AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 36 (2006), Pages 279-293

Securely computing XOR with 10 cards

TAKAAKI Mizukl FuMisHIGE UcHIIKE HIDEAKI SONE

Information Synergy Center, Tohoku University
Aramaki-Aza-Aoba 6-3, Aoba-ku
Sendai 980-8578
Japan
tm-paper@rd.isc.tohoku.ac. jp

Abstract

There exist several protocols by which Alice and Bob can securely com-
pute some function using a deck of cards. The most efficient protocol
currently known is given by Stiglic; his elaborate but simple protocol can
allow Alice and Bob to securely compute the AND function using only
8 cards. The existence of the AND protocol implies that one can design
a protocol which securely computes any Boolean function; for example,
the XOR function can be securely computed using 12 cards, although the
computation requires a relatively large task such as copying the input and
repeating the AND protocol. This paper addresses efficient secure com-
putation of XOR, and gives a simple protocol which securely computes
the XOR function using only 10 cards.

1 Introduction

Assume that Alice and Bob, who are honest-but-curious, have secret bits a € {0,1}
and b € {0, 1}, respectively. They wish to securely compute some Boolean function
f(a,b) such as AND, OR and XOR: they wish to learn the value of f(a,bd), but do
not want to reveal their own secret bits more than necessary. It has been known for
many years that such secure computations can be implemented by a deck of cards,
and there exist several protocols to achieve it. In this paper, we give another new
protocol for some secure computation. Briefly summarizing our results, we give a
protocol by which Alice and Bob can securely compute the XOR function a @ b
using a deck of 10 cards; our protocol produces its output in a “committed format,”
i.e. the output is obtained in a hidden way so that it can be used later for another
computation.

This paper begins with an overview of the classic protocol, called the “five-card
trick [3],” which securely computes the AND function a A b.

280 T. MIZUKI, F. UCHIIKE AND H. SONE

1.1 The “five-card trick”

Assume that Alice and Bob wish to securely compute the conjunction a A b of their
secret bits. Note that, after succeeding in such secure computation and learning the
value of a A b, Alice or Bob may know the other’s bit depending on the value of a or
b (but we do not care); for example, since 1 A b = b, Alice gets to know Bob’s bit b
whenever a = 1; whereas, if a = 0, then Alice never learns b. To achieve such secure
computation of AND, Boer [3] proposed an elegant protocol, which uses a deck of
five cards: three @’s and two @’s. Before going into the detail of the protocol, we
first mention the properties of cards appearing in this paper.

All cards of the same type (@ or @) are assumed to be indistinguishable from
one another. We denote by a card with its face down. We also assume that the

back side | ? | of each card is identical, as usual. To deal with Boolean values, we use
the following encoding (throughout this paper):

[#[©]=0, [O]&]=1. ()

~ We now explain the protocol. First, according to Alice’s bit @ and the negation
b of Bob’s bit b, they put the five cards as follows:

HHUHE]
=~ 1

That is, one of the three @’s is centered, Alice puts two cards of different types face
down at the left so that the order (which Bob must not see) is

{@@ ?fa:O
(O] &] ifa=1,

and Bob puts the remaining two cards face down at the right so that the order (which
Alice must not see) is
(O] ifb=0(ie.b=1)
b

We call such a sequence of two face-down cards a commitment; the sequence of the
two leftmost cards is a commitment to a (by Alice), and the sequence of the two
rightmost cards is a commitment to b (by Bob). Then, Alice and Bob turn the
centered card @ face down, and apply a random cut, which is denoted by (-):

zlzlEE) ~ EEEEE) - EEEEE
a b

A random cut (which is also called a random cyclic shuffling) means that, as in the
case of usual card games, a random number of leftmost cards is moved to the right

SECURELY COMPUTING XOR WITH 10 CARDS 281

committed | # of | # of | avg. # need
format? | types | cards | of trials | copying?
o Secure computation of AND
Boer [3] (§1.1) no 2 5 — no
Crépeau, Kilian [4 yes 4 10 6 (3) no
Niemi, Renvall [10 yes 2 12 2.5 yes
Stiglic [13] (§2.1) yes 2 8 2 no
o Secure computation of XOR
Crépeau, Kilian [4] yes 4 14 6 (3) yes
using Stiglic’s (§3) yes 2 12 6 yes
ours (§4) yes 2 10 2 no

Table 1: The known protocols and ours with their performance.

without changing their order (so that, of course, the random number must not be
known to Alice or Bob); to implement this, it suffices that Alice and Bob take turns
at cutting the deck until they are satisfied. Finally, Alice and Bob open all the five
cards. Then, the resulting sequence is either

VS]] %[O or [O]&]0]&]4])

apart from cyclic rotations, i.e. either the two|Q/[s are “cyclically” next to each other
or not. One can easily verify that the former case implies a A b = 1, and the latter
case implies a A b = 0.

Thus, the “five-card trick” can securely compute a A b quite efficiently. Its only
drawback is that the format of its output a A b differs from the format of input a
and b (remember the encoding rule (1) and the resulting sequences (2)). If one can
have a protocol such that its output a A b is obtained in a committed format, i.e. its
output is described as a sequence

——

aNb

which follows the encoding rule (1) (and Alice and Bob have no knowledge about
the value than their own secret bits), then the output can be later used as input for
another computation. Hence, such a protocol is much desirable. Indeed, since the
invention of the “five-card trick,” some protocols which produce their output in a
committed format have been developed.

1.2 The history

Table 1 indicates the known protocols and their performance.

As explained in Section 1.1, Boer [3] gave a secure AND protocol, called the
“five-card trick,” which uses three @’s and two @’s.

282 T. MIZUKI, F. UCHIIKE AND H. SONE

To overcome the drawback of the “five-card trick,” Crépeau and Kilian [4] de-
veloped a secure AND protocol, which produces its output in a committed format
using three @’s, three @’s, two @’s and two ’s. Thus, the protocol requires four
types of cards, and uses 10 cards in total. Furthermore, it is a Las Vegas algorithm,
and takes an average of six trials. (We note that the average number of trials can be
decreased to three by slightly improving the output positions in the protocol.)

Crépeau and Kilian also gave a secure XOR protocol by modifying their AND
protocol. Their XOR protocol, unlike their AND protocol, needs to copy a commit-
ment to Bob’s bit b (a method for copying was also given by them [4], and will be
presented in Section 2.2.3), and consequently requires four additional cards: two @’s
and two @’s (provided that “reusable” cards are utilized). Thus, Crépeau-Kilian
XOR protocol requires 14 cards in total.

Next, Niemi and Renvall [10] constructed a secure AND protocol by making use
of the sequence in the “five-card trick” twice. Their AND protocol needs only two
types of cards, and requires 12 cards (six @’s and six @’s) in total. Furthermore,
it takes an average of 2.5 trials.

Finally, Stiglic [13] proposed an efficient secure AND protocol (the detail of which
will be explained in Section 2.1). His elaborate but simple protocol requires only 8
cards (four @’s and four @’s), and needs no copy of input. Furthermore, it takes an
average of two trials. Thus, Stiglic’s AND protocol is the most efficient one currently
known.

1.3 Our results and related work

This paper addresses efficient secure computation of the XOR function a @ b, and
we will give a new secure XOR protocol, which uses only 10 cards: five @’S and five

’s. Our XOR protocol needs no copy of input, and takes an average of two trials.
Thus, Our XOR protocol is more efficient than Crépeau-Kilian XOR protocol, as
designated in Table 1.

Since securely computing the NOT operator is trivial (as will be seen in Sec-
tion 2.2.1), the existence of a secure AND protocol producing its output in a commit-
ted format immediately implies that one can easily design a protocol which securely
computes any Boolean function, such as the OR function a Vb = @ Ab. There-
fore, the XOR function can be also securely computed according to the identity
a®b=(aAb)V(aAb). However, even if we adopt Stiglic’'s AND protocol (which
is the most efficient one currently known), such secure computation of XOR needs
a relatively large task: it needs to copy commitments to the input a and b, needs to
repeat the AND protocol three times, requires 12 cards in total, and takes an average
of six trials, as will be shown in Section 3. Thus, Our XOR . protocol is more efficient
than the protocol constructed in such a way (see Table 1).

All the protocols appearing in Table 1 work without any use of computers; all
they need is just a (small) deck of cards. Thus, our work falls into the area of

SECURELY COMPUTING XOR WITH 10 CARDS 283

designing cryptographic protocols without computers. As another physical crypto-
graphic tool, Balogh, Csirik, Ishai and Kushilevitz [2] considered a “PEZ dispenser,”
which securely computes any function without randomization. Recently, Moran and
Naor [9] proved that “scratch-off cards” can be used to construct a protocol for bit
commitment and coin flipping, but not oblivious transfer. Niemi and Renvall [10],
and Salomaa [11, 12] pointed out various situations in which cryptographic protocols
without computers may be more effective than those with computers such as ordi-
nary public-key cryptosystems. It should be noted that, as Salomaa mentioned in
[11], the area of designing cryptographic protocols without computers has not been
investigated so much. Somewhat related to our work is the problem of sharing a
secret key by using a random deal of cards [6, 7, 8], or “Russian Cards” problem
[1, 5]; however, in the problems, a deck of cards is used as a mathematical model of
initial information given to each player, rather than a physical cryptographic tool.

The remainder of the paper is organized as follows. In Section 2, we present some
of the known protocols with our interpretations. In Section 3, we mention that this
paper addresses secure computation of XOR. In Section 4, we give a simple efficient
secure XOR protocol. This paper concludes in Section 5 with some discussions and
open problems.

2 Known Protocols with Our Interpretations

In this section, we present some of the known protocols with our interpretations
(which lead to some part of the idea behind the construction of our efficient secure
XOR protocol).

In Section 2.1, we present Stiglic’s AND protocol, which is the most efficient
protocol currently known. In Section 2.2, we present other known useful primitives:
securely computing NOT, securely computing OR, and copying a commitment. The
descriptions of these known protocols are slightly modified in this paper for the
readability of the succeeding sections; of course, their substance is not changed.

2.1 Stiglic’s AND protocol

Stiglic’s AND protocol [13] can allow Alice and Bob to securely compute the conjunc-
tion a A b of their secret bits using only 8 cards: four @’s and four @’s; furthermore,
its output is obtained in a committed format.

1. Place the 8 cards as below, and then turn over all the face-up cards:

A[ZZ[e 0270 - [zl

?
| —p—
a a b

2. Apply a random cut:

EERERERE) ~ R

284 T. MIZUKI, F. UCHIIKE AND H. SONE

3. Open the first and second cards (namely, the two leftmost cards).

(a) If the resulting sequence is @@ or @@, then go to step 4.
(b) If the resulting sequence is @@ or @@, then open the third (leftmost)
card.
i. If the sequence of the three face-up cards is | &| V| Q] or | 0| &| &/, then
go to step 4.
ii. If the sequence of the three face-up cards is ‘J.”Q?”.M or |Q?||J.H Q7|, then
turn back over the three cards and return to step 2.

4. Depending on the (two or three) face-up cards, the output a A b is obtained as
follows:

(o] 2] 2] 7])] 7}
——
a/b
MO HEHEE
g
a/Nb
o) 2] 2]2]2] 2] 2} or
e
anb

(O[] 2]?]?]2]?)-

R

alAb

Note that steps 2 and 3 in the protocol are repeated until a sequence @@ or

@I@ is found. Therefore, one can observe that Stiglic’s AND protocol takes an
average of two trials. (Thus, it is a Las Vegas algorithm.)

As mentioned above, the protocol searches for a sequence mm or @@, which

tells the position of the output a A b. For example, consider the case where |ﬂ|i| is

found (the case for @@ is similar). Then, the original sequence of the 8 cards was
either

. . output A output
[#][#]][] 2]2]O] or [#]0]]#][O] 7] 7]}
a=0 0 b a=1 b

In the former case, we have a = 0 and hence a commitment to the output 0Ab = 0 is
the two cards gained by skipping one card from . Similarly, in the latter case,
we have a = 1 and hence the position of the output 1 A b = b is acquired correctly.

It should be noted that, after a commitment to the output a A b is obtained, the
remaining six cards are reusable for executing another computation (provided that
the face-down cards are turned over after some shuffling).

2.2 Other primitives

In addition to Stiglic’s AND protocol, we now present the known useful primitives:
securely computing NOT, securely computing OR, and copying a commitment.

SECURELY COMPUTING XOR WITH 10 CARDS 285

2.2.1 Securely computing NOT

The secure computation of the NOT operator is trivial; given a commitment, reverse
the order of the two cards:

‘:\
—
212l - (27 - [2]7]
N—— Hf_/
xr xr

2.2.2 Securely computing OR

The OR function a V b can be securely computed by applying both Stiglic’'s AND
protocol and the NOT protocol above according to “de Morgan’s laws” aVb=a A b
[13].

Alternatively, we note that one can also have a secure OR protocol by slightly
modifying the output positions in step 4 of Stiglic’s AND protocol as follows:

(w222 202)7h [©ls[s]?]?]?]2]?)
N~—— N——
aVb aVb
Clofz]zlz]?]2]?} or [#[@]0]?]2]?]7]7]
N—— SN——
aVb aVb

Thus, we point out that Stiglic’s AND protocol brings not only a commitment to
a A b but also a commitment to a V b.

2.2.3 Copying a commitment

The following protocol [4, 10] makes k copies of a given commitment to = € {0,1}.

1. Put an alternation of 2k+4 @’s and @’s to the right of the given commitment:

2k+4 cards
212 #[O) SO #[O)---][9]

2. Turn over the 2k + 4 face-up cards, and apply a random cut to them:

HERHEEEEEREE)
N—— —— —— ~—— ——

z 0 0 0 0

Then, we have

HHHHHHHHEH
———— ——
T T T T T

where r is a random bit because of the random cut.

286 T. MIZUKI, F. UCHIIKE AND H. SONE

3. Apply a random cut to the four leftmost cards:

R EEEE-EE
xr T r T T
and then open the first and third cards:
open open 2k+2 cards

[z |"H‘?H"||"| 2]2)

,,.

4. If the resulting sequence of the two face-up cards is @ or @@, then it
implies = r, and hence the 2k + 2 rightmost cards immediately form a
commitment to x and its k copies:

2k+2 cards
?lz)z]e)[2l7)

N—— S——
z (=r) z (=r) z (=r)

If the resulting sequence of the two face-up cards is ||| or [V &l then it
implies z # r, i.e. ¢ = 7, and hence reversing the order of each pair of the two
cards brings a commitment to z and its k copies as follows:

N [N

~ ~ =~ 2k+2 cards
HH HHHHEHE
e e e s N——
oo " 2 (=) e (=0 @ (=P

Note that, after k copies of the given commitment are obtained, the remaining
four (leftmost) cards are reusable for executing another computation.

3 Securely Computing XOR

We are now ready to mention our problem and results. As stated before, this paper
deals with secure computation of the XOR function a & b.

Note that, once Alice and Bob learn the value of the exclusive-or a @ b of their
secret bits, each of them gets to know the other’s bit completely, because b = (a®b)®
a and a = (a®b)®b. Therefore, one may feel, at first glance, that secure computation
of XOR makes no sense. However, it is not the case. When one has a secure XOR
protocol producing its output a @ b in a committed format, it can be used as a
basic gate for composing larger circuits. For example, using such a protocol, secure
multiparty computation of x; ® 22 ® - - - ® x,, can be done, i.e. n players can learn the
parity of their secret bits without leaking any further information. Thus, designing a
secure (2-variable) XOR protocol is much important. For another example, consider

SECURELY COMPUTING XOR WITH 10 CARDS 287

the case where Alice and Bob want to slip the result a @ b to some third party, then
even just secure computation of 2-variable XOR is quite useful.

In this paper, we will give a simple and eflicient secure XOR protocol which
produces its output in a committed format using only 10 cards, as will be seen in
the succeeding section.

Since a @b = (a Ab) V (@ Ab), one can construct a secure XOR protocol by using
Stiglic’s AND protocol and the NOT protocol. However, such a protocol requires a
relatively large task: it needs to copy commitments to the input a and b, and needs
to repeat the AND protocol three times, due to the formula (a Ab)V (@ Ab). We now
count how many cards are necessary for such computation. First, in addition to the
four cards necessary for the input a and b, copying the commitment to a requires
six additional cards. After a copy of a is obtained, we have four reusable cards (as
mentioned in Section 2.2.3). Therefore, when we next copy the commitment to b, only
two additional cards are required. Hence, in total, such a XOR protocol requires 12
cards. Furthermore, it takes an average of six trials, because Stiglic’s AND protocol
must be repeated three times. Thus, Our XOR protocol is more efficient than the
protocol constructed according to a @ b = (a A b) V (@ A b) (see Table 1 again).

4 Owur Secure XOR Protocol

In this section, we give our protocol by which Alice and Bob can securely compute
the exclusive-or a @ b of their secret bits using only 10 cards.

We first outline our protocol in Section 4.1. We next give its building blocks in
Section 4.2. We finally describe our protocol in Section 4.3.

4.1 Outline

The main idea behind our XOR protocol is based on the identity
aBb=aPbDrdr,

where r is a random bit. In order to compute a ® b, we first compute a & b @ r

in a non-committed format, which means that, given three commitments to three

unknown bits a, b and r, we make only the value of a ®b®r public. Then, according
to the result, we output

r fa®dbdr=0
7 ifadbor=1

in a committed format. In other words, we reduce our goal (which is securely comput-
ing a® b in a committed format) to securely computing a ®b@®r in a non-committed
format. A more detailed outline is below.

288 T. MIZUKI, F. UCHIIKE AND H. SONE

1. Generate two commitments to a random bit » which Alice and Bob must not

see:
PR - (@R - e

0 0

(Remember step 2 of the copy protocol described in Section 2.2.3.) The first
commitment to the random bit r will be used to compute a & b @ r in step 2,
and the second one will be used to output either r or 7 in step 3.

2. Using the three commitments

2070127172

—_— —— ==
a b T

(and two additional cards), securely compute a & b @ r in a non-committed
format. This can be done by our building block which will be given in Sec-
tion 4.2.2.

3. According to the resulting value of a ® b@ r above, make a commitment to the
output a @ b by using the second commitment to 7, as follows. If a®@b®r = 0,
then the commitment to r immediately forms the output:

-
——
a®b (=r)

If a®b®r =1, then reversing the two cards of the commitment to r brings

the output: R
—

- - 27

H[rl—/ ——

a®b (=7)

Note that, even if one learns the value of a @ b @ r in step 2, one never learns
anything about each value of a and b, because r is a random secret bit. Thus, by the
observation above, securely computing a & b @ r in a non-committed format suffices
for our goal (which is securely computing a @ b in a committed format).

4.2 Building blocks

As mentioned above, we wish to securely compute a @ b @ r, i.e. the 3-variable
XOR function, in a non-committed format. To this end, we first observe how to
securely compute the (2-variable) XOR function z; & z» in a non-committed format
in Section 4.2.1. Then, using the idea, we give a protocol which securely computes the
4-variable XOR function o1 ®x2® 3@ x4 in a non-committed format in Section 4.2.2.
Note that such a protocol immediately achieves the end, because a @ b @ r is equal
to a®b® 0@ r (which can be securely computed in a non-committed format by such
a 4-variable XOR protocol).

SECURELY COMPUTING XOR WITH 10 CARDS 289

4.2.1 Non-committed computation of 2-variable XOR

Given commitments to z; and x5, apply a random cut, and then open the first and
third cards:

open open

AN AN
e ~ @EEEE) - REED
1 1

If the resulting sequence is mm or mm, then it implies z; ® x5, = 0. If the resulting
sequence is m& or Mm, then it implies z; ® z = 1. (Remember steps 3 and 4 of
the copy protocol described in Section 2.2.3.)

4.2.2 Non-committed computation of 4-variable XOR

Given commitments to 1, z3, 3 and x4, the following protocol securely computes
T1 @ Ty D x3 ® x4 in a non-committed format.

1. Put the four commitments as follows:

HHHHHHHE
g S S—p—— S ——

r1 T2 T3 Zra

2. Apply a random cut to each of both the four leftmost cards and the four

rightmost cards:
(EEER) (EEEE)
1

[2lzlzlz) [zlzlzlz)

?

3. Draw the first and fifth cards without opening them:

drawn

REHER (3)

apply a random cut to the two drawn cards:

) - e

and then open the two cards.

2

.

2

.

?

»

(a) If the resulting sequence is @@ or @@, then go to step 4.

(b) If the resulting sequence is or @, then return the two drawn
cards to the sequence (3) with their faces down, and go back to step 2.

290 T. MIZUKI, F. UCHIIKE AND H. SONE

4. Open the third and seventh cards:

If the resulting sequence is || Q| or |Q | &/, then it implies z; Dz, D3 Dy = 0.

If the resulting sequence is |&| | or |Q Q| then it implies 21 Dz, D3 Dy = 1.

Note that steps 2 and 3 are repeated until the type of the first card differs from
the type of the fifth card. Therefore, since each deck of the four leftmost cards and
the four rightmost cards consists of two @’s and two @’s, the protocol takes an
average of two trials. Furthermore, opening the two cards in step 3 does not leak
any information about the values of xy, 5, z3 and z4.

After the first and fifth cards become different types, i.e. they become @@ or
, the third and seventh cards are opened in step 4. Hence, there are exactly 8
possibilities for the sequence of the first, third, fifth and seventh cards, as follows.

Ist | 3rd | 2, @ 5th | 7th | 23 ® 3rdand | 21 @22 D
card | card | 2 card | card | x4 7th cards | 3P x4
& & 0 Q Q 0 L 3%

Q [} 1 [Q 1 0

Q Q 0 [[} 0 Q&

& Q 1 Q & 1

d | & 0 © () 1 s &

Q & 1 [& 0 1

Q Q 0 [Q 1 VAV

& Q 1 Q Q 0

Remember the observation in Section 4.2.1: the first and third cards (resp. the fifth
and seventh cards) are E@ or @@ if and only if z1 ® 22 = 0 (resp. z3 ® x4 = 0).
Also, remember that the first and fifth cards are different types. Therefore, the third
and seventh cards are @@ or @@ if and only if z1 ® x5 ® x3 ® x4 = 0. Thus, the
protocol correctly produces the output x; @ zs ® x3 S 4.

Moreover, opening the third and seventh cards does not leak any information
other than just the value of z; @ x5 ® x3 @ x4; for example, no matter whether the
third and seventh cards are @@ or they are @@, all the information we gain is
just the value of 1 @ zo ® 23 P x4 = 0.

Thus, the protocol above securely computes 1 @ s ® 3@ x4 in a non-committed
format.

4.3 Complete description of our protocol

The following is the complete description of our XOR protocol, which securely com-
putes a @ b using 10 cards.

SECURELY COMPUTING XOR WITH 10 CARDS 291

1. Put the 10 cards as follows:
HHEHRHEONMNOMOIM
g S——

a b

2. Turn over all the face-up cards, and apply a random cut to the four rightmost
cards:

ez ()

a b 0 0 i 0
2lz)zlz) 2]z [zlz)z]?)
g S —— | —p—

a b 0 T T

3. Apply two random cuts as follows:

ErEEE) CrEERE) 23

T

4. Draw the first and fifth cards without opening them:

drawn drawn
/= /=

L2leE L) 2 (4)
T

After applying a random cut to the two drawn cards, open the two cards. If
the resulting sequence is m@ or @m, then go to step 5. If the resulting
sequence is mm or MM, then return the two cards to the sequence (4) with
their faces down, and go back to step 3.

5. Open the third and seventh cards:

open

P
2lzll?] [2]2)
N

If the resulting sequence is @@ or @@, then the two rightmost cards (i.e.
the commitment to r) form the output a & b:

el 2]
——

adb

If the resulting sequence is @@ or @@, then reversing the order of the two
rightmost cards brings the output a & b:

T a®b

Note that our XOR protocol above takes an average of two trials. Furthermore,
after the protocol terminates, we have 8 reusable cards.

292 T. MIZUKI, F. UCHIIKE AND H. SONE
5 Conclusions

In this paper, we addressed efficient secure computation of XOR with a deck of cards,
and gave a protocol by which Alice and Bob can securely compute the XOR function
a @ b using only 10 cards, where Alice has a secret bit a and Bob has a secret bit b.
Our secure XOR protocol is simple, and takes an average of two trials. As indicated
in Table 1, our XOR protocol is more efficient than one given by Crépeau and Kilian
[4] and one applying Stiglic’s AND protocol [13].

Since our XOR protocol produces its output in a committed format, it can be
easily extended to a multiparty XOR protocol which securely computes the n-variable
XOR function z; ®z2 - -®x,. One can easily observe that such a protocol requires
2n + 6 cards, provided that reusable cards are utilized.

One may notice that the 3-variable XOR function x; & x> @ x3 can be securely
computed (in a committed format) using only 10 cards, because z; ® xo ® 3 D 1
can be also securely computed in a non-committed format by the protocol given in
Section 4.2.2. Using the idea, we can construct a multiparty XOR protocol which
securely computes x1 @ 23 @ - - - @ x,, using only 2n + 4 cards if n > 3.

One of the most interesting open questions is whether or not there exists a secure
XOR protocol which works with less than 10 cards using random cuts. Similarly,
as proposed in [13], it is a challenging open problem to prove that Stiglic’s AND
protocol is optimal in the sense that the number of needed cards is minimum (or to
design a committed secure AND protocol which works with less than 8 cards using
random cuts).

As a building block for our secure XOR, protocol, we gave a method for securely
computing the 4-variable XOR function in a non-committed format using 8 cards.
If one could find a method for securely computing the n-variable XOR function in
a non-committed format using a reasonable number of cards, then one might have a
more efficient secure multiparty XOR, protocol.

References

[1] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, H.P. van Ditmarsch and C.C.
Handley, “Safe communication for card players by combinatorial designs for
two-step protocols,” Australas. J. Combin. 33 (2005), 33-46.

[2] J. Balogh, J. A. Csirik, Y. Ishai and E. Kushilevitz, “Private computation using
a PEZ dispenser,” Theoret. Comp. Sc. 306 (2003), 69-84.

[3] B. den Boer, “More efficient match-making and satisfiability: the five card
trick,” Proc. EUROCRYPT ’89, Lec. Notes Comp. Sc. 434 (Springer-Verlag
1990), 208-217.

SECURELY COMPUTING XOR WITH 10 CARDS 293

[4] C. Crépeau and J. Kilian, “Discreet solitary games,” Proc. CRYPTO 93, Lec.
Notes Comp. Sc. 773 (Springer-Verlag 1994), 319-330.

[5] H.P. van Ditmarsch, W. van der Hoek, R. van der Meyden and J. Ruan, “Model
checking Russian Cards,” Electronic Notes Theoret. Comp. Sc. 149, No. 2 (2006),
105-123.

[6] M.J. Fischer and R.N. Wright, “Bounds on secret key exchange using a random
deal of cards,” J. Cryptology 9 (1996), 71-99.

[7] T.Mizuki, H. Shizuya and T. Nishizeki, “A complete characterization of a family
of key exchange protocols,” International Journal of Information Security 1, no. 2
(2002), 131-142.

[8] T. Mizuki, H. Shizuya and T. Nishizeki, “Characterization of optimal key set
protocols,” Discrete Appl. Math. 131 (2003), 213-236.

[9] T. Moran and M. Naor, “Basing cryptographic protocols on tamper-evident
seals,” Proc. ICALP 2005, Lec. Notes Comp. Sc. 3580 (Springer-Verlag, 2005),
285-297.

[10] V. Niemi and A. Renvall, “Secure multiparty computations without computers,”
Theoret. Comp. Sc. 191, (1998), 173-183.

[11] A. Salomaa, “Caesar and DNA. Views on cryptology,” Proc. 12th Internat.
Symposium on Fundamentals of Computation Theory (FCT ’99), Lec. Notes
Comp. Sc. 1684 (Springer-Verlag, 1999), 39-53.

[12] A. Salomaa, “Public-Key Cryptography (Second, Enlarged Edition),” Springer-
Verlag, Berlin, Heidelberg, New York, 1996.

[13] A. Stiglic, “Computations with a deck of cards,” Theoret. Comp. Sc. 259 (2001),
671-678.

(Received 19 Sept 2005; revised 4 Apr 2006)

