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Abstract

Assume that G = (V,E) is a simple undirected graph, and C is a
nonempty subset of V. For every v € V, we denote I,(v) = {u € C |
dg(u,v) <}, where dg(u, v) denotes the number of edges on any shortest
path between u and v. If all the sets I.(v) for v € V are pairwise differ-
ent, and none of them is the empty set, we say that C' is an r-identifying
code in G. If C is r-identifying in every graph G’ that can be obtained
by adding and deleting edges in such a way that the number of additions
and deletions together is at most ¢, the code C' is called t-edge-robust.
Let K be the graph with vertex set Z2 in which two different vertices are
adjacent if their Euclidean distance is at most v/2. We study bounds on
the possible densities of 2-edge-robust r-identifying codes in K.

1 Introduction

Let G = (V, E) be a simple undirected graph with vertex set V' and edge set E. The
distance between two vertices u and v of G is defined to be the number of edges on
any shortest path from v to v, and is denoted by dg(u,v). Denote

B,(v) ={u eV |dg(u,v) <1}
If C is a code in G, i.e., a nonempty subset of V', we denote
I.(v) = I.(G,v) = CN B,(v)

for all v € V, and say that the code C is r-identifying, if the sets I,(v) for v € V
are pairwise different, and none of them is the empty set.
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Identifying codes were introduced by Karpovsky, Chakrabarty and Levitin in [8].
They can be used in maintaining multiprocessor architectures in the following way.
Assume that every vertex of G corresponds to a processor and every edge corresponds
to a dedicated link between two processors. We ask some of the processors to check
their r-neighbourhoods and report YES or NO according to whether they detected
any problems or not. Assume that at most one of the processors is malfunctioning (it
is easy to modify the definition for more general situations). Based on these YES/NO
answers we wish to be able to tell which processor is malfunctioning or that all the
processors are fine. Clearly, the requirement is that the vertices that correspond to
the processors that were asked to perform the test form an r-identifying code.

Identifying codes have been studied in many graphs, see, e.g., [1], [2] and [3] for
infinite grids and meshes, and, e.g., [7] for binary hypercubes.

In this paper we study the (infinite) king grid K, which has vertex set Z* and
in which two different vertices are adjacent if their Euclidean distance is at most
V2. We denote by @, the set of vertices (z,y) € V with |z| < n and |y| < n. The
density of a code C' is defined as

D=D(C)= limsupm.
n—00 |Qn‘

It has been proved in [3] that for all r > 1 the smallest possible density of an r-
identifying code in K is 417.

It is natural to study r-identifying codes that are strong enough so that they can
be used for identification even in the presence of some errors in the test results. Such
robust identifying codes have been studied, for instance, in [10], [6], [4] and [9]. The
following definition is from [6].

Definition 1 An r-identifying code C C V is called t-edge-robust if C is r-
identifying in every graph G' = (V,E"), where E' = E A F, where F C {{u,v} |
u,v € V,u # v} has size at mostt. Here E A F denotes the symmetric difference
(E\F)U(F\E).

In other words, whenever G’ can be obtained from G by adding and deleting
edges in such a way that the total number of additions and deletions together is at
most ¢, then the code C should still be r-identifying in G'.

In what follows we always assume that r > 1.

The exact smallest possible density of a t-edge-robust r-identifying code in K
has been determined in [9] and [5], except when ¢ = 2 and r > 1. In particular,
the smallest possible density of a 2-edge-robust 1l-identifying code in K is 1/2. In
this paper we study this remaining case. In particular, we construct a sequence of
2-edge-robust r-identifying codes (C,) with densities D, such that D, — g when
r — 0o0. We also show that the density of every 2-edge-robust r-identifying code in
K is at least 33/128.
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Figure 1: The tile used in Example 1 for r = 6.

2 Lower bounds

Assume that » > 1 and that C' is a 2-edge-robust r-identifying code in K. Consider
the following nine sets:

Al(lv.]) = {(Z,]),(Z+1,]),(l,]+2’f‘+ 1)7(Z+ Lj+2r+ 1)}7

As(i,7) =4(1,7), G+ 1,7), (6,5 +2r+1),(i +2r, 5 +2r+ 1)},
As(i, ) ={(,7),G+1,7), G +2r —1,5+2r +1), (i +2r,5 +2r + 1)},
Ag(i,5) ={(4,9), (i +2r,5), (5,5 +2r + 1), (i + 1,5 + 2r + 1)},
As(i,§) = {(,7), G +2r,4), (5,5 + 2r + 1), (i + 2r,j + 2r + 1)},
As(i,5) = {0, 5), G+ 2r,5), (i +2r —1,5+2r+1), (i + 2,5 +2r + 1)},
Ar(i,5) ={(@+2r —1,5),(i+2r,7),(G,5+2r+1),(G+1,5+2r+1)},
Ag(i,5) ={(i+2r —1,5), (i +2r,5), (6,5 +2r + 1), (i + 2,5 + 2r + 1)},
Ag(i, ) ={G+2r —1,5), (@ +2r7),G+2r —1,j+2r +1), (i +2r,5+2r +1)}.

Because C' is a 2-edge-robust r-identifying code, each of them must contain at
least one codeword. Indeed, they are the sets B,.((i +7,j+7)) AB.((i +7,j+r+1))
in the graphs obtained from K by adding an edge from (i +r,j+r+1) to (i + 7+
1L,j+r—1),(i+rj+r—1or (i+r—1,j+r—1)and an edge from (i +r,j +r)
to(i+r+1,j+r+2),i+rj+r+2)or(i+r—1j+r+2).

The same is true for the nine sets AL (i,5) (kK = 1,2,...,9) obtained from the
sets Ag(7,7) by reflecting them in the line y — j = z — ¢ (the line with slope one that
goes through (i, 7)).

Theorem 1 The density of a 2-edge-robust r-identifying code in the king grid is at
least (r + 1)/(4r + 2).
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Proof. Each of the 2r+1 sets A;(3,7), A1(i+1,7), ..., Ai(i+2r—1,7), and As(i, j)
contains at least one codeword of C, and each element in their union is contained
in exactly two of the sets. Hence at least r 4+ 1 of the 4r + 2 elements in the union
belong to the code. a

Example 1 If the only requirement for C' were that each of the sets in the collections
A(i, §) and A* (4, ) must have at least one codeword, we could use a doubly periodic
tiling with the tile in Figure 1 (illustrated in the case 7 = 6) and periods (0, 2r — 1)
and (2r — 1,0). Because of the periodicity, in this case all the nine A-sets reduce
to the leftmost pattern in Figure 2, and all the nine A'-sets reduce to the second
pattern in Figure 2 — and obviously such patterns of non-codewords do not occur
in our code. When r — o0, the density of this code tends to 1/4. As we shall see,
the density of every 2-edge-robust r-identifying code in K is at least 33/128, so it is
not sufficient to operate only with the sets A(i, j) and A (4, 7).

Lemma 1 i) If one of the points (i, ) and (i+2r—1,7) is in C and the other one is
not, then at least one of the sets As(i,j) and Az(i,j) contains at least two codewords
of C.

ii) If one of the points (i,7) and (i, + 2r — 1) is in C' and the other is not, then
at least one of the sets Ax(i,7) and A+(i,j) contains at least two codewords of C.

Proof. i) Assume first that (¢,7) € C and (i+2r—1,j7) ¢ C. If (i+2r,j) € C, then
As(i,7) has at least two codewords of C; so assume that (i + 2r,j) ¢ C. Because
As(i,j) must contain at least one codeword of C, we see that (i,7 +2r+1) € C or
(i+2r,j+ 2r +1) € C, and this codeword together with (i, j) shows that there are
at least two codewords of C' in As(4, j).

Assume second that (¢,j) ¢ C and (i +2r — 1,5) € C. If (i + 2r,j) € C, then
A7(i, j) contains at least two codewords of C; so assume that (i+2r, j) ¢ C. Because
Ay4(i,j) must contain at least one codeword of C, we see that (i,7 + 2r+1) € C or
(¢+1,j+2r+1) € C, and this codeword together with (i + 2r — 1, j) shows that
there are at least two codewords of C' in A (i, 7).

ii) This is proved in the same way. O

We denote

Lemma 2 Assume that we have a code in the king grid. If the non-codewords in the
pattern
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Figure 2: Four patterns of non-codewords. An open circle always denotes a non-
codeword and a small dot a point which can be a codeword or not.

do not form any of the subpatterns in Figure 2 then the pattern must contain at least
two codewords; and if there are only two, they must be the middle point of one of the
two horizontal sides together with the middle point of one of the two vertical sides. O

Proof. If two diagonally opposite corners are codewords, there has to be at least
one more codeword: otherwise the third or the fourth pattern in Figure 2 would
occur. If two corners on one side are codewords, there has to be at least one more
codeword, because otherwise the first or the second forbidden pattern in Figure 2
would occur. If exactly one corner is a codeword, then the first or second forbidden
pattern occurs, unless we have two more codewords. Finally, if none of the corners
is is codeword, then at least one of the middle points in the horizontal lines must be
a codeword: otherwise, the first forbidden pattern appears. In the same way at least
one of the middle points of the two vertical lines must be a codeword. |

Denote
S, 7) ={(t,5), (6,5 + 1), (6,5 +2), (i + 1,5 + 2),
(i+2,7+2),0+2,7+1),(i+2,7),(@+ 1)}

i.e., S(i,j) is the pattern of Lemma 2 whose bottom-left corner is at (i, 5), and
H(i,j) = S(i,j)US(i,j +2r + 1) US(i+2r+1,j+2r + 1) US(i +2r +1,5). (1)

We say that a pair {p, p+(0,2r—1)} (where p € Z?*) forms an upward mismatch
(resp. downward mismatch) if p is a not a codeword but p + (0,2r — 1) is (resp.
if p is a codeword but p + (0, 2r — 1) is not). Analogously, a pair {p,p+ (2r — 1,0)}
is a leftward mismatch (resp. rightward mismatch) if p is a codeword, but
p+ (2r —1,0) is not (resp. if p is not a codeword, but p+ (2r — 1,0) is). In all cases,
the direction of the mismatch points to the direction of the codeword in the pair.

Consider the set S(i,5). By Lemma 2, if the non-codewords in it do not exhibit
any of the forbidden patterns of Figure 2, then S(4, j) contains at least two codewords.
Therefore, if S(i, j) does not contain at least two codewords, at least one of the four
forbidden patterns in Figure 2 occurs: assume that, for example, the first pattern
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Figure 3: An example of finding an upward mismatch.

Figure 4: Possible locations for a mismatch for the first and second forbidden pat-
terns.

occurs in the first two columns of S(%,j). Now we can find an upward mismatch
by considering the four points (4,7), (¢ +1,7), (4,5 +2r+1) and (i + 1,5 +2r + 1)
(cf. Figure 3). These four points form the set A;(i, ), which contains at least one
codeword of C. Because (4,7) and (i + 1, j) are non-codewords, at least one of the
points (4,4 2r+1) and (i+1,j+2r+1) must be in C, say (as in Figure 3) that the
point (4, j+2r+1) isin C. Then {(¢, j+2), (i, j+2r+1)} forms an upward mismatch.
In the same way we see that {(i,7), (5,7 —2r+ D)} or {(: +1,5),(i + 1,5 —2r+1)}
is a downward mismatch (or both are).

In the same way, if the second forbidden pattern in Figure 2 occurs, we find a
leftward mismatch and a rightward mismatch (or more than one of each).

All in all, if the first forbidden pattern occurs, then at least one of the three pairs
corresponding to the three upward arrays in Figure 4 gives an upward mismatch
(each arrow has length 2r — 1), and at least one of the pairs corresponding to the
three downward arrows gives a downward mismatch. In the same way, if the second
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Figure 5: Possible locations for a mismatch for the third forbidden pattern.

forbidden pattern occurs, at least one of the rightward arrows and at least one of the
leftward arrows in Figure 4 gives a mismatch.

Consider the third forbidden pattern in Figure 2, say, {(i,7 + 1), (4,5 + 2), (¢ +
1,7),E+1,7+2),6+2,7),(i+2,57+1)}, and assume that none of these points is in
C. We can find at least one upward or rightward mismatch, as illustrated in Figure
5, where each arrow has again length 2r — 1. Indeed, because at least one of the
points in the set

{(27]+1)a(laj+2)7(2+13])7(7""_27.7)3(2"_27'_ 1aj+2r+1)a
(t+2rj+2r+1),(i+2r+1,5+2r),(i+2r+1,5+2r—1)}

isin C (as this is the symmetric difference between B((i + 1,7+ r+ 1)) and B((i +
r+1,j+4r)) in the graph where the edge from (i+r,j+r+1) to (i+r+2,7+r—1)
and the edge from (i + 7+ 1,5 +7) to (¢ + 7 — 1,j + r + 2) have been added).
The first four points are not in C, so one of the points (i + 2r — 1,5 + 2r + 1),
(t+2rj+2r+1), G+2r+1,5+2r), ((+2r+1,7+2r—1)is in C. Consider
each in turn. If (i4+2r —1,j+2r+1) is in the code, then depending on whether the
"intermediate” point (4, j+2r+1) is in C or not, we find either an upward mismatch
{(i,§+2),(i,j + 2r + 1)} or a rightward mismatch {(¢,j + 2r + 1), (i +2r — 1,5 +
2r 4+ 1)} (both cannot be mismatches): these correspond to two arrows in Figure 5.
If (i+2r,j+2r+1) isin C, then either {(i+1,7+2), (i+1,j+2r+1)} is an upward
mismatch or {(i + 1,5 + 2r + 1), (i + 2r,j + 2r + 1)} is a rightward mismatch. If
(i+2r+1,7+2r)isin C, then either {(i+2,7+1),(i+2r+ 1,7+ 1)} is a rightward
mismatch or {(i4+2r+1,5+1),(i+2r+1,j+2r)} is an upward mismatch. Finally,
if (14+2r+1,7+2r—1)isin C, then either {(i+2,7), (i +2r+1,7)} is a rightward
mismatch or {(i +2r+1,j),(i+2r+ 1,54 2r — 1)} is an upward mismatch. All in
all, at least one of the eight pairs corresponding to the eight arrows in the left-hand
side figure of Figure 5 is a mismatch.

If we decide to extend the figure down and left (instead of up and right as above),
then we similarly find that at least one of the arrows in the right-hand side figure in
Figure 5 gives us a downward mismatch or a leftward mismatch.
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Figure 6: Possible locations for a mismatch for the fourth forbidden pattern.

In the same way, with the fourth pattern we look at the eight arrows in the left-
hand side figure in Figure 6, and see that at least one of them gives a mismatch, and
we look at the eight arrows in the right-hand side figure in Figure 6, and see that at
least one of them gives a mismatch.

Given (4, j), we look at all the possible locations in Figures 4-6, and any mismatch
found in those locations is called a mismatch associated with the set S(i, 7).
Altogether, there are seven possible locations for an upward mismatch that we check,
seven for a possible downward mismatch, seven for a possible rightward mismatch,
and seven for a possible leftward mismatch. The number of mismatches among
these 28 possible locations (each with a specific direction) is denoted by f(i,7).
In connection with S(7,7) we are not interested in any other locations for possible
mismatches: in particular, if a particular location marked with a right arrow, say,
contains a left mismatch, then it is not counted.

All in all, if we go through all the sets S(i, j), (,j) € Z*, each mismatch will be
encountered exactly seven times.

The set H(7,7) is a disjoint union of eight A-sets, and hence always contains at
least eight codewords of C. We denote by s(7,j) the number of codewords of C' in
S(i,7), and

s(i, )+ 86, j+2r+1) +s(i+2r+1,5+2r+1)
+s(i+2r+1,5)—8

e(i, 7)

and
h(i,5) = fli,5)+ fG,j+2r+ )+ f(i+2r+1,7+2r+ 1)+ f(i + 2r + 1, 7).

Lemma 3 Let i and j be arbitrary.

i) If s(i,j) =0, then f(i,j) >4 and f(i — 1,j) > 2 and f(i+1,5) > 2.

ii) Assume that s(i,j) = 1. Then f(i,j) > 2. Moreover, f(i,7) + f(i—1,7) > 4
except possibly when the unique codeword in S(i,7) is the middle point on either of
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the two horizontal sides and s(i—1,7) > 3. Similarly, f(i,7)+ f(i+1,7) > 4 except
possibly when the unique codeword in S(i,7) is the middle point on either of the two
horizontal sides and s(i + 1,7) > 3.

i) If s(i,j) = s(i+1,7) =1, then f(i,7) + f(i + 1,5) > 6.

w) If s(i,7) + s(i + 1,7) = 4, then f(i,5) + f(i +1,5) > 2.

v) If s(i,7) + s(i + 1,5) = 3, then f(i,7) + f(i +1,5) > 4.

vi) If s(i,7) + s(i + 1,7) = 2, then f(i,j) + f(i +1,5) > 6.

vit) If s(i,5) + s(i +1,7) < 1, then f(i,5) + f(i +1,5) > 8.

Proof. i) and ii) are easy.

iii) Assume that the unique codeword in S(7,7) is the middle point on the left
vertical side. By ii), f(i,j) > 2 and f(i + 1,j) > 2. If the only codeword in
S(i+ 1,7) is the upper or lower right corner, the claim is clear. Assume that the
only codeword in S(i + 1, j) is one of the middle points of the two vertical sides. We
show that the upward mismatches associated with S(7,5) and S(¢ + 1, 7) contribute
at least three to the sum f(¢,5) + f(i + 1,5). The same is true for the downward
mismatches and the claim then follows. If {(i + 1,7 +2),(i + 1,5 +2r + 1)} is an
upward mismatch, it contributes to both f(¢,j) and f(i + 1,7) and at least one of
{(0+2,7+2),(i+2,j+2r+1)} and {(¢ +3,5+2),(¢+3,5+2r+1)} is an upward
mismatch, and we are done. If {(i + 1,5+ 2),(¢ + 1,5 + 2r + 1)} is not an upward
mismatch, then both {(¢,j+2), (4,7 +2r+ 1)} and {(i+2,j+2),(i+ 2,7+ 2r+1)}
are, and as the latter contributes to both f(4,j) and f(i + 1,7), we are again done.
The case when the unique codeword is the middle point on the right vertical side
goes through in the same way, and all the other cases are easy.

iv) If s(i,j) = s(i,j + 1) = 2, this is clear by Lemma 2, because then S(i, j)
or S(i+ 1,7) exhibits a forbidden pattern, and f(i,j) > 2 or f(i +1,5) > 2. If
s(i,j) <1lors(i+1,7) <1, then the claim follows from i) and ii).

v) Now s(i,7) or s(i+1, ) is 1 and the other is 2, and the claim follows from ii),
or either of them is 0 and the other is 3, and the claim follows from 1i).

vi) Now s(7,7) or s(i+1,7) is 0 and the other is 2, and the claim follows from 1),
or both are 1’s, and the claim follows from iii).

vii) If s(i,7) = s(i + 1,5) = 0, the claim immediately follows from i). If one of
s(i,7) and s(i + 1,7) is 1 and the other is 0, the claim can easily be proved in the
same way as iii). O

Lemma 4 For all (i,7) € Z°,
. . U PR S }
e(i,j) +e(i+1,5) + 5h(i,j) + 5h(i+1,5) = 4.
Proof. We know that e and h are non-negative functions, so it suffices to consider

the cases when e(%,7) + e(: + 1,5) is 3, 2, 1 and 0.
Consider the four sums

s(i,4) +s(i+1,7),8(, 5 +2r + 1)+ s(i + 1,7 + 2r + 1),
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s(t+2r+1,7+2r+1)+s(i+2r+2,5+2r+1),s(i+2r+1,75)+s(i+2r+2,5). (2)

Assume that e(i, j) + e(i + 1, j) = 3. Because the sum of the four sums (2) is 19,
at least one of them is at most 4, and the claim h(i, j) + k(i + 1, 5) > 2 follows from
iv)-vii) of Lemma 3.

Assume that e(i,7) + e(i + 1,7) = 2. Now the sum of the sums (2) is 18. If one
of the sums (2) is 3 or smaller, the claim follows from v)—vii) in Lemma 3; so assume
that all the sums are 4 or bigger. Then there are at least two 4’s, and the claim
follows from iv) in Lemma 3.

Assume that e(7, j) +e(i+1, j) = 1. We claim that h(i, j)+h(i+1,5) > 6. If one
of the sums (2) is 2 or smaller, then the claim follows from vi) and vii) in Lemma 3;
so assume that all the sums are 3 or bigger. If there is at least one 3, then (as the
sum total is 17) there is another sum that is at most 4, and the claim follows from
iv) and v) in Lemma 3; so assume that all the sums (2) are 4 or bigger. Then there
are three 4’s, and the claim follows from iv) in Lemma 3.

Assume finally that e(i, j) + e(éi + 1,7) = 0. Then the sum of the sums (2) is 16.
If one of the sums (2) is 0 or 1, the claim h(%,j) + h(i + 1,5) > 8 follows from vii)
in Lemma 3; so assume that all the sums are 2 or bigger. If one of the sums equals
2, then the fact that their sum is 16 implies that there is another sum which is at
most 4, and the claim follows from iv)-vii) in Lemma 3; so assume that all the sums
are 3 or bigger. If there are at least two 3’s, the claim follows from v) in Lemma 3.
If there is exactly one 3, then two of the remaining sums (2) are 4’s, and the claim
follows from iv)—v) in Lemma 3. If all the sums are 4 or bigger, then they are all 4’s,
and the claim follows from iv) in Lemma 3. O

Theorem 2 The density of a 2-edge-robust r-identifying code in the king grid is at
least 25 = 0.2578125.

Proof. Consider a fixed positive integer . When we go through all the sets H(i, j)
for (4,j) € Qn_4r—2, each element of @, is counted at most 32 (= |H(4,7)|) times.
We therefore get

21CNQ. = >, HG )NC
(4,§)EQn—_ar—2
Z 8|Qn74r72| + Z B(Zaj) (3)

(4,§)€EQn—_ar—2

Similarly, if we separately count the number of codewords in the four sets in the
families \A(3, j) for all (i,7) € Qn-2r—1, €ach codeword in @, is counted at most 16
times. In each such collection of four sets each set is known to contain at least one
codeword. There are at least %Z(i,]')EQn—4r—2 f(i,7) mismatches in @, 21 (as each
mismatch occurs at most 7 times) and therefore in the process of going through
all the 4|Q, 21| sets in the collections A(%, ), we find that there are at least
23 i.)e@n_an_s S (i, §) sets with more than one element by Lemma 1. We therefore
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get
16|CNQ, > > > |AnC|
(4,7)EQn—2r—1 ACA(3,5)
1 .
Z 4|Qn—27‘—1‘ + ? E f(%.]) (4)

(4,4)EQn—ar—2

Summing the inequality of Lemma 4 over all (3, j) € Qn—6r—a We get

2 > el +4 Y f(6,4) > 4Quérd] (5)

(4,)€EQn—ar—2 (4,J)EQn—ar—2

(because each S(3,7) with (4,7) € Qn_4ar—2 is counted at most eight times and we
have the coefficient 1/2, and each H(7,7) with (4,j) € Qn_4r_2 is counted at most
twice). Multiplying (3) by 2 and (4) by 28, adding them together and using (5) we

get
Cm n n—ar— 7 n—ir— n—or—
€Nl @osrsl | TGnzrs] | (Qusri]
|Qul 32|@n| 32|Qn| 128]Qy|
Letting n tend to infinity, we obtain D > 1/32 + 7/32 + 1/128, as claimed. O

3 A construction of 2-edge-robust identifying codes in the
king grid

Theorem 3 Let r > 3. There is a 2-edge-robust r-identifying code in the king grid
with density D, such that D, — % when r — 00.

Proof. Let r > 3. To construct such a code we use a (2r — 1) x (2r — 1) tile. We
construct the tile as follows. We start from the bottom-left and write in the same
four by four constellation as in Figure 7, and keep repeating the same pattern (with
periods (0,4) and (4,0)) as long as possible. Finally, we take all the points in the
one or three remaining rows and columns to the code. Figure 7 illustrates the case
r = 6. This gives us a tile which is symmetric with respect to the diagonal with
slope 1.

We place the bottom left-hand corner of the tile to (0,0) and extend it to a doubly
periodic tiling of Z* with periods (0,2r — 1) and (2r — 1,0).

The resulting code C' is symmetric with respect to the line y = x.

The density of the code clearly tends to % when r — 00; so it suffices to prove
that C' is a 2-edge-robust r-identifying code.

Let first v € K \ C be arbitrary. Clearly, there are at least three codewords of
C to which v is connected in the king grid with edge-disjoint paths. Hence in all
relevant graphs, I.(v) # 0.

Assume therefore to the contrary that there is a graph K’ that has been obtained
from K by using at most two edge changes (each being an addition or deletion), and
that there are two points p = (z,,y,) and ¢ = (x4, y,) such that I,(K',p) = L.(K', q).
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Figure 7: The tile for r = 6.

By symmetry, we can assume that y, > y, (as we can always reflect in the line
z =y).

We say that an edge e of K', which is not in the king grid, helps ¢ with ¢ if
ce€C,dg(c,p) >r—1,dg(c,q) > r, and e is the last edge not in K on a shortest
path in K’ from ¢ to ¢. In the same way we define what it means that an edge ¢’
helps p with ¢’ by reversing the roles of p and gq.

We say that a horizontal line is good, if at least one of every two adjacent points
is a codeword.

Our first claim is that there is a good line y = s such that

Yyp+r—2<s<y,+randy, <s-—r, (6)
or a good line y = s such that
Yg—r<s<y,—r+2andy, >s+r (7)

Ify, =y, +1, theny,+7r = (y,—7)+2 (mod 2r — 1), and by the construction,
s=yp+rors=y,—rwildo. Ify,=y,+2,then s=y, +rors=y,—r+1 wil
do. Finally, if y, >y, +2,then s =y, +7, s=y,+r—1or s =y, +r — 2 will do.

Assume that y = s is a good line such that (6) holds. The other case goes through
in the same way.

We prove that at least one of the following is true:

i) There are at least two edges of the king grid in the half-plane y > y,
that are missing from K.

ii) There is at least one such missing edge, and at least one edge that
helps g.

iii) There are at least two different edges that help g.
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Because y = s is a good line, there is a codeword, say c;, in the set {(z, —
r,8),(r, —7+1,s)}. Then also c; =¢; + (2r —1,0) isin C.

If dg:(c1,p) > 7, then at least one edge of K with an endpoint in the area where
z < z, and y > y, is missing. Assume that this is not the case. If dg/(c1,p) <1 —2,
then we look at the set ¢; + Ny, where

N ={(-2,2),(-2,1),(-1,2),(-1,1),(0,2),(0,1)}.

By the construction, there is always a codeword in this set, and we replace ¢; with
that codeword. We continue the same process, until the new codeword c¢; satisfies
the condition r > dg(ci,p) > r— 1. The process always terminates: otherwise more
than two edges would have been added to K to obtain K’. The resulting codeword
¢1 then belongs to I.(K',p) = I.(K',q), and (using (6)) there is an edge that helps
q with ¢;.

We do the same for ¢y, except that we now use the set

Ny ={(2,2),(2,1),(1,2),(1,1),(0,2), (0, 1)}

instead of N;. Again, we see that 1) at least one edge of K with an endpoint in the
area where z > z, and y > y, is missing, or 2) this is not the case, but there is an
edge that helps ¢ with cs.

Clearly, at least one of i)-iii) holds unless there is a unique edge e that helps ¢
with ¢;, and a unique edge €’ that helps ¢ with ¢;, and e = ¢/. We next show that
this is impossible. Assume that P (resp. P') is a shortest path from ¢ to ¢; (resp.
to ¢) and that in both of them e = wv is the last edge that does not belong to K.
Clearly, P and P’ cannot traverse e in different directions (say P from u to v, and
P’ from v to u): otherwise, if we denote the length of the subpath ¢...u of P by
a and the length of the subpath ¢...v of P’ by b, then dx(q,u) = a = b+ 1 and
dri(q,v) =b = a+1, which is a contradiction. But P and P’ cannot traverse e = uv
in the same direction either (say, from u to v), because the subpaths v...c; and
v...cy of P and P’ both have length at most 7 — 1 and all their edges belong to K,
but by the definitions of ¢; and ¢y we know that dg(c1, ca) > 2r — 1.

Because at most two edge changes have been made to obtain K’, we know that
no edge of K in the half-plane y < y, is missing from K.

Take c3 to be a codeword whose z-coordinate is at least x4 —r and at most z,+r
and whose y-coordinate equals y, — r. Using the same replacing process as above
(but now going downwards), we find a codeword c; which is at distance » — 1 or
from ¢ in K', but not within distance r from p in K. Then there is an edge that
helps p with cs.

To obtain a contradiction, it now suffices to prove that an edge helping p with
the codeword ¢ = ¢3 and an edge helping ¢ with the codeword ¢’ = ¢; or ¢y can never
coincide. Assume that uv would be such an edge.

Let P:p...uv...c be a shortest path in K’ from p to ¢ such that wwv is the last
edge not in K, and P' : q...uv...c or P' : q...vu...c be a shortest path in K’
from ¢ to ¢’ such that {u, v} is the last edge not in K.
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We see that it is not possible that P’ is of the form ¢...uv...c¢. Assume to
the contrary. The subpath v...c of P has length at most » — 1 and the subpath
v...c of P’ has length at most 7 — 1, and all the edges on them belong to K. Hence
d(c,c') < 2r — 2, which is a contradiction, because ¢’ is on or above the horizontal
line y = y, + r — 2, whereas ¢ is on or below the horizontal line y = y, — r (and
Yp > Yq)-

It therefore suffices to assume that P’ is of the form q...vu...c.

Because P is a shortest path from p to ¢ in K’ we see that

p...uw)+1+1l(v...c)<r (8)

(where I(x . ..y) always denotes the length of the given path z ...y, i.e., the number
of edges on it); and likewise

lg...v)+1+1(u...d) < (9)
Because uv helps p with ¢, we know that dx(g,c) > r — 1, and hence
r—1<li(g...v) +1(v...c); (10)

and likewise
r—1<lIip...u)+1(u...c). (11)

Adding (8)—(11) together we see that equality must hold in all of them. Now, if
q...v in P’ only contains edges from K, then dx(c,q) < r — 1 (because equality
holds in the third inequality), but this contradicts the way ¢ = c3 was constructed.
Hence the subpath ¢...v must contain an edge, say st, which does not belong to K,
and we can assume that the subpath is ¢...st...v. Now we know that wv and st
have been added to K in K'; and hence no other changes have taken place.

By iii) (neither i) nor ii) can now hold) both wv and st help ¢, and therefore
there is a shortest path P” : q...st...c" or P" : q...ts...c” where ¢’ is ¢; or ¢
and st is the last edge on P” that does not belong to K. The latter is not possible:
otherwise there would be shortest paths (in K’) of the form gq... st (the subpath of
P’) and q...ts (the subpath of P”), but the length I(q...s) of the subpath of q. .. st
and the length I(q...t) of the subpath of ¢...ts satisfy l(¢...s) =1(g...t) + 1 and
I(q...t)=1(g...s)+ 1 and they both cannot hold.

We can take ¢...s in P” to be the same subpath as in P’ (since both are known
to be shortest paths in K'). Now the subpaths ¢”...t of P”,¢t...v of P and v...c
of P together show that dk(c,c") < (r — 1) + (r — 2) = 2r — 3 (because equality
holds in (10)). By the definition of ¢3, and of ¢; and ¢ we know that dg(c,c”) >
r+ 14 (r — 2) = 2r — 1. This contradiction proves the claim. O
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