AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 36 (2006), Pages 197-212

New formulas for the pentomino exclusion problem*

JANEZ ZEROVNIK

Faculty of Mechanical Engineering
University of Maribor
Smetanova 17, SI-2000 Maribor
Slovenia
and
Department of Theoretical Computer Science
Institute of Mathematics, Physics and Mechanics
Jadranska 19, SI-1111 Ljubljana
Slovenia
janez.zerovnik@imfm.uni-1j.si.

Abstract

Existence of constant time algorithms for the A-dislocation problem on
fascia- and rotagraphs is proved. Application to the Pentomino exclusion
problem yields formulas for 6 x n and 7 x n chessboards.

1 Introduction

In [8], the A-dislocation problem is defined as a generalization of the pentomino
exclusion problem. For a graph G = (V, E) and a positive integer A, a subset S of
vertices of G is a A-dislocation set of G if and only if all the connected components
of G — S have at most A vertices. As S = V(G) is always a A-dislocation set for any
A, the optimization problem of interest is to find a set S of minimum cardinality.
As observed in [8], if A = 1, a A-dislocation set is a transversal of G, i.e. the
complement of S is an independent set of G. The corresponding decision problem

PROBLEM: A-dislocation
Instance: a graph and an integer K
Question: is there a A-dislocation set S in G of cardinality < K 7

is known [8] to be NP-complete.

In a special case when G is a k x n grid and A = 4, the A-dislocation problem
is known as the pentomino exclusion problem. A polyomino is a pattern formed
by connection of a specified number of equal-sized squares along common edges.
A pentomino is a polyomino composed of 5 squares. Among interesting problems
related to pentominos is the Pentomino Exclusion Problem PEPy,.,, due to Golomb
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[5]. The task is to find the minimum number of unit squares to be placed on a k x n
chessboard so as to exclude all pentominos.

A related decision problem is
PROBLEM: Pentomino Exclusion Problem, PEP(k, n)
Instance: positive integers k, n, and K
Question: is there a set S of positions on the k xn chessboard so that all pentominos
are excluded and the cardinality of S is < K ?

We will later refer to a formally slightly different problem, namely
PROBLEM: Pentomino Exclusion Problem, PEP(n)
Instance: positive integers n and K
Question: is there a set S of positions on the k& xn chessboard so that all pentominos
are excluded and the cardinality of S is < K 7

We will give a polynomial, even constant, time algorithm for PEP,(n). On the
other hand, the complexity of PEP(k,n) seems to be an open problem.

Clearly, taking G = P,00P, (i.e. G is the Cartesian product of paths) and A+1 =
5, the problem PEP(k,n) is a special case of the A-dislocation problem.

The minimal number of positions on the k& x n chessboard will be denoted by
Kkn- More general, we will use ka(G) or £KA+Y(G) for the size of the smallest A-
dislocation set on graph G. In particular, for pentominoes, x(G) = k) (G) = k4(G),
and hence Ky, = k(POP,).

Bosch [3] proposed an integer programming formulation and solved the problem
Kn,n for n < 12. Gravier, Moncel, and Payan [9, 8] have established the formulas for
Kk for k£ < 5.

Theorem 1

| ifk=1

2] if k=2

n ifk=3andn>2 ,
[ -1 ifk=4andn>4
2n — 2 fk=5andn>5

In this paper, we will give formulas for sy, for k=6 and k = 7.

The formulas are results of an algorithm for solving the A-dislocation problem
on fascia- and rotagraphs with time complexity O(A?*) where k is the size of the
monograph. The complexity of the algorithm is thus independent on the number of
monographs.

The rest of the paper is organized as follows. In the next section a concept of
a polygraph is introduced and two special subclasses of graphs, the fasciagraphs
and the rotagraphs are defined. In Section 3, the concept of a path algebra is
introduced and an algorithm is recalled from [13] which can be used to solve various
problems on fasciagraphs and rotagraphs. In Section 4 we give an instance of the
algorithm which solves the A-dislocation on fasciagraphs and rotagraphs. We then
prove that the powers of the matrices which correspond to the solution have a special
structure, which implies existence of a constant time algorithm for computing any
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power. Finally, the algorithm is applied to special cases including the pentomino
exclusion problem on 6 x n and 7 X n chessboards.

2 Polygraphs

Polygraphs are used as graph theoretical models of polymers in mathematical chem-
istry, see, for example [1, 14, 10, 11, 7, 6]. P, and C,, will denote the path on n
vertices and the cycle on n vertices, respectively. An edge {u,v} of a graph will be
denoted wv (hence uv and vu mean exactly the same edge). An arc from u to v in
a digraph will be denoted (u,v). We consider finite undirected and directed graphs.
A graph will always mean an undirected graph, a digraph will stand for a directed
graph.

Let G1,Gs,. .., G, be arbitrary, mutually disjoint graphs, and let Xy, Xo,..., X,
be a sequence of sets of edges such that an edge of X; joins a vertex of V(G;) with a
vertex of V(G;41). For convenience we also set Gy = Gy, Gni1 = G and Xy = X,
This in particular means that edges in X, join vertices of G,, with vertices of G;. A

polygraph
Qn = Qn(Gly GQ, ey Gn7 Xl; Xz, ey Xn)

over monographs Gy, Ga, ..., G, is defined in the following way:

V(Q,) =V(G)UV(Ga) U---UV(G,),
E(Q,) = E(G1) UX, UE(Gy) UX, U UE(G,) UX,.

For a polygraph 2, and for i =1, 2, ...n we also define

Di = {u € V(Gz) | Jv e Gi+1 IS Xz}';
Ri={ueV(Gi1) | veG; : we X}

In general R; N D;;; need not be empty.

Assume that for 1 < i < n, G; is isomorphic to a fixed graph G and that we
have identified each G; with G. Let in addition the sets X;, 1 < ¢ < n, be equal to
a fixed edge set X C V(G) x V(G). Then we call the polygraph a rotagraph and
denote it wy,(G; X). A fasciagraph ¥,(G; X) is a rotagraph w,(G; X) without edges
between the first and the last copy of a monograph. Formally, in 1, (G; X) we have
X, =Xy,=--- =X, ;and X,, = (. Since in a rotagraph all the sets D; and the
sets R; are equal, we will denote them by D and R, respectively. The same notation
will be used for fasciagraphs as well, keeping in mind that R, and D, are empty.

3 Path algebras and the algorithm

In this section we recall a general framework for solving different problems on the
class of fasciagraphs and rotagraphs [13]. The essence of the method is a computation
of powers of matrices over certain semirings. Similar ideas were implicitly used in
[10, 14], and later explicitly applied to distance related invariants [11, 12, 6], graph
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domination, graph coloring, and others [13, 17, 7]. We follow the approach given in
[4], see also [16, 19].

A semiring P = (P, ®, 0,0, 1) is a set P on which two binary operations, &
and o, are defined such that

(i) (P, ®) forms an commutative monoid with 0 as unit,
(ii) (P, o) forms a monoid with 1 as unit,
(iil) operation o is left- and right- dlstrlbutlve over operation @,
(iv)forallz € P, zo0=0=00z.

An idempotent semiring (for all z € P, x®z = z) is called a path algebra. 1t is
easy to see that a semiring is a path algebra if and only if 141 = 1 holds. Examples
of path algebras include (for more examples we refer to [4]):

Pl : (INO U {OO}: min: =+, 00, 0)7
Po: (INO U {_OO}: max, +, —00, 0)7
Ps: ({0,1}, max, min, 0, 1).

Let P = (P, @, o, 0, 1) be a path algebra and let M, (P) be the set of all 1 X p
matrices over P. Let A, B € M,(P) and define operations A®B and Ao B in the
usual way:

(A®B);; = AijEBBij,

(Ao B); @A,koBk]

M, (P) equipped with the above operations is a path algebra itself with the zero and
the unit matrix as units of the semiring.

Let P be a path algebra and let G be a labeled digraph, i.e., a digraph together
with a labeling function ¢ which assigns to every arc of G an element of P. Let
V(G) = {v1, va, ..., v,}. The labeling ¢ of G is extended to paths as follows. For a
path @ = (xioa-rh)(xilv xiz) T (xik—l’ xik) of G let

E(Q) = e('rio’xil) og(zinwiz) O ret Og(wik,laxik)-

Let SE be the set of all paths of order k from z; to z; in G and let A(G) be
the matrix defined by A(G);; = #(;,x;) if (x;,x;) is an arc of G and A(G);; = 0
otherwise. Now we can state the following well-known result (see, for instance, [4, p.
99]):

Theorem 2 (A(G)¥);; = @ Q)
QeSk

Let finally £ : E(G) — P be a labeling of G where P is a path algebra on the set
P.
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Figure 1: Three consecutive monographs.

The general scheme for computing the invariant is to calculate A(G)™ in appro-
priate path algebra M, (P) and select among admissible coefficients of A(G)"™ the
one which optimizes the corresponding goal function.

A remark on time complexity. It is well known that, in general, computing the
n-th power of a matrix can be done with O(logn) matrix multiplications. In some
cases it is possible to compute the powers of the matrix A(G)™ in constant time, i.e.
with an algorithm of time complexity which is independent of n. Hence if we assume
that the size of G is a given constant (and n is a variable), then the algorithm will
run in constant time. Known examples include distance related invariants [12] and
the domination number [17]. In the next section we will show the existence of a
constant time algorithm for the problem PEP(n).

4 A-Dislocation problem on fasciagraphs and rotagraphs

Let ¢,(G;X) and w,(G;X) be a fasciagraph and a rotagraph, respectively. Set
W; = D; U R;. As all copies of R; are isomorphic to R and all D; = D we can
write W; = W and let V be the set of functions W — {0,1,...,A}. Note that
V| = (A +1)W

Let us define a labeled digraph G = G(G; X)) as follows. The vertex set of G is
V. The elements of V will be denoted by f;; in particular we will use f, for the
constant 0 function, i.e. fy = 0. For a later reference we define two restrictions
D(f) = flp, and R(f) = f|g. Furthermore, let S(f) be the set of “stones” defined
by f,ie. S(f) = {v|v e W, f(v) = 0}. Function values can be understood as
vertex weights on the polygraph where the weight has the following meaning: weight
f(v) = 0 means there is a “stone” put on that vertex and positive weight gives the
size of the connected component the vertex v is in. An arc joins f; and f; if f; is not
in a “conflict” with f;. Here a “conflict” of f; with f; means that using f; and f; as
a part of a solution in consecutive copies of X would violate the problem constraints.
In particular, for the A-exclusion problem, the violations occur if the same vertex
is assigned different values or if the sum of weights of two adjacent vertices is A or
more.

Let fi, f; € V(G(G; X)), and consider for a moment 95(G;X). Let f; : Dy U
Ry — {0,...,A} and f; : Do U Ry — {0,...,A}. Recall that all G; and X; (for
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Figure 3: Boundary conditions of Fig. 2 transformed to graph patch.

i=1,...,n—1) are identical: D; = Dy = D and R; = Ry = R (see Fig. 1).

Let k45 (G; X) be the size of a smallest A-exclusion set on G such that all polyomi-
nos are excluded on G, provided f; are not in conflict f;. More precisely, ;;(G; X)
is the minimal size of a A-exclusion set on the graph G, constructed as follows. For
each edge e = uv € Xj such that f;(u) > 0 add a path of length f;(u) to the graph
and connect the first vertex of the path with the vertex v € G;. Similarly, for each
edge e = uv € X, such that f;(v) > 0 add a path of length f;(v) to the graph and
connect the first vertex of the path with the vertex u € G, (See Fig. 2 and Fig. 3).

Then set

Ufis i) = 1S(fi) N Rl + k(G X) + DN S(f)I = 1S(F) NS (1)
Summarizing, the definition of ¢(f;, f;) is given by the following rules

1. The weights inferred by f; and f; must coincide: if for v € V(G2) both f; and
f; are defined, then we must have f;(v) = f;(v).

2. The weights may not be too large: if u ~ v are two adjacent vertices of Gbs,
and the weights of u and v are given by w(u) and w(v), then we must have
w(u) +w(v) < A.

3. if either 1. or 2. is violated, then set £(f;, f;) = oo, otherwise let £(f;, f;) be
the number of stones used on Gs, given by expression (1).
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Algorithm 1
1. Label G(G; X) as defined by (1).

2. Calculate A(G)" in the path algebra My (P;), where Py = (INoU {o0}, min, +,
00, 0).

3. Let ka(1hn(G; X)) = A(G)")ij and ka(wn(G; X)) = min(A(G)")-

min  (
L(f:)=0,R(f;)=0 i

The correctness of the algorithm follows from the first two lemmas. For proofs,
see [8] or [18].

Lemma 1 Algorithm 1 correctly computes ka(,(G; X)).
Lemma 2 Algorithm 1 correctly computes ka(w,(G; X)).

We now prove a lemma which will imply the existence of a constant time algorithm
for computing the powers of A(G) in Step 2 of Algorithm 1.

Let us denote 4, = A(G)*. The meaning of the value of (A,);; is the size of the
A-exclusion set of a certain graph. More precisely, provided that the functions f;
and f; are not conflicting, (A,);; is the mimimum size of a A-exclusion set of the
graph constructed as follows. Start with a graph induced on the vertices

V(G UV(Gy)U...UV(Gey) UV(Gy).

For each edge e = uwv € Xy such that f;(u) > 0 add a path of length f;(u) to the
graph and connect the first vertex of the path with the vertex v € G;. Similarly, for
each edge e = uv € X, such that f;(v) > 0 add a path of length f;(v) to the graph
and connect the first vertex of the path with the vertex u € Gy.

It can be shown that for large enough indices ¢, the matrices A, have a special
structure that enables us to compute them efficiently. The following proposition is a
variant of the “cyclicity” theorem for the “tropical” semiring (INg U oo, min, +, 0o, 0),
see, e.g., [2, Theorem 3.112]. By a constant matrix we mean a matrix with all entries
equal.

Lemma 3 Let p = |V(G(G; X))|, and k = |V(G)|. Then there is an index q <
(2k + 2)** such that D, = D, + C for some index p < q and some constant matriz
C. Let P =q —p. Then for everyr > p and every s > 0 we have

A,.+SP - A’l‘ + SC .

Proof. First we prove the claim: For any ¢ > 1, the difference between any pair
of entries of Ay, both different from oo, is bounded by 2k.
Assume (A;);; # oo. Then clearly

(A)ij > K(hi(G; X))
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and, using |S(D(£))| + |S(R(f;))| < 2IV/(G)], we have
(A1)is < R((G5 X)) + 2|V (@)

Hence the claim follows.

For £ > 1, define K, = min{(A,);;} and let A, = A, — (K,)J, where J is the
matrix with all entries equal to 1. Since the difference between any two elements of
Ay, different from oo, cannot be greater than 2k. (Note that co — x = oo for any
z.) The entries of A} can therefore have only values 0,1, ..., 2k, co and hence there
are indices p < ¢ < (2k + 2)“2 such that A, = A. This proves the first part of the
proposition.

The equality A,,sp = A, + sC follows from the fact that for arbitrary matrices
D, E and a constant matrix C' we have

(D&C)o E =D o E®C.

This can easily be seen by computing the values of ij-th entries of both sides of the
equality: (DOC)oE)y = ming{((D)u+(C)ix) +(E)r;} = ming{ (D) +(E)r; }+(C)y

Note that since p = |[V(G(G; X))| = A%, and k = |V(G)|, the constants p, ¢ and
P in Lemma 3 depend only on the size of the monograph and are thus independent
of n.

Lemma 4 Algorithm 1 can be implemented to run in constant time.

Proof. First note that time for computing each of the y? = A% entries of A(G)
only depends on the size of the monograph G and the number of edges in X. It is
obviously independent on the number of monographs n. Thus Step 1 is of constant
time complexity in n, and similarly is Step 3.

Finally, the time complexity of Step 2 is constant in n because of Lemma 3. For
any n, only constant number, ¢, of powers of the matrix has to be computed. Then
the formula A, = A,_;p + jC can be used, where j = [*5Z]. d

Combining Lemmas 1, 2 and 4 we have

Theorem 3 Algorithm 1 correctly computes ka(¥n(G; X)) and ka(wn(G; X)) and
can be implemented to run in constant time.

5 Formulas for the pentomino exclusion problem

We know that the A-exclusion problem on some polygraphs and thus also the pen-
tomino exclusion problems PEP(n) can be solved in constant time. However, the
algorithm is useful for practical purposes only if the number of vertices of the mono-
graph G is relatively small, because the time complexity is exponential in the number
of vertices of the monograph G.
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We now briefly explain the encoding used in our implementation. The boundary
condition is encoded in the matrix index as follows. The last column of the first
factor and the first column of the second factor have k + k = 2k fields. Each field
carries a number between 0 and A, depending on the size of the polyomino it is a
part of (in the factor). Therefore there are (A + 1) possible indices.

For computing ., and k7, the matrices have sizes 5% x 5'? and 5'* x 5™, which
means 52* = 59604644775390625 ~ 5.9 x 10'® and 52 = 37252902984619140625 ~
3.7 x 10'®. The size of the matrices is too large to implement the method with
matrix multiplications. We therefore have computed only the necessary elements of
the matrices. As the PEP,(n) problem is a fasciagraph instance we only need a part
of the n-th power of the matrix. Given the necessary elements of the n-th power
of the matrix we have computed only those elements of the (n + 1)-st power, which
are needed in the next step. More precisely, for the fasciagraph with » monographs,
it is sufficient to compute only the rows of the matrix corresponding to the indices
with L(f;) = 0. Using a simple trick, we need only one row: Add two columns with
all fields covered with stones to the beginning of the chessboard, and compute the x
from the second column on. Here the left index is clearly 0. To obtain the solution
for fasciagraph just neglect the columns added and subtract the k& stones added.

The matrix multiplication is performed without explicitly storing the elements of
Al. Instead of multiplication, we have performed a loop where the effect of adding
any column to the end of any solution (i.e. any boundary condition) of a chessboard
with n columns has been investigated and the cummulative results were stored in the
new matrix (again with only one row) corresponding to the chessboard with n + 1
columns.

By Lemma 3, one should compare the last matrices in order to see when the
difference is a constant matrix. As we did not store the matrices, the following
straightforward lemma was applied [18]. Let ag-“) stand for the ij-th element of the
matrix AF.

Lemma 5 Assume that the 0-th row of A™*F and A™ differ for a constant, a(()?ﬂj) =
(n+P)

al” + C. Then min; o™ = min; ol + C.

Therefore, in our implementation the algorithm stores computed rows and checks
the difference of the new row against the previously stored rows until a constant
difference, i.e. a period is detected. As the periods of the examples considered are
relatively short, the approach was very effective. Note that the bounds given by
Lemma 3 are much larger and searching for long periods may again cause implemen-
tation problems due to large space requirements.

For completeness, we give solutions for small n (on Fig. 4 and Fig. 6) and a table
of k values for small n not included in Theorem 4 and Theorem 5. The periodic
solutions corresponding to rotagraphs (bands) are given in Fig. 5 and Fig. 7. In
other words, Figs. 5 and 7 prove x(Ps0Cs) < 19 and x(P;0C,) < 11. An argument
using the formulas for kg, and k7, gives k(Ps0Cs) = 19 and x(P;0C,) = 11. For
example, k(Ps0Cs) < 19 would contradict Theorem 4. We omit the details.
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Figure 4: Pentomino exclusion on 6 x n grid for some small n.

Theorem 4 Forn > 6,

K/G,n -

Theorem 5 Forn > 6,

K/7,n -

19|29 418
191229 420
19L("86)J +23
19| 9] 4 25
19|29 4 27
19| 229 430
19| 9] 413
19|22 415

11109 4921
111221 4 23

L(" 9 +15
11L(" 9 117

if nmod 8 =0
if nmod8 =1
if nmod 8 =2
if n mod 8 =3
if n mod 8 =4
if nmod 8 =5
if n mod 8 =6
if nmod8 =17
if nmod4 =0
if nmod4 =1
if nmod 4 =2
if nmod4 =3

)

)
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Figure 5: Pentomino exclusion on 6 x 8 band (rotagraph, or Cartesian product

PsCICs).

Table 1: Ky, values for small n not included in Theorems 1, 4, and 5.

n 11231415
k=30 |1

E=4|0 |2

E=5|1 |2 |5 |7
E=6|1 (4 |6 |8 |10
k=71 |4 |7 |10 |12

6 More examples

The algorithm can with obvious modifications be applied to other polyomino exclu-
sion problems. For example, on the 5 x n chessboards the number of positions needed
to be covered in order to exclude all trominoes (3-ominoes), tetrominoes (4-ominoes),

hexominoes (6-ominoes), and heptominoes (7-ominoes) are given below. Here s

(*) -
i,n 18

the number of positions which have to be covered on a i x n grid so that all k-ominoes

are excluded.

n >4, Iigz

n >4, ng‘z

71828+ 11
71052 + 14

7182 +9

13|t 4 7
1314 +9
13 4| 412
13120 4 14
13122 116
1314 418

if » mod 3 =2
if nmod3 =0
if nmod3 =1
if nmod 6 =4
if nmod 6 =5
if nmod6=0
if nmod6=1
if n mod 6 =2
if n mod 6 =3

)
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[T ™[]

Figure 6: Pentomino exclusion on 7 x n grid for some small n.

Figure 7: Pentomino exclusion on 7 x 4 band (rotagraph, or Cartesian product
PCy).
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7|_(n 4)J +6 if nmod4=0
(n—4) . B
n24,n§62 = L(n 4)J+8 %fnm0d4_1 ’
7 U 1 1+9 if nmod4 =2
L(n 4)J +10 if nmod4 =3
8|_(n 6)J+9 if nmod5 =1
8|_(n G)J + 10 if nmod 5 =2
n26a’fé2 = L(n 9] 4+12  ifpmod5=3 ,
8|_(n G)J + 14 if nmodb5 =14
SL(H G)J +16 ifnmodb5=0

See Figs. 8, 9, 10 and 11 for some solutions for small n.

s

Figure 8: Triomino exclusion on 5 x n grid for some small n.

Figure 9: Tetromino exclusion on 5 x 7 grid for some small 7.
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"
L
L

Figure 10: Heksomino exclusion on 5 x n grid for some small n.

EEE

FF

Figure 11: Heptomino exclusion on 5 x n grid for some small n.
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