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Abstract

Let G be a simple connected graph with a perfect matching. Let M(G)
denote the set of all perfect matchings in G, and f : M(G) — {0, 1}/F(©)
a characteristic function of perfect matchings of G. Any set S C E(G)
such that f|s is an injection is called a global forcing set in G, and the
cardinality of smallest such S is called the global forcing number of G.
In this paper we first establish lower bounds on this quantity and show
how it can be computed for certain classes of composite graphs, and then
we prove an explicit formula for global forcing number of the grid graph
R,, = P, x F;. We also briefly consider a vertex global forcing number
of grid graphs and present an explicit formula for it. In the last section
we give explicit formulas for global forcing numbers of complete graphs
and discuss some further developments.

1 Introduction and motivation

The concept of forcing set has arisen in the context of the study of resonance
structures in mathematical chemistry [3, 4] and has acquired a life of its own in
purely graph-theoretical literature [1, 2, 6, 7, 11]. In all those works forcing sets were
defined locally, as subsets of particular perfect matchings, and global results were
obtained by taking minimum/maximum over the set of all perfect matchings in the
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graph. In this paper we study the forcing sets that are defined globally in a graph,
i.e., without reference to a particular perfect matching. The motivation for such
approach comes from the need to efficiently code and manipulate perfect matchings
in large-scale computations [8, 9]. It turns out that for so defined forcing sets and
their cardinalities a number of results can be established that are analogous to those
from the local context. In particular, we prove an explicit formula for the global
forcing number for rectangular grids and complete graphs.

The paper is organized as follows. In the next section we define the terms relevant
for our subject and illustrate them by examples. That section also contains some
lower bounds on the global forcing number and some results on global forcing number
of two classes of composite graphs. The main result of the paper is established in
Section 3. It consists of an explicit construction of a minimal global forcing set in a
grid graph P, x F,;. The section also presents an explicit formula for vertex global
forcing number of rectangular grids. The paper is concluded by a section concerned
with global forcing sets and numbers of complete and complete bipartite graphs, and
of some subsets of hexagonal networks. Possible directions of future research are
briefly discussed at the end.

2 Mathematical preliminaries

All graphs in this paper are simple and connected. For all terms and notation not
defined here we refer the reader to [5].

Let G = (V(G), E(G)) be a graph with a perfect matching. Denote by M(G) the
set of all perfect matchings in G' and consider a function f : M(G) — {0, 1}1£(S)
defined by

1, e,e€M

son={g S

The function f is the characteristic function of perfect matchings of G. Any set
S C E(G) such that the restriction of f on S is an injection is called a global
forcing set of G. A global forcing set of the smallest cardinality is called a minimal
global forcing set, and its cardinality is the global forcing number of G. For a
given graph G we denote its global forcing number by ¢,(G).

As an illustrative example we consider the complete graph K, shown in Fig. 1.
It contains three different perfect matchings, M; = {ei,e5}, Mo = {es, e6}, and
My = {es,e4}. It is easy to see that the restriction of f : { My, My, M3} — {0,1}° on
the set S = {e1, ey} is an injection. Hence, S is a global forcing set. Furthermore, it
is obvious that no single edge of K, can be a global forcing set, and this makes S a
minimal global forcing set. Hence, ¢ (K4) = 2.

Clearly, the quantity ¢,(G) must be related to the total number ®(G) of perfect
matchings in G, since f(M) is, in fact, a code of M in the binary alphabet. Since
the smallest number of binary digits necessary for representation of a number a in
the binary notation is [log, a], we have the following result.
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Figure 1: A minimal global forcing set in Kj.

Proposition 1
Let G be a graph with ®(G) perfect matchings. Then ¢y(G) > [log, ®(G)]. |

By considering a cycle on 2n vertices one can see that the lower bound of Proposition
1 is actually attained for each even number of vertices. Furthermore, for any given
r € N one can construct a graph G, such that ¢,(G,) = r = [log, ®(G,)]. An
example is shown in Fig. 2. The result is also exact for all graphs with unique perfect
matching, and it can be made meaningful for graphs without perfect matchings by
putting ¢, (G) = —oo.

(12 )3 ). 1)

Figure 2: A graph with ¢, (G) = [log, ®(G)].

That the result of Proposition 1 is indeed a lower bound and not an exact result one
can see by considering the graph from Fig. 3 with ®(G) = 8. The four edges shown

Figure 3: A graph with ¢4(G) > [log, ®(G)].

in bold are a global forcing set, and by a direct (but tedious) calculation one can
verify that no set of three edges is a global forcing set. Hence, ¢ (G) =4 > 3.

The main problem with the lower bound of Proposition 1 is that the quantity ®(G)
often depends on the basic parameters of the graph G in a very intricate and/or
non-transparent way. It can be NP-hard to compute even for bipartite graphs ([5],
p. 307). Hence, it is of interest to relate the quantity ¢4(G) to some other, less
derived, properties of the graph G. An alternative approach is to seek for the ways
to express the global forcing number of composite graphs in terms of global forcing
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numbers of their components. We first briefly explore this possibility before turning
our attention to the graphs that will yield to the first approach.

An edge e of a graph G is allowed if it appears in some perfect matching of G.
Otherwise, the edge e is forbidden. It is clear that the forbidden edges carry no
information about ¢,(G). Hence, we have the following result.

Proposition 2
Let G be a graph with a perfect matching and F C E(G) the set of forbidden edges
of G. Then ¢ (G) = ¢ (G — F). [ |

From the definition of ¢,(G) it follows that for a disconnected graph G we have
0g(G) =3, ¢4(G;), where G; are connected components of G. Combining this fact
with Proposition 2 one can express the global forcing number for members of some
classes of composite graphs in terms of the global forcing numbers of their simpler
constituents.

Let G; and G5 be two connected graphs with disjoint vertex sets. A link of G,
and (5 anchored at the vertices v € V(G;) and w € V(Gs) is a graph obtained by
connecting the vertices v and w by an edge. We denote this graph by G; ~ Gs.
A splice of G; and G, is a graph obtained by selecting a vertex v € V(G;) and
identifying it with some vertex from V(G3). A splice of two graphs we denote by
G, - Gy. Examples are shown schematically in Fig. 4.

Figure 4: A link (left) and a splice (right) of two graphs.

Corollary 3
Let GG; and G4 be two simple and connected graphs and GG; ~ G5 their link anchored
at the vertices v € V(G) and w € V(G,). Then

— 0g(G1) + 94(G2) , if |V(Gy)| is even
%(GINGZ)_{wg(Gl—vH;g(Gz—uZ}) ., if |V(Gll)| is  odd.

|
Corollary 4

Let GGy and G5 be two simple and connected graphs and G - G their splice at v. Let
|V(G1)| be even. Then

©g(G1+ G2) = @g(G1) + @g(G2 —v).

Another important class of composite graphs are Cartesian products. For general
graphs GG; and G5 there seem to be no simple formulas of the above type, but if both
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G, and G4 are paths, and if at least one of them has an even number of vertices, then
the global forcing number of their Cartesian product can be explicitly expressed in
terms of their sizes.

3 Global forcing number of a rectangular grid

Let G; and G5 be two simple and connected graphs. A Cartesian product of G,
and G, denoted by Gy X Gs, is a graph with the vertex set V(G1) x V(Gz), where
the vertices (vy,w;) and (ve,w,) are connected by an edge if and only if [v; = v, and
{wy,ws} € E(Gs)] or [w1 = ws and {v1,vs} € E(Gy)].

Let P, denote a path on n vertices, i.e., of length n — 1, and R, , denote a Cartesian
product of two paths, R,, = P, x P,. We take that at least one of the positive
integers p and ¢ is even.

Theorem 5

et = -0 -1 - |22 |52

Proof

We introduce a coordinate system in R, , so that the lower left corner (i.e., the lower
left vertex) has the coordinates (1,1), and the upper right corner has the coordinates
(p,q).

Let us consider the set T C E(R,,) defined by

T = {{(2i,j),(2i,j+1)},z’:1,...,VgJ,j:l,...,q—l}u

{{(2z‘—1,2j),(2i,2j)},i:1,..., V’%lJ g=1,..., L%J}

One can easily verify by a direct computation that the cardinality of T is given by
IT| = (p—1)(g — 1) — |52 |52]. For example, if p is even and ¢ is odd, then
p=2r,q=2s+1, LEJ =r-1, L%J = s and

(¢g—1) [§J+ {I%lJ \%J =2sr+(r—1)s=3rs—s

(2r—1)2s+2s—rs—s=(p—1)(¢g—1)+(1—1r)s

w-va-1- 5] |5

The claim follows similarly for other two possible combinations of the parities of p
and ¢. An example of such a set in Ry g is shown in bold in Fig. 5. We claim that so
defined set T is a global forcing set, i.e., that f|r is an injection. Let us suppose that
there are two perfect matchings M; # My € M(G) such that f|r(Mi) = flo(Ms).
Consider the graph G’ induced by M;AMs,, where A denotes the symmetric difference
of two sets. The graph G’ is 2-regular and it contains no edges of T'. Hence, G’ is a 2-
regular subgraph of R, , — T made of alternating cycles. Each such alternating cycle

|T|
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Figure 5: A global forcing set in Rgg.

C has an odd number of vertices in its interior. This can be verified by induction
on the number of squares of area 4 such as the one defined by the vertices (1,1) and
(3,3) in the lower left corner of Fig. 6. Since all vertices of C' are matched by the

Figure 6: Rgg — T

edges of M, it follows that M; cannot cover all vertices in the interior of C', contrary
to our assumption that M; is a perfect matching. Hence, f|r is an injection, and
@y(Rpq) < T

It remains to show that a set of a cardinality strictly smaller than |T'| cannot be a

global forcing set in R, . Let us suppose that there is a global forcing set ) with
|Q| < |T|. Denote the graph R,, — @ by G. The graph G is planar, and its number
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of faces |F(G)| satisfies the following relation.

[F(G)] = [E(G)] = |V(G)] +2

|E(Rp,q)| - |T| - |V(Rp,q)| +2

o=V pla-1) - (- V- + | 22| |52 -pa 2

[

Since exactly one face of G is unbounded, it follows that the set of bounded faces of

G, denoted by B, contains more than LJ%IJ L%J faces.

V

Now we introduce some notation that will be useful in the rest of the proof. By P
we denote the set of certain points with half-integer coordinates,

_ O A p—1 . g—1
P—{<21+2,2]+2),z—1,...,\‘ 5 J,]—l,...,{ 5 J}

S is the set of unit squares of the original R, , grid that contain no point from P and
share no edge with squares that contain points from P. Finally, £ is a set of edges
of R,, that are on the border of R,, but not in the squares that contain points of
P. An example is shown in Fig. 7. The squares from S and the edges from & are
shown in bold lines.

Figure 7: The sets P, S, and € in Ryg.

Let Z; be the set of all bounded faces of G' that contain no points from P. Since
there are more bounded faces of G than points in P, it follows that the set Z; is
non-empty. Let F be a face from Z; and B = JF its boundary. Let us suppose that
B is a cycle. It must be an even cycle, since R,, is bipartite. Hence, the edges of
B can be bipartitioned in two sets, B; and Bs, such that each of them is a perfect
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matching of B. An edge e € £ is either whole in B, or none of its end-vertices are in
B. We denote the set of edges from &£ that are not in B by &£’. Now we consider the
squares from S. Since B is a cycle, it follows that for a square s € S we have one of
the three possibilities:

(i) All four vertices of s are in B;

(ii) Two adjacent vertices of s are in B;

(iil) None of the vertices of s are in B.

Let " be the set of edges that connect the two vertices not in B of the squares of
type (ii), and £ the set consisting of two independent edges from each square of the
type (iii). Now the sets M; = E'UE"UE" UB; and My = E'UE"UE" U By are both
perfect matchings in R, 4. Since B C Ry, — @, one has BiNQ =0 and Bo,NQ = 0,
and hence f|q(M;) = flo(M,). This is a contradiction with the assumed injectivity
of f on Q). Hence, no face from Z; has a boundary that is a cycle. By a similar
reasoning one can prove that no face from Z; is bounded by two or more disjoint
cycles. Since the interior of F' must be connected, the only remaining possibility is
that the boundary of F is made of a cycle with a self-intersection. An example is
shown in Fig. 8.

Figure 8: A face F from Z;.

For a given F € Z; we denote by in(F') the area completely surrounded by F, and
by out(F') the area that surrounds F. By nin(F) we denote the number of faces

from G contained in in(F), and by npin(F) the number of points from P contained
in in(F). Let Z, denote the set of faces of G that are not contained in in(H) for any
Z (nin(F)+1) +

H € Z;. Then we have
p—1|fqg—-1
> _— — .
2> [ |5
FeZy

p—1itg—-1 ,

{ 5 J{ 5 J—anm(F)
FeZy

Hence ) ey, (nin(F) +1—npin(F)) > 0, and there is at least one face F' € Z,

such that nin(F) > npin(F).
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We denote the area (in unit squares) of a set z C R,, by A(z) and proceed by
proving the following claim.

Claim A(in(F)) < 4 - npin(F).

Proof (of the claim) First we note that in a situation shown in Fig. 9 it is impossible
to have € in(F) and a,b € out(F), due to connectedness of interior of F. Denote

° ao S ob °
rf{xi|t

° c® lwl °g °

° ° ° °

Figure 9: With the case analysis in the proof of the Claim.

by F the set of points from P that are contained in in(F). Let each point from F
be the center of a square with the side 2, i.e., with area equal to 4. Denote the union
of all such squares by U. It suffices to show that A(U) > A(in(F)).

For each unit square « C in(F) we define the set K (z) in the following way:

1. If & contains a point from F, then K(z) = g;

2. If x is not adjacent to F', then K(z) = x;

3. Otherwise, K () is the union of z and the nearest half of each unit square from
F adjacent to z.

An example is shown in Fig. 10. It suffices to show that A(K(z) N U) > 1 for each
x € in(F). There are, up to rotation, four possible situations.

Case 1 If a square x € in(F') is either vertically or horizontally sandwiched between
two squares that contain each a point from F, then those two squares are both in
in(F). Hence, t C U and A(K(z)NTU) > 1.

Case 2 Unit squares a, b, ¢, and d from Fig. 9 are all contained in in(F). Then again
x CUand A(K(z)NU) > 1.

Case 3 Unit squares a, b, and ¢ from Fig. 9 are contained in in(F), while the square
d is not. Then the squares ¢ and w are contained in the interior of F, and K(z)
consists of x, the left half of ¢ and the upper half of w. Each of those two half-
squares contributes 1/4 to the intersection with U, and z itself contributes 3/4. All
together, we have A(K(z)NU)=5/4> 1.
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Figure 10: With the definition of K(z).

Case 4 Unit squares a and d are in in(F), while b and ¢ are not. Then all four of
r,s,t, and w are contained in the interior of F, and K(x) is made of whole z and
four halves of the adjacent squares from the interior of F. The square of U with
center in the point in a intersects K (z) in a figure of area 3/4, and the same is valid
for the square of U centered at c¢. Hence, A(K(z)NU) =3/2 > 1.

As all possible cases have been exhausted, we have proved the Claim. Therefore,
A(in(F)) < 4 - npin(F). From nin(F) > npin(F) it follows that there must be at
least one “small” face of G contained in in(F) (hence not on the border of R, ;). Here
by “small” face we mean a face that has the area smaller than four unit squares. We
denote that face by H. The face H must be (up to rotation) one of the shapes shown
in Fig 11. For any of those shapes it can be proved that f|o is not an injection.

DL\J

Figure 11: Possible shapes of small faces of G.

Since all four proofs are very similar, and the first three are simpler than the fourth
one, we present only the proof for the L-shaped face of area 3.

Let us suppose that p is odd. Then we add 2 edges next to the L-shaped face in
the way shown in Fig. 12 left. (If both p and ¢ are even, then it does not matter
if we add the edges to the left or below the face.) We denote those two edges by
E;. Then we proceed by adding 2(q — 3) edges in the way shown in Fig. 12, middle.
This set of edges is denoted by E,. Finally, we add a set of Z(p — 4) edges that
cover the remaining vertices of Rp, in the way shown in Fig. 12, right, and denote
it by E3. Now, by partitioning the edges of OH in two sets, C; and C,, so that
the edges alternate between C; and C,, we obtain two perfect matchings of R, 4,
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Figure 12: Completition of 0H to a perfect matching in R, ,.

M; =CiUE|UEy;UEs and M, = Cy U E1 U Ey U Ej, that differ only on 0H. But
the face H is in R, , — @, and hence f|o(M:1) = f|o(M,). Thus we have arrived to a
contradiction with our initial assumption that () is a global forcing set. Therefore,
there is no global forcing set with less than (p — 1)(g — 1) — | 52| | 52| edges, and

2 2
the Theorem is proven. [ |

The exact result of Theorem 5 enables us to assess the quality of the lower bounds
of Proposition 1. It is well known (see, e.g., [5], p. 329) that

r q

km Im
O(Ryq) = 2 T[] |cos® 2
(Rp.q) {COS Pl + cos 741

k=11=1

1/4

The asymptotic behavior of ®(Ry,,) is given by ®(R,,) = exp(£pq), where G is the
Catalan constant, G = 0.915966.... Proposition 1 then gives @, (R,,) > log, e®2P7 =
0.42pq, while the exact result behaves asymptotically as 0.75pq.

We conclude this section by a short digression about another type of forcing sets in
rectangular grids. Let S be a subset of V(R,,) and g : M(R,,) — {L,R,D,U}™
a function that to each perfect matching M € M(R,,) assigns the directions of
the edges that cover the vertices from R,,. A set S C V(R,,) such that g|s is an
injection is called a vertex global forcing set, and the cardinality of smallest such set
is called the vertex global forcing number of R,,. We denote this quantity by

V(Rpg)-



58 DAMIR VUKICEVIC AND TOMISLAV DOSLIC

=[5
Proof

Let W C V(R,,) be a set defined by

Theorem 6

W:{(Zi,Qj),z':l,...,V%lJ ,j:l,...,v‘;—lJ}.

The value glw (M) completely determines the value of f|r(M), where T is defined

as in the proof of Theorem 5. Hence g|yw is an injection and v(R,,) < |52] |52].

Suppose that thereis R C V(R,,) such that g| is an injection and |R| < |52] |52 ].

Note that in R, there always are |52 | |4}] disjoint unit squares, such as shown
in bold in Fig. 13. Hence, at least one of them contains no vertex from R, and any

two perfect matchings that differ only on that square are assigned the same value by

Figure 13: With the proof of Theorem 6.

g|lr. Therefore, g|x is not an injection, and any vertex global forcing set must have
at least |5%| [52] elements. This proves the Theorem. [ |

4 Concluding remarks

In this section we discuss some possible directions of future research and present
some particular results. The most natural next step would be to extend the results
of Theorem 5 to cylinders and tori, i.e., to Cartesian products P, x Cy and C, x C,
for pqg even. Also, it might be fruitful to consider the case of hypercubes in the
manner of references [1] and [7]. In both cases, one can expect results expressing the
global forcing number of those graphs in terms of their size. Two families of graphs
that yield to such approach are the complete bipartite graphs with equal bipartition
classes and the complete graphs on even number of vertices. We denote such graphs
by K, and K,,, respectively.
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Proposition 7
Pg(Knpn) = (n— 1)2-

Proof

Let S be a global forcing set in K, ,. We will prove that the graph G = K, , —Sis a
tree. Let us suppose that it is not. Then G must contain at least one cycle, and this
cycle must be even. It also must have the same number of vertices in both classes
of bipartition. Hence, we can partition the edges of that cycle C into two perfect
matchings Cy and Cy of C. The graph K, , — [C] is a complete bipartite graph with
equal bipartition classes, and hence it contains a perfect matching. Denote it by M.
Now M U Cy and M U Cy are both perfect matchings of K, , that do not differ on
S, a contradiction. Hence, G must be a tree, and the claim follows. [ |

The following result will be useful in proving the result about Ky,.

Lemma 8
Let G be a graph on n vertices that contains no even cycles. Then |E(G)| < 3n —2
if n is even, and |E(G)| < 3(n — 1) if n is odd.

Proof

For n < 4 the claim can be easily verified directly. We proceed by induction on n.
Let G be a graph on n > 5 vertices without even cycles. We note that no two vertices
of G can be connected by three internally disjoint paths. If they were connected by
three such paths, at least two of them would be of the same parity, and their union
would make an even cycle. Now take a cycle C of length k£ in G. By deleting the
edges of C' all the vertices of C' end in different components of G — C'. Hence, the
graph disintegrates into [ components with vy,...,v; vertices and ey, ..., e edges,
where [ > k. Now, by the inductive hypothesis,

l !
3 3
|E(G)|:;ei+k§ ggui—gzm.

Since | > k it further means that |E(G)| < %n — k/2, and this, in turn, implies
|E(G)| < 3n —3/2, since k > 3. This proves the Theorem for odd n, and for even
n, the claim follows from the integrality of |E(G)]. [ |

The lower bound from Lemma 8 is sharp. For odd n it is attained for the windmill
graph with ”T_l wings, and for even n we add one more vertex and the edge connecting
it to the center of the windmill.

Proposition 9
©g(Kap) =2(n —1)%

Proof

By the same reasoning as in Proposition 7 we prove that the graph K,, — S cannot
contain an even cycle if S is a global forcing set. From Lemma 8 it follows that
|E(Ka, — S)| < 3n — 2. Hence, |S| > |E(K2,)| —3n +2 = 2(n — 1)2. The claim of
the proposition will follow if we exhibit a global forcing set of cardinality 2(n — 1)2.
Let us label the vertices of K, with labels 1,2,...,2n and consider the subgraph T’
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of K,, induced by the edges of the form {i,i + 1} for all ¢ = 1,...,2n — 1 and of
the form {4,742} for all odd i = 1,...,2n — 3. Since T contains exactly one perfect
matching, the edges of K, not in F(T) must form a global forcing set, and there
are exactly 2(n — 1) of them. ]

Here again one can compare the exact results with the lower bounds from Proposition
1. Using the formulas ®(K,,) = n! and ®(K,,) = (2272!! one can see that in both
cases the logarithm of the number of perfect matchings behaves asymptotically as

nlogn, while the exact results are quadratic in n.

Another natural step is to consider other types of grids. We have mentioned in the
introduction of this paper the chemical roots of its subject. Hence, we consider it
proper to conclude it by a result of some chemical relevance, concerning a subset of a
hexagonal grid. For some results about triangular grids, we refer the reader to [10].

Let L, be a linear polyacene, i.e., a graph with n hexagons shown in Fig. 14.

Figure 14: A linear polyacene with n hexagons.

Proposition 10
0g(Lp) =n.

Proof

It follows from a simple parity argument that each perfect matching of L, must
contain one and only one vertical edge of L,,. Hence, any set of n vertical edges of L,
is a global forcing set, and ¢4(L,,) < n. It is easy to see that the set of n — 1 vertical
edges that are shared between two hexagons cannot be a global forcing set, since
it cannot distinguish between the perfect matching containing the leftmost vertical
edge, and the one containing the rightmost vertical edge.

Let us now suppose that there is a global forcing set T C E(L,) with |T| < n — 1.
The inner dual of L, is a path on n vertices. (The inner dual of a planar graph G
is obtained from the ordinary dual G’ by deleting the vertex corresponding to the
unbounded face, together with all incident edges.) If a vertical edge from L, is in
T, we mark the corresponding edge in the inner dual P,, and if a hexagon from
L, contains non-vertical edges of T, we mark the corresponding vertex in P,. Let
x denote the number of marked vertices in P, and y the number of marked edges.
Then z+y < |T| < n—1, since a hexagon may contain more than one edge from T'.
Let us delete all marked vertices and unmarked edges from P,. The remaining graph
has n — x vertices and y edges. Since n —x > y + 1, it is non-empty, i.e., it contains
at least one component, and this component must be a path, say on k& > 1 vertices.
This path corresponds to a sequence of k consecutive hexagons that are collectively
incident to £ — 1 edges from T and those edges must necessarily be vertical. But
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we have already proved that such a set of edges cannot be a global forcing set, and
hence T cannot be a global forcing set. |

Another direction would be to seek for results expressing the global forcing number
of composite graphs in terms of global forcing numbers of their building blocks. It
would be interesting to explore if anything better than the rather obvious relation
0g(G1 % Ga) > ¢4(G1) + py4(Gs) could be obtained for Cartesian products.

One could also try to step out of the context of graphs with perfect matchings and
consider the concepts analogous to the global forcing sets and numbers working with
maximum and/or inclusion-wise maximal matchings instead of the perfect ones.
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