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Abstract

In a graph G, a vertex dominates itself and its neighbors. A subset
S C V(G) is a double dominating set of G if S dominates every vertex
of G at least twice. A double dominating set .S of a graph G is perfect if
each vertex of G is dominated by exactly two vertices in S. In this note
we study the existence and construction of perfect double dominating
sets in grids, cylinders and tori.

1 Introduction

Let G be a graph with vertex set V. A vertex v € V is said to dominate all the
vertices in its closed neighborhood N[v]. (For graph theory we follow the notation
and terminology of [6].) A subset S of V is a dominating set of G if S dominates
every vertex of G at least once [8]. When each vertex of G is dominated by exactly
one element of S, then S is called a perfect dominating set (PDS) of G. Similarly, a
subset S of V' is a double dominating set of G if S dominates every vertex of G at
least twice [7]. When each vertex of G is dominated by exactly two elements of .S,
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then S is called a perfect double dominating set (PDDS) of G. The double domination
number dd(G) is the minimum cardinality among all double dominating sets of G.
A minimum double dominating set of G is a double dominating set of cardinality
dd(G). In general [7], a subset S of V' is a (perfect) k-tuple dominating set if each
vertex of G is dominated by (exactly) at least k& elements of S.

Determining whether an arbitrary graph has a dominating set of a given size is a
well-known NP-complete problem [4, 10]. Straightforward proofs can be used to
show that it is also NP-complete to decide if a graph has a perfect dominating
set. In [2] it is proved that the existence of a perfect double dominating set is an
NP-complete problem as well. Thus the general problem of determining if a graph
has a dominating set, perfect dominating set or perfect double dominating set of a
given size is quite hard, but for many significant classes of graphs it is manageable.
Domination numbers of grid graphs, cylinders and tori have been studied by many
researchers, but their domination numbers are known only for a few cases [3, 5, 9, 11].
Perfect dominating sets for certain graphs have also been investigated [1, 12, 13]. In
particular, meshes and tori are studied in [12].

The authors of [2] study PDDSs in trees and in connected cubic graphs. In this paper
we focus on PDDSs of grids, cylinders and tori. The paper is organized as follows: In
Section 2 we completely characterize all grids that possess a PDDS and also specify
the structure of the existing PDDSs. In Section 3 we determine which cylinders
contain a PDDS and characterize the structure of their PDDSs. Section 4 is devoted
to the determination of all tori which contain a PDDS and to the characterization
of the structure of their PDDSs. We make use of the following result in this note.

Theorem 1 (See Corollary 6 in [2]) Let G be a k-regular graph with vertex set V.
If® is a PDDS in G then |D| = 2.

2 Grids

In this section we characterize all grids P, x P, that have perfect double dominating
sets and determine the construction of those PDDSs which do exist. Throughout
this section, ® is a perfect double dominating set in P, x P,, when it exists. We

assume that the vertices of the ith copy of P, in P, x P, are u},ub,u}, ..., us for
1 =1,2,...,m. We also assume that © has precisely ¢; vertices in the ith copy of
P,in P, X P,,.

Lemma 1  (Proposition 11 in [2]) P; x P, has a PDDS if and only if m = 2
(mod 3). If this holds the size of any such set is 2(m + 1)/3.

Lemma 2 P, X P, has a PDDS if and only if m is odd. If this holds the size of
any such set is m + 1.
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Proof. Suppose that ® is a PDDS of P, x P,,. We claim that © contains both
ui and u}. It is clear that D includes at least one of u} or ui. Without loss of
generality let ul € © and u ¢ . This forces u?,u? € D which is a contradiction
since u? is dominated by at least three vertices of ®. So ul,ui € ®. Similarly,
u,ul* € ®. This implies u},ui ¢ © and u},ud € D since D is a PDDS. An
induction argument shows that ufkil,u%kfl € D and u?, uik ¢ D for each positive
integer 1 < k < [(m + 1)/2]. So m must be odd since u]*,uj* € ©. Moreover, the

construction shows that the existing PDDS is unique. g

Lemma 3 Let m > 3. Then P; X P, has a PDDS if and only if m = 5. If this
holds the size of any such set is 8.

Proof. Let D be a PDDS in P; x P,. We claim that ui € ®. If ui ¢ ® then we
must have u},u},u? and u3 € ®. This forces c3 = 0. But then u} is dominated by
at most one vertex of © which is a contradiction. So uj € ©. Therefore, ® contains
exactly one of uj or u3. Without loss of generality we can assume u} € ©. This
implies c; = 1 and u? € ®. So c3 = 2 and u?,ud € ©. This forces uj € ® which
implies ¢5 = 2 and u3,u} € ®. If m = 5 then obviously © is a PDDS for P; x P.
If m > 6 then ¢ = 0. This leads to the contradiction that ® cannot dominate u$
twice. This completes the proof. ]

Lemma 4 Py x P, has a PDDS if and only if m = 4. If this holds the size of any
such set is 8.

Proof. By Lemmas 1, 2 and 3 we can assume m > 4.

First, let u] ¢ © then u},ui € ®. This forces uj ¢ ® which implies u3,u} € . So
we must have u2 € ® which implies uj € . This forces u3,u,u},uj ¢ © which
implies u3, ui € ©. We now consider two cases.

Case 1 m =4. Then ® is a PDDS for P, x P,.

Case 2 m > 5. Then we must have ¢s = 0 which forces the vertex u® to be
dominated by at most one vertex of © which is a contradiction.

Secondly, let uj € ©. We consider two cases.

Case 1 uj € ©. This forces u3, u?,u3 ¢ © which implies u},u3, v, u3 € . Then
u? is dominated by at most one vertex of ® which is a contradiction.

Case 2 u? € ©. This forces ul € D, otherwise u} is dominated by at most
one vertex of ® which is a contradiction. If ui ¢ © then u3,u? € ® which is a
contradiction. So u} € D. This forces u3,u3, ui € D which is also a contradiction.
This completes the proof. ]

Lemma 5 Ifm,n > 5 then P, x P, does not have a PDDS.
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Proof. In order to prove this theorem we consider two cases.

Case 1 u! € ©. Without loss of generality we can assume u? € ©. This forces
us,ud, ul ¢ © and ui € ©. Since u2 must be dominated by exactly two vertices of

9, consider two subcases.

Subcase 1 u3 € ©. This implies u,uf € D. So ul € D, vl € D, u3 € D and
us € ®. Now uj is dominated by at most one vertex of ® which is a contradiction.

Subcase 2 u} € ©. This implies u},u} ¢ ®. Now u3 is dominated by at most one
vertex of ® which is a contradiction.

Case 2 wuj ¢ ©. This forces u?,u} € D and v € ©. So u},u} € ® which forces
uj,us,ui,uy ¢ ©. Since ud must be dominated by exactly two vertices of D, we

consider two subcases.

Subcase 1 ui € ®. This forces u},u} ¢ D which implies u2,u3,u} € ©. Then
we must have u3, u3,u$ ¢ ©. But then «8 is dominated by at most one vertex of D
which is a contradiction.

Subcase 2 u} € ©. This forces u2 ¢ © which implies u3, ul,u? € ©. Then we
must have uj,uj,uj ¢ ®. But then uj is dominated by at most one vertex of D
which is a contradiction. d

Now we state the main result of this section.

Theorem 2 P, x P, has a perfect double dominating set if and only if

n=1and m =2 (mod 3)
n=2and m=1 (mod 2)
n=3andm=25
n=m=4.

An argument similar to that described in this section leads to the following theorem.
The proof of this theorem is left for the reader.

Theorem 3 P, x P,, has a perfect 3-tuple dominating set if and only if
n=m=2
n =3 and m =4.

3 Cylinders

In this section we characterize cylinders which contain a perfect double dominat-
ing set (PDDS) and determined the structure of their PDDSs. We assume that
ub,ub, ..., ul are the vertices of the ith copy of C, in C, x P, for i = 1,2,... ,m.
We also assume that ® has precisely ¢; vertices in the ith copy of C, in C, X P,,.
Throughout this section n > 3.
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Lemma 6  (Proposition 10 in [2]) C, X Py has a PDDS if and only if n =0 (mod
3). If this holds the size of any such set is 2n /3.

Lemma 7 C, x P, has a PDDS if and only if n is even. If this holds the size of
any such set is n.

Proof. Let © be a PDDS in C, x P,. It is clear that ¢; > 1. So, without loss of
generality, we can assume u € ®. We consider two cases.

Case 1 u} € ©. This forces uj,u3,ul,u? ¢ © which implies u},ui € ©. An
induction argument shows that ul, ,,u3, , € ® and u},,u3, ¢ D for each positive

integer 1 < k < [(n+1)/2]. Thus, we must have n = 2k for some k.

Case 2w} € ©. This implies u?,u?, ul,ul ¢ D which forces u2,u? € ©. An
induction argument shows that ul, ,,ul, € D when kis odd and u2, ,,u, € D
when £ is even. So when n is even ® is a PDDS for C,, x P,. If n is odd then qu is
dominated only by one vertex of ® which is a contradiction. d

Lemma 8 (), x P; has no PDDSs.

Proof. It is easy to see that C3 x P; has no PDDSs. So let n > 4. Let ®© be a
PDDS in C,, x P;. Obviously, ¢; > 1. So, without loss of generality, we can assume
uj € . We consider three cases.

Case 1 u? € ©. Then u},u?, ul,u? ¢ ©. Since v} must be dominated by two
vertices of © we must have either u3 € D or u® € . If u3 € D then u3 is dominated
by at most one vertex of © which is a contradiction. If u3 € D then 3 is dominated

by at most one vertex of ® which is also a contradiction.
Case 2 u) € D. This forces ul,uj,u?,us ¢ ®. We consider two subcases.

Subcase 1 u} € ©. This implies uf ¢ © which forces u3,uj,uj € ®. If n = 4
then we have u} = vl ¢ ©. This is a contradiction. If n > 5 then u? is dominated
by at most one vertex of ® which is a contradiction.

Subcase 2 u} ¢ D. This forces u?,u?, ud € © and u3,ul € D. So uj is dominated
by at most one vertex of © which is a contradiction.

Case 3 ul € D. An argument similar to that described in Case 2 verifies that
this case is also impossible. d

Lemma 9 (5 x P, has no PDDSs for m > 2.

Proof. Let © be a PDDS in C3 x P,. Obviously, ¢; > 1. So, without loss of
generality, we can assume u} € ©. If u} € D then u} is dominated by at most one
vertex of © which is a contradiction. If uj € ® then uj is dominated by at most one
vertex of ® which is also a contradiction. Similarly, u} € D leads to a contradiction.
This completes the proof. ]
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Lemma 10 Cy x P,, has no PDDSs for m > 3.

Proof. By Lemma 8 we can assume m > 4. Let © be a PDDS in Cy x P,,.
Obviously, ¢; > 1. So, without loss of generality, we can assume ul € . We
consider three cases.

Case 1 u? € D. Then u},u3, v, uj,ui ¢ ® which implies u},u5 € © . Then u} is
dominated by at most one vertex of ® which is a contradiction.

Case 2w} € ©. This forces u?,u2,ul,u; ¢ ® which implies u3,u? € . This
forces ¢4 = 0. But then u? is dominated by at most one vertex of ® which is a
contradiction.

Case 3 uj € . An argument similar to that described in Case 2 verifies that this
case is also impossible. a

Lemma 11  C, x P, has no PDDSs for any two integersn > 5 and m > 4 .

Proof. Let ©® be a PDDS in C,, x P,,. Since ¢; > 1, without loss of generality, we
can assume u}. We consider three cases.

Case 1 u} € D. This forces uj, u3,u?, ul,u2 € ® and u}_;,us € D. Since ui must
be dominated by two vertices of © we cons1der two subcases.

Subcase 1  u2 € . Then u3 is dominated by at most one vertex of © which is a
contradiction.

Subcase 2w € ©. This implies vl ¢ D and w2 ;,ul |, € D. Now u2 | is
dominated by more than two vertices of ® which is a contradiction.

Case 2 u) € ©. This forces u},u?, u3,uy ¢ ®. Since ui must be dominated by
two vertices of ® we consider two subcases.

Subcase 1 3 € ©. This forces ui ¢ ® and u3,u},ui € ®. Then we must have
ud, u, ud,ud ¢ ©. Now if n = 5 then 2 is dominated by only one vertex of D,
namely u3, which is a contradiction. If n > 6 then we must have u},u2, ud € ©. Now
u? is dominated by more than two vertices of © which is also a contradiction.

Subcase 2w} € ©. Then ul,ul ¢ © and u3 € D. This forces ui € D and
uludud ¢ ©. So ud,ub,ui € D and uf ¢ ©. This implies v} € D. Now u? is
dominated by three vertices of ® which is a contradiction.

Case 3 ul € ©. An argument similar to that described in Case 2 verifies that
this case is also impossible. a

Now we state the main result of this section.

Theorem 4 C,, x P, has a perfect double dominating set if and only if

¥

0 (mod 3) and m =1
0 (mod 2) and m = 2.
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4 Tori

In this section we characterize all tori C, x C,,, m,n > 3, that have perfect double
dominating sets and determine the construction of those PDDSs which do exist.
Since the tori are 4-regular, the complement of a PDDS of a torus is a perfect 3-
tuple dominating set of that torus. Hence, we also characterize all tori C,, x Cy,,
m,n > 3, that have perfect 3-tuple dominating sets. In this section we assume that
ul,ub, ..., ul are the vertices of the ith copy of C, in C,, x Cp, for i = 1,2,.

We also assume that © has precisely ¢; vertices in the ith copy of C,, in On X Cm.

Lemma 12 C3 x C,, has no PDDSs for any positive integer m.

Proof. Let ®© be a perfect double dominating set in C3 x C),. Since C3 x C,, is a
4-regular graph we have |D| = %% by Theorem 1. So m = 5k and |D| = 6k for some
positive integer k. Now since |D| > m there is a copy of Cj in C3 x Cp,, say the i-th
copy, such that ¢; > 2. Without loss of generality we can assume ui,u} € ®. This

implies ud, uit! ust! uit ¢ ®. Now it is dominated by at most one vertex of D
which is a contradiction. This completes the proof. ]

Lemma 13 Cy x C,, has no PDDSs for any positive integer m.

Proof. By Lemma 12 we can assume m > 4. Let © be a perfect double dominating
set in Cy X Cp,. Since Cy x Cp, is a 4-regular graph we have |D| = %2 by Theorem
1. So m = 5k and |D| = 8k for some positive integer k. Now since |D| > m there is
a copy of Cy in Cy x C,y, say i-th copy, such that ¢; > 2. We consider two cases.

Case 1 ' contains two adjacent vertices of the ith copy of Cy. Without loss of
generahty we can assume uj,uy € . Then uZ1 Lubtud,ul €@, If uit € D then

gD and vl ul t ub? € . But now ui ! is dominated by at most one vertex
of ®© which is a contradlctlon Similarly, it is impossible to have u3~ Le®. So ub is
dominated by at most one vertex of © which is impossible.

Case 2 O contains two non-adjacent vertices of the ith copy of Cy. Without
loss of generality we can assume u},uy € ©. Now there are two subcases (up to
isomorphism) to consider.

Subcase 1 ulfrl ZH € ©. This forces ¢;42 = 0. This is a contradiction since s

is dominated by at most one vertex of ©.
Subcase 2 u{",ui' € ©. This implies w5, ui™ ui™ € . But then uit? is
dominated by more than two vertices of © which is a contradiction. g

i+2

Lemma 14 Let 5 divide m and n. Then C, x C,, has a perfect double dominating
set.
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Proof. It is easy to observe that if G x C} has a PDDS, then so does G x C,y, for
all @ > 1. On the other hand

_ 2,5 .2 4.1 4 _ 1 3 3 5
‘D - {u17u17u27u27u37u37u47u47u57u5}

is a PDDS of C5 x C5. Now the result follows. a

Lemma 15 Let m,n > 3. If C,, x C,, has a PDDS then both n and m are multiples
of 5.

Proof. Let © be a PDDS in G. Without loss of generality, we can assume
u?,ul € D. This forces ul,ul, u?, uZ, v}, u3 ¢ ®. Consider two cases.

Case 1 u} € ©. This implies u2,u} ¢ © and u}, u},u} € ©. Then we must have
uf, uf, ud, ub, ul, vl € D and wd, ud, ul, us, u§ € ®. Thus, u?, ud, ul, ul, ul, ul, ul, ul &
D and uj, ul, ul, uf, uf, uf € ®. This forces u}, ug, ul, ud, u, uf, u§, uf, ul, ul, ul, u,
uf ¢ © and wg,ui,ul € ©. But then ul, ul,ul ¢ D and uj,ud,ul,ul € . This
implies ug,u® & D and u?,u] € ®. Now, we must have u},ud, u2 € D and ul*, ul €
D. This forces v ¢ © and ui € D. So far we have proved if u?,u3,u} € D then

ul,ul, uS, u u2,ui € ©. In a similar fashion we can prove that if ul,uj,u$ € D

then u!? ui? uil € ®. Moreover, if u2,u?,u} € D then u?,,u2,,ul, € D. A simple

induction argument shows that

u?k+2’ugk+27ugk+l €9 and u§k+1’ugk+2’uék+3 €D
for every non-negative integer k. (Note that the superscript 5k + a in u3** is the
unique integer r € {1,2,...,m} such that 5k + a = r (mod m) and the subscript
5k +bin uéHb is the unique integer s € {1,2,...,n} such that 5k +b = s (mod n).)
Now since u3¥™2 € D for every non-negative integer k it follows that 5 divides m,
otherwise ué € D for every i = 1,2,...,m which is impossible. Similarly, 5 divides
n since ug,, € D for every non-negative integer k.

Case 2w} ¢ ©. This forces ul, v, ul* € D. Now by relabeling the vertices of
C,, x C,, this case can be converted to Case 1. So 5 divides m and n. O

Now we are ready to state the main results of this section.

Theorem 5 Let n,m > 3. Then C, x Cp, has a perfect double dominating set if
and only if 5 divides both m and n. If this holds the size of any such set is 2mn/5.

Corollary 1 Forn,m > 3, C, x Cy, has a perfect 3-tuple dominating set if and only
if 5 divides both m and n.
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