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Abstract

The queen’s graph @, has the squares of the n x n chessboard as its
vertices; two squares are adjacent if they are in the same row, column,
or diagonal. Let v(Q,) be the minimum size of a dominating set of Q.
It has been proved that v(Q,) > (n — 1)/2 for all n. Known dominating
sets imply that y(Q,) = (n — 1)/2 for n = 3,11. We show that v(Q,) =
(n —1)/2 only for n = 3,11, and thus that v(Q,) > [n/2] for all other
positive integers n.

The queen’s graph @, has the squares of the n x n chessboard as its vertices; two
squares are adjacent if they are in the same row, column, or diagonal. A set D of
squares of @, is a dominating set for @, if every square of @), is either in D or
adjacent to a square in D. If no two squares of a set I are adjacent then I is an
independent set. Let v(Q,) denote the minimum size of a dominating set for @Q,;
a dominating set of this size is a minimum dominating set. Let i(Q,) denote the
minimum size of an independent dominating set for Q.

The problems of finding values of v(Q,) and of i(Q,) are given as Problem C18
in [7], and have interested mathematicians for well over a century. De Jaenisch [8]
considered these problems in 1862. In 1892, Rouse Ball [12] gave dominating sets
and independent dominating sets of @, for n < 8. Ahrens [1] extended this in 1910
ton < 13 and n = 17 for v(Q,) and to n < 12 for i(Q,). In most cases, proof that
these sets were minimum dominating sets required recent work on lower bounds.
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Raghavan and Venketesan [11] and Spencer [5, 13] independently proved that
1(@n) 2 (n = 1)/2. (1)

The only values for which equality was known to hold in (1) were n = 3,11, so
researchers sought better bounds. Weakley showed [13] that

V(Qar1) 2 2k + 1. (2)

A combined effort by several researchers [2, 4, 6, 9, 10, 13, 14] has shown that
Y(Qar+1) = 2k + 1 for k < 32.

Burger and Mynhardt showed [3] that v(Quapt3) > 2k+2 for 3 < k < 7, with equality
for k = 4,7. Weakley further restricted [14] the possibilities for equality to hold in
(1), as will be described below in preparation for our main result: v(Q,) = (n—1)/2
holds only for n = 3,11, and thus 7(Q,,) > [n/2] for all other positive integers n.

For the remainder of the paper, let n be a positive integer such that v(Q,) = (n—1)/2,
and let D be a minimum dominating set of @),,. We write d for the size of D; that
is, d = (n — 1)/2. In [13, Theorem 2] it was established that n = 3 (mod 4), so d is
odd, and that D is an independent set, a fact we will often use.

We will identify the n x n chessboard with a square of side length n in the Cartesian
plane, having sides parallel to the coordinate axes. We place the board with its center
at the origin of the coordinate system, and refer to board squares by the coordinates
of their centers. The square (z,y) is in column z and row y. (As n is odd, z and
y are integers.) Columns and rows will be referred to collectively as orthogonals.
The difference diagonal (respectively sum diagonal) through square (z,y) is the set
of all board squares with centers on the line of slope +1 (respectively —1) through
the point (z,y). The value of y — z is the same for each square (z,y) on a difference
diagonal, and we will refer to the diagonal by this value. Similarly, the value of z+y
is the same for each square on a sum diagonal, and we associate this value to the
diagonal.

By [14, Theorem 3], for each (z,y) in D, both z and y are even. It then follows from
the independence of D that the numbers of the rows and columns occupied by D are

0,42, +4,...,+(d - 1). (3)

As shown in the proof of [14, Theorem 4], this implies that there is a non-negative in-
teger e such that the numbers of the sum diagonals and difference diagonals occupied
by D are

0,42, 4, ..., +2e,£(2e +4), £(2e +8),...,%(2d — 2¢ — 2). (4)

For any square (z,y), the Parallelogram Law asserts 222 + 2¢? = (v +y)% + (y — x)?,
relating the numbers of the orthogonals of (z,y) to those of its diagonals. Thus
2Y e pen(@® + %) = X yen((z +y)* + (y — x)?). Putting the numbers from (3)
and (4) into this equation and simplifying gives

d* — 3(d — 2¢)* = —2. (5)
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Set X =d and Y =d — 2e. Then Y — 1 is the number of terms after £2e in (4), so
X,Y > 0 and from (5) we have X? — 3Y? = —2. The positive integer solutions of
this Pell’s equation can be found by standard methods; the corresponding values of
d and e are given by the recursion

(dl,el) = (1,0), (dg,eg) = (57 1)7 and (6)
(di,ei) = 4(di_1762‘_1) — (di_Q,ei_Z) for ¢ > 2.

Then using n; = 2d; + 1 we get a sequence (n;), of integers defined by
ny = 3,ny = 11, and n; = 4n;_; — n;_o — 2 for i > 2. (7)

Since ¥(Q,) = (n—1)/2, n = n,; for some positive integer i. We have now summarized
what we need from [14].

From (4) we see that each number ¢ of an occupied diagonal satisfies either ¢ =
2e—2 (mod 4) or t = 2e (mod 4), and that there are e occupied difference diagonals
of the former kind and d —e occupied difference diagonals of the latter kind; similarly
for sum diagonals. Following [3], we refer to the former as core diagonals (both
difference and sum), and the latter as body diagonals. Since all numbers of occupied
rows and columns are even, a square of D is on a core difference diagonal if and only
if it is on a core sum diagonal.

Definition. Say that (z,y) in D is a core square if its diagonals are core diagonals;
otherwise (z,y) is a body square.

There are e core squares and d — e body squares in D.
Definition. Let S be the sum of |z| + |y| over (z,y) in D.

Using the list (3) of numbers of orthogonals occupied by D, we have

(d—1)/2
S= 3 (lz|+y)=4 > 2j=d*-1
(z.w)eD j=1

It is useful to look at the terms in the sum S in another way. For any square (z,y),
we have
|z + |y| = max{|z +y, [y — =[}. (8)

We now use (8) and the list (4) of the numbers of the diagonals occupied by D to
construct a sum Spa, that is an upper bound for S. The terms in this sum are the
largest integers that could occur as absolute values of diagonal numbers of D. The
multiplicity in Spax Of @ non-negative integer is the number of times it occurs as a
term in the sum. Since D is independent, the multiplicity of each term is at most
four.

As n is a member of the sequence (n;)%2,; defined by (7), it is convenient to consider
the construction of Sy,x in four cases, depending on the residue of ¢ modulo 4. We
describe the first in detail; the others are similar.
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Case: i =1 (mod 4). Here (6) implies d = 1 (mod 4) and e = 0 (mod 4).

We look first at the e core squares of D. From (4), the core diagonals with numbers of
largest absolute value are sum diagonals £(2e —2) and difference diagonals +(2e—2).
Thus 2e — 2 has multiplicity four in Sya.x. The next largest absolute values are all
2e — 6, again with multiplicity four, and the terms continue to decrease by four, each
with multiplicity four, down to e + 2.

There are d — e body squares, and here d — e = 1 (mod 4), so the terms in Spy for
body diagonals are 2d — 2e — 2 with multiplicity four, followed by 2d —2e—6,...,d —
e + 3, each with multiplicity four, and a single d — e — 1. So in this case

e/4 (d—e—1)/4
Sinax 2426—2— 4 -1) + Z 42d—2¢—2—4(j - 1))+ (d—e—1).

Case: ¢ =2 (mod 4). Here d =1 (mod 4) and e =1 (mod 4), and
(e—1)/4 —e)/4
Smax = Z 426 —2—4(j — 1)) + (e — 1) Z (2d — 2e — 2 — 4(j — 1)).

=1

Case: 1 = 3 (mod 4). Here d = 3 (mod 4) and e =0 (mod 4), and

e/4 (d—e—3)/4
Smax = > 42 —2-4(G = 1))+ Y 4(2d—2e—2-4(j—1))+3(d—e+1).
j=1 j=1

Case: 1 =0 (mod 4). Here d = 3 (mod 4) and ¢ = 3 (mod 4), and

(e—3)/4 (d—e)/4
Spnax = Z 42e—2-4(j—1))+3(e+1)+ Y, 4(2d—2e—2—-4(j —1)).
j=1

Lemma 1 Let n be a positive integer such that ¥(Q,) = (n —1)/2 and let D be a
minimum dominating set of Q,. Then the (n —1)/2 terms in the sum Spa, are the
values of x| + |y| as (z,y) ranges through D.

Proof. In each of the four cases just considered, simplification yields Spax = 3(d? —
2de+2e*—1)/2, and then (5) implies Spax = d* — 1, which is also the value of S. By
the way in which the terms of Spax were chosen, there is an ordering ((x;, yl))(" v/
of D such that |z;| + |y;| does not exceed the ith term of Sya.. The conclusion then

follows from Spax = S. O

We now turn our attention to the squares of D that lie in row 0 or in column 0.

Definitions. Let Ry denote the set of squares in row 0 of the n x n board, and let Cy
denote the set of squares in column 0.

For each non-negative integer k, let Ay = {(%k,0), (0,£k)}. Note that Ay contains
only the board’s center square, and for £ > 0, Ay contains four squares that are
pairwise adjacent in @),.
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Lemma 2 Let n be a positive integer such that v(Q,) = (n — 1)/2 and let D be a
mintmum dominating set of Q. If the positive integer k does not occur in Syee or
has multiplicity 4 in Spee, then D and Ay are disjoint. If m is the only integer that
oceurs in Spae with multiplicity less than 4, then m = 0 and DN (RyUCy) = {(0,0)}.

Proof. Since each (z,y) in Ay, has |z| + |y| = k, it is clear from Lemma 1 that if &
does not occur in the sum Spa, then D and A, are disjoint.

If £ has multiplicity 4 in Spax, then by Lemma 1 there are four distinct squares
(z,y) in D satistying |z| + |y| = k. The independence of D implies both that these
four squares together occupy sum diagonals £k and difference diagonals £k, and
that no two of these diagonals can meet at a square of D. (Informally, no square
of D can “use up” two of the diagonals having number of absolute value &, as the
independence of D would then prevent |z| + |y| = k from occurring at four squares

of D.) Therefore no square of D is in Ay.

Suppose now that m is the only integer that occurs in the sum Sp,,, with multiplicity
less than 4. By the first part of this lemma we have D N (Ry U Cy) C A,. The
inequality |D N (RyUCp)| < 1 then clearly holds if m = 0, and it also holds if m > 0,
as D is independent and any two of the four squares of A,, are adjacent in @,. But
|D N Ryl =1and |DNCy| =1since D is an independent set that by (3) meets Ry

and Oo. Thus DmROZDﬂOOZ{(O,O)},SOTTL:O O
Theorem 3 The only integers n for which v(Q,) = (n — 1)/2 are n = 3, 11.

Proof. 1t is easily verified that {(0,0)} dominates @3 and {(0,0),£(2,4),£(4, -2)}
dominates Q11, so by (1) we have v(Q3) = 1 and 7(Q1,) = 5.

Suppose then that n is a positive integer such that v(Q,) = (n — 1)/2. Then there
is a positive integer ¢ such that n = n;, with n; as defined in (7). We continue the
examination of the four cases considered earlier.

If i =1 (mod 4) then only d — e — 1 occurs in Spayx with multiplicity less than 4. By
Lemma 2, d — e — 1 = 0, which by (6) occurs only when e =0, d = 1, and n = 3.
If i = 2 (mod 4) then only e — 1 occurs in Syax with multiplicity less than 4. By
Lemma 2,e—1=0,s0e=1,d=>5,and n = 11.

If i = 3 (mod 4) then only d — e+ 1 occurs in Syax with multiplicity less than 4. By
Lemma 2, d — e + 1 = 0. However, (6) implies d > e, so this case does not occur.

If i = 0 (mod 4) then only e + 1 occurs in Syax with multiplicity less than 4. By
Lemma 2, e + 1 = 0, but by definition e > 0, so this case does not occur. O

From (1) and Theorem 2, we have the following.
Corollary 4 For all positive integers n other than 3 and 11, v(Q,) > [n/2].

There is evidence that this lower bound is quite good. Work from [2, 4, 6, 9, 10, 13, 14]
reported in [10] shows that for n from 1 to 120, excluding 3 and 11, we have [n/2] <
YQn) <i(Qn) < [n/2] + 1. In this range, 7(Q,) = [n/2] is known for 46 values of
n and v(Q,) = [n/2]+1 is known for n = 8,14, 15, 16. See [10] for more information
on specific values of ¥(Q,) and i(Q,), and many dominating sets.
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