 2 and a,_o =

Theorem 3 Let the sequence s, be defined as Lemma 2. Then the relation matriz

A, of C(M,) is equivalent to < 0

0 0" ) , where By, is equivalent to

Sn42 = 3Spi1t N Sppa — Spy1t N

o 2 2
A, = 0 Sn+1 Sn+2
0 Sp + 1 Sn+1

Proof. By Eq.(4), we have the row sums and column sums of A, are zero and
0 B,
A, ~ , where

0 0
—On+1 —(dny1—1)  crp1 —ant1+cnt1 —(dnr1—1)  cat1
B, = Cn+1 bnt1 —Ont1 | ~ | —Gnt1+cnpr bnt1 —Qny1

—(en—1) —(bp—1) an an —Cp+1 —(by, — 1) an
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n —bpi1 Q41 n Qn Q41
~ | 0 bpr1+dps1—1 —Gpe1 —Cpaa ~ | 0 2a, —n 20p4+1 — N
0 bn+1 - bn +1 Ap — Qp41 0 Op — Qp—1 + 1 Ap+1 — Qn
s —3s +n s -8 +n
n an Gnt1 n n+42 5 n+1 n+42 2n+1
- g . snli bt S - Sn+1 Sn+2
Sn + Sn+1 0 sn+ 1 Snt1

|
We conclude this section with an explicit formula for the sequence s,. By solving
the Eq. (6), we get
953 L9+5V3
12 12

(2+V3)" (2—V3)" + % (8)

n

3 The critical group of the Mobius ladder M,

In this section, we give an explicit expression of the Smith normal form S = S,, of
the matrix A!. In order to do this we give some properties of the sequence s,.

Lemma 4 For each n, we have $p,8p12 = Siﬂ + Spi1
Proof. This can be proved by induction. O

By Lemma 4, the determinant of the minor Sntl - Sniz ) o Al is —w, =
Sn + 1 Sn+1

—(Snt1+ Snt2), and
2+V3)"+(2—V3)"

= 1. 9
w. 5 + ()

Lemma 5 For n = 2m + 1 odd, we have w, = Somia + Samys = 3h2,, where the

sequence h,, is defined as

ho = 1,hy =3, hp = 4l 1 — him_s. (10)

For n = 2m even, we have w, = Soy1 + Samia = 2kZ2,, where the sequence k,, is

defined as
ko =1,k =2,kp, = 4k 1 — k2. (11)

Proof. We prove that 3h,_1h, = woy, + 1, womi1 = 3h2,, 2km_1ky = wom 1 + 1
Way, = 2kZ, for m > 1. Since

(Worm + 1)* — 3h2,_13h2, = (Som + Somt1)(Sams2 + Somts) — (S2ma1 + S2maa + 1)°
= 655,11 — 24Somi1S2ma2 + 655, 5 + 6S2ms1 + 6522
= [Som+1(S2m+1 — 4Some2 + 1) + 5§m+2 + Som42]

2
= 6(—Samy152m+3 + Sapnya T S2mi2)
=0,
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we have 3h,,_1h,, = wa,, + 1.

We can prove wo, 11

= 3h2, by induction as follows.

3(4hm1 — hm_2)® = 3(16h2%_, — 8hpm_1hm_o + h2,_5)
16(S2m + Sam+1) — 8(S2m—1 + Sam+41 + 1) + Sam—2 + Som—1

1659m+1 + Som — 7Som—1 + Som—2 — 8
Som+2 + 1282m11 + 989m — TSom—1 + Som—2 — 7
Som42 + 128041 + 889, — 382m—1 — 8

Somt2 + 4(4Somi1 — Som — 1) — 4Samy1 + 1289, —

Somt2 + 4S2mt2 — S2mi1 — 1 — 3Samy1 + 3(4s2m —

Sam+2 T S2m+3-

3Som—1 — 4

Soam—1 — 1)

Hence, 3h%, = 3(4h;_1 — hm_2)?, that is, by, = 4hy y — By o and hg = 1,0y = 3.

The other two equation

s can be proved similarly.

O

We list two relations linking h,, k, and s, in the next lemma, they can be proved

by induction.

Lemma 6 hmkm = S2m+2; hmkm+l = S2m+3-

Lemma 7 If 3t divides

2m + 1 then 3t divides hyy,.

Proof. By solving the recurrence relation (10), we can obtain an explicit formula for

[

hm =

3+6\/§(2+\/§)m+3*6\/§(2_\/§)m

1

1

2m

1

From this we have that

V3(V3+1) (V3 +1)2m N V3(V3—1) (V3 —1)m
6

2m 6 2m
1

(VB4 )P (VB

7
1 <2m + 1> \/—2j+1
R I
V3 1<2j+1<2m+1 2j+1
1<2j+1<2m+1 2j+1

3t divides h,, if 3¢ divides 2m + 1.

3.1 Computation of Si;

Notice that for each m we have (h, hi1) = (Km, kme1) = 1. This implies that

e If n=2m + 1 the

n (Sn+1;3n+2) = (hmkma h’mkm+1) = hm
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o If n = 2m then (Sn11, Sni2) = (hm_1km, Pmkm) = km.

. Spt2 — 38py1 + 1 Sn+2 — Sp41 + 1N
Since s, + 1 = 48,41 — Sp42 and — 2" == o — Snil,

2
50 Sll = (n7 Sn+1; Sn+2; (Sn+2 — Sn+1 Tt n)/2)

o If n = 2m + 1 then (n, Spt1, Snt2, (Sni2 — Sntr1 + 1)/2) = (N, Snt1, Snta). In
fact, if d divides n, $p11, Spt2 then d is odd because n is odd and d divides
(Snt2 — Sny1 +n)/2. Hence Si; = (0, hum).

hmkm — h;nflk'm + n) _ (n, km7 km hm —2hm,1 _

e If n = 2m then S1; = (n, km,
m) = (n, km, m) = (M, k).

If m is odd then k,, is even and then Si; = (m, kn) =

If m is even then k,, is odd and then Si1 = (m, km) = (0, k).

3.2 Computation of Sy,

2
(Snt1 + Sny2)® + NSpp2 — NSp4
2

S11822 = (Snt1 + Sni2, MSny1, NS i, — 38n418n42)-
o If n =2m + 1 then 511S22 = (Sn+1 + Sn+2,MSp4+1,NSp42, 35n+15n+2)- In fact, it
is easy to see that either s, or s,2 is odd and if d divides 11 + Spi2,MSni1
2
(8n41 + Snt2)® + MSnya — NSy
5 .

and ns,.2, hence d is odd and d divides also
Thus,

S1Syn = (3hfm Nhp ko, K1, 3h3nkmkm—l)
hm(ghmv n, 3hmkmkm+l)
h

m(3Pm, 1) = By (1, B,

the last equality follows from Lemma 7. Hence Ssy = hyy,.

e If n = 2m then

4kfn + nhpky — nhpm—1km
2

hm - hmfl
2

S11522 = (Qkfn,n’?m _3hm—lk3nhm)

(2K, 1, 2k3 +
m(ka,n 3hum—1kmhm)
m( (2 3hm—lhm))
(20, i) = Ko (10, Kin)

k — 3hm_1kmbum)
k
k
k
Hence

If m is odd then Sy = 2k,,.

If m is even then Sy = k.
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Since det(S,,) = | det(A},)| = nw, = n(Sy41+5n42), we have Ss3 = w
11522

Hence the Smith normal S, of the matrix A/, is:

e Forn=2m+1

0 A 0
3nhg,
0 0 Gh
e For n = 2m with m odd
(TL, km)
5 0 0
0 2k 0
2k,
0 0
(n: km)

e For n = 2m with m even

0 K 0
2nk,,
0 0
(n, k)

Thus, we obtain main result of this paper:

Theorem 8 Let sequences hy, and ky, be defined by Eq. (10) and Eq. (11), respec-
tively.
(1). If n =2m+ 1 then

C(Mn) = Z(n,hm) ® th P Z 3nhm -

(n,hm)

(2a). If n = 2m and m is odd then
C(Mn) = ZM S Zka D Z 20km_-
2

(nkm)

(2b). If n = 2m and m is even then
C(Mn) = Z(n,km) D Zy,, D Z 2nkm_-

(ko)
Corollary 9 The number of spanning trees of M,, is k(M,) = 3nh2, if n = 2m + 1
and k(M,) = 2nk2, if n = 2m.

4 Some particular cases

It is interesting to investigate the case in which the critical group of M, is the direct
sum of exactly three cyclic groups, that is, S1; # 1. By Lemma 7 we have that if ¢ > 1
and 3* divides 2m+1 then 3* divides hy,. Thus if 3' divides 2m+1 then (2m+1, hy,) >
1. For even n less than 200, S;; > 1 holds only for n = 28, 78, 84, 140, 196 by computer
calculation.
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4.1 The case n = p' where p is a prime

e If p > 2, we have the following equalities mod p:

2+v3)” +(2- V3

Wyt = 5 +1
t t
' /3" 4ot /3
= +1
2
= 241
=3 mod p.

This argument implies that (p,wy) = 1 for p # 3 odd prime, thus the Smith
normal form is

1 0 0
Sy = 0 hptz,l 0
0 0 3pthy

e For p = 3, we have

30 0
Sye=| O hyT_ 0
0 0 3hg,
2
e For p = 2, we have
1 0 0

Sgt: 0 kgt—l 0
0 0 2

4.2 The case n = 2p’, where p is an odd prime

If p > 2, we have the following calculation mod p:

2+v8)» +(2-v3)¥

Wapt = 2 +1
(T3P + (T—4VB) 1
- 2
= ™41
=8 mod p.

Thus (p, wpt) = 1 and (2p', kyt) = 2 and the Smith normal form is

0 0 2k
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