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On upper bounds and connectivity of cages
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Abstract

In this paper we give an upper bound for the order of (k, g)-cages when
k — 1 is not a prime power and g € {6,8,12}. As an application we
obtain new upper bounds for the order of cages when g = 11 and g = 12
and k — 1 is not a prime power. We also confirm a conjecture of Fu,
Huang and Rodger on the k-connectivity of (k, g)-cages for g = 12, and
for g = 7,11 when k — 1 is a prime power.
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1 Introduction

Given two integers k > 2 and g > 3, a (k, g)-graph is a k-regular graph G with girth
9(G) = g. A (k, g)-graph of minimum order is called a (k, g)-cage. For references
on cages see for instance the survey of Wong [9] or the website of Royle [7], which
contains the current best known bounds for the order of (k, g) cages.

We denote as v(k, g) the order of the (k, g)-cages. The problem of determining
the value of v(k,g) is still wide open for most pairs (k,g). By counting the ver-
tices emerging from a vertex or from an edge the following lower bounds are easily
obtained:

9-2
Zi(k—l)izm_?# if g is even,
vk, g) 2wk, g) = § o (1)
2 - 9— — . .
1+ > k(k—1)"' = w if g is odd.

=1
Improving on previous results of Sauer [8], Lazebnik, Ustimenko and Woldar [5]
recently obtained the following upper bounds

v(k,g) < 2kg T, (2)

where ¢ is the smallest odd prime power satisfying £ < ¢ and a = 4 for

9g=0,1,2,3 (mod 4) respectively.

1713
24027 4

Fu, Huang and Rodger [3] established that v(k,-) is a monotone function of the
girth. More precisely, they showed that

For 3 <k < g1 < g2 we have v(k,g1) < v(k, g2). (3)

In the special case when v(k,g) = v(k,g), the (k,g)-cages are called Moore
graphs when g is odd and generalized polygons if g is even. It is known that Moore
graphs exist only for k = 2 (cycles), g = 3 (complete graphs) or g =5 and k = 3,7
or (possibly) 57; see [4]. On the other hand, for even girth, generalized polygons
with g = 4 are the complete bipartite graphs; when £ — 1 is a prime power, known
examples of (k,g) cages are the incidence graphs of projective planes for g = 6, of
generalized quadrangles for ¢ = 8 and of generalized hexagons for g = 12.

In this paper we prove the following result.

Theorem 1 Let g € {6,8,12} and k > 3. Let q be the smallest prime power greater
than or equal to k. Then
—4
v(k,g) < 2kq"z .
Moreover,
g—4

2k(k—-1)% (D)% if 3275 > k> 7,

k < g 9= :
v(k,g) < {Zk(k— 1)74(1+ W)T‘l if k > 3276.
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Theorem 1, combined with the monotonocity of v(k, -), improves the upper bound
(2) given by Lazebnik, Ustimenko and Woldar when g = 11 and g = 12.

It is worth mentioning that, by using similar arguments as in [1], the construction
in the proof of Theorem 1 for graphs of girth ¢ = 6 can be extended to degrees k
close to ¢ still keeping their girth exactly six.

Concerning the structure of cages, an interesting problem is that of their vertex-
connectivity. Fu, Huang and Rodger [3] conjectured that every (k,g)-cage is k-
connected and they proved the statement for £ = 3. Marcote, Balbuena and Pelayo
[6] show that every (k, g)-cage is k-connected when g = 6 or g = 8 and also showed
that some (k,5)-cages have connectivity k, including the cases when k — 1 is a
prime power. To prove their results these authors prove that a connected graph G
with minimum degree § > 3, girth ¢ and order n is k-connected for 2 < £ < § if
n < 2y(k, g) — k; see Theorem 1 of [6]. The next proposition is a direct consequence
of this result, and for the convenience of the reader we include a short proof.

Proposition 2 Let G be a graph with minimum degree §(G) = k > 3, girth g(G) = g
and vertea-connectivity kK(G) < k — 1. Then |V(G)| > 2uv(k,g) — s(G).

We also prove the following result.

Theorem 3 Let G be a (k,g)-cage. If
i) g =12, or
it) g € {7,11} and k — 1 is a prime power,

then G s k-connected.

Therefore we confirm the conjecture of Fu, Huang and Rodger for the value g = 12
and for infinitely many values of k when g =7 or 11.

2 Notation

In what follows G denotes an undirected graph with no loops and no multiple edges.
For each vertex z € V(G), Ng(z) and dg(z) denote the set of neighbors and the
degree of z in G respectively. The minimum degree of G will be denoted as 6(G).
Given a pair of vertices z,y € V(G), by an (zy)-path we mean a sequence o, . . ., Ty
of vertices of G such that z¢g = z, x, = y and, for every 0 < i <r—1, z;2;,11 € E(G).
If =y, an (vy)-path is a cycle. The length of an (xy)-path (or cycle) zo,...,z,
is 7. Given two vertices z,y € V(@) the distance between z and y is the minimum
length of an (zy)-path in G, and will be denoted by Dg(z,y). A matching is a 1-
regular graph.

For a subset S C V(G) we denote by G[S] the subgraph of G induced by S. A
subset S C V(G) will be said to be independent if no two vertices in S are adjacent
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in G. Given z € V(G), an (z,5)-path is an (zy)-path where y € S and we denote
D¢(x,S) = min{Dg(z,y) : y € S}. For simplicity, if e = wy is an edge of G and
z € V(G), we will write (e,z)-path and Dg(e, ) instead of ({w,y},x)-path and
De({w,y},z), respectively.

Let D be a directed graph. The out-degree of x is the cardinality of the set {y €
V(D) : (z,y) € A(D)}. An oriented cycle C of D is a sequence g, Z1, . . ., Lr—1, T, =
xo of vertices such that, for each 0 < i <7 —1, (25, 2:41) € A(D).

We shall use the following result on the existence of prime powers in short intervals
of integers; see e.g. Dusart [2].

1
If & > 3275 then the interval [k, k(1 + m)} contains a prime number.  (4)
n2(k

Tk
If 6 < k < 3276 then the interval [k, F] contains a prime power. (5)

3 Proofs of the Theorems

Proof of Theorem 1. Let k > 3. If k—1 is a prime power, v(k, g) = v(k, g) and the
result follows. Let us suppose that & — 1 is not a prime power. Let ¢ be the smallest
prime power greater than or equal to k and let g € {6,8,12}. Let G = (V, E) be a
(¢ + 1, g)-cage, that is, a (¢ + 1, g)-graph of minimum order.

For a given edge e = zy of G and for each i > 0, let

Ni(e) ={z € V(G) : Dg(e,z) =i}.
The subgraph spanned by the vertices within distance | < % from {z,y} is a tree
as shown in Figure 1. Therefore, for 0 < i < %, we have

[Ni(e)| = 24"
Since ¢ is a prime power and G is a (¢ + 1, g)-cage,

V©) = U N

This implies that the subgraph of G induced by N%(e) is a g-regular graph (see an
illustration in Figure 1.)

Let Ng(z)\y = {z1,...,2,} and Ng(y) \ © = {v1,...,ys}, and, for each 1 <
i <q,let
g—4
B(Iz) = {Z € Ng;2 (6) : DG(IZ"Z) = T}

and
Bly) = {= € Nugz () Delu 2) = 2571,
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B(z1) B(z2) B(y1) B(y2)
Nsl(e)
Na(e)
Nile) = Ty Y Y2
Ai(e) , . y

Figure 1: Tree of neighbors emerging from an edge for £k = 3 and g = 8.

For each vertex z € Ng (e) there is exactly one (e, z)-path of length %= in
G. It follows that {B(z1),. 7B( 0)»B(1), ..., B(y,)} is a partition of Nﬂ( ) In
2

particular,
-4

| (Il)|_|B(yz)|—q T 1=1,...,q.

Note that the set U = B(z;) U ... U B(z,) is an independent set, and similarly
W = B(y1) U...UB(y,) is also an independent set. Furthermore, for 1 <i,j < g,
a vertex in B(z;) can be joined by an edge to at most one vertex in B(y;), since
otherwise the graph would contain a cycle of length at most g—1. Since the subgraph
of G induced by UUW = N'%(e) is g-regular, the subgraph G[B(z;), B(y;)] induced
by B(z;) U B(y;) is a matching for each 7, with 1 <1i,j <gq.

For each 1 < k < ¢ let G} be the subgraph induced by U%_, (B(z;) U B(y;)). By
the above remarks, Gy, is k-regular, has order 2kq¥~%/2 and, being a subgraph of G,
it has girth gx > g¢.

In particular we have v(k, g;) < 2kq'9=%/2 for each k = 3,...,¢. Since g < g,
by (3) we have that

vk, g) < 2kql9=972, (6)

Finally, since k — 1 is not a prime power, by (4) and (5) we see that, for k —1 >
3275, there is a prime in the interval [k, (k—1)(1+ 21”2 5)| and, for 3275 > k—1 > 6,

there is a prime power in the interval [k (k- 1 } Therefore

(=117 if 7 < k < 3276;
T2V =) + gdgg) it k> 3276,

Substitution of the above inequalities in (6) gives the second inequality in Theorem 1.
U

Proof of Proposition 2. Let G be a graph with girth ¢g(G) = ¢, minimum degree
d(G) =k > 3 and connectivity £(G) < k — L.
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For each vertex z € V(G) define
g—1
B(z) = {2 € V(G) : Dg(x,2) < 75—},
and, for each y € Ng(x), let B,(y) be the set of vertices z of G such that there is a
(zy)-path in G of length at most [£1| — 1 which does not use the edge zy. Since

9(G) = g, the set {B,(y) : y € Ng(x)} is a partition of B(z) \ = for each z € V(G)
(see an ilustration in Figure 2).

B.(y1) B.(y2) B.(ys)

Figure 2: Tree emerging from a vertex « for [%!] = 3 and k = 3.

Let S C V(G) be a minimum cutset of G and let H be a connected component
of G\ S. Since 6(G) = k > k(G) = |5|, each vertex € V(G) has a neighbor
y € Ng(z) such that B,(y) NS = 0 . In particular, for each z € V(H), there is
y € Ng(z) N V(H) such that B,(y) C V(H).

Let D be a digraph defined as follows: the vertex set of D is V(D) = V(H)
and (z,y) is an arc of D if and only if B,(y) C V(H). By the above remark, the
minimum out-degree of D is at least 1. It follows that D contains an oriented cycle
C=(z1,...,24), t >2.

We claim that

min{D(S,z), i = 1,...,1} > LgT_lj. (M)

Suppose on the contrary that m = min{Dg(S,z;), i =1,...,t} < L%J —1; say
D¢(S,xi11) = m. Let P be a (S, z;+1)-path in G of length m. Since (z;, x441) is an
arc of D, we have B,,(x;41) C V(H). Therefore P must use the edge x;x;11, which
implies Dg(x,S) = m — 1, a contradiction. This proves (7).

By (7), each connected component H of G\ S contains at least two adjacent
vertices x,y such that

min{Do(S,2), Da(S,)} > (251,
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It follows that B(z) UB(y) CV(H)US.

Suppose that g is even. Then B(z) U B(y) = {z € V(G) : Dg(zy,z) < L%J}
By comparing with (1) we have |B(z) U B(y)| > v(k,g). This implies that each
connected component of G \ S has order at least v(k,g) — |5].

Suppose now that g is odd. Then it is clear that |[V(H)| > |B(z)| — |S| and again

|B(z)| > v(k,g), which implies that each connected component of G \ S has order
at least v(k, g) — |S].

In both cases we get
IV(G)| = 2n(k,g) — |S].
O

Proof of Theorem 3. Let G be a (k,g)-cage. The statement will follow from
Proposition 2 if we show that |V(G)| < 2y(k,g) — (k — 1) whenever g = 12, or
whenever g € {7,11} and k — 1 is a prime power.

i) Let g = 12, and let ¢ be the smallest prime power greater than or equal to
E—1. If ¢ =k — 1 then G is a minimal (k,12)-cage and |V(G)| = l/l(k 12) <
2vy(k,12) — (k — 1). Suppose that k& — 1 is not a prime power. Since 1 + 21”2( 7 <
whenever k > 3276, by Theorem 1 we may assume that |V(G)| < 2k(k—1)*(Z)* and
so |V(G)] < 4k(k — 1)*. Using (1) we have

V(G) < 4k(k—-1)*=4((k—-1)°+(k-1)%
< Hh-1+k-1'+*k-1%*—- (k-1
< 2uy(k,12) — (K —1).

ii) Let g € {7,11} and suppose that & — 1 is a prime power. By (3) we have

|[V(G)| < v(k,g+1). Since k — 1 is a prime power we have

20k —1)HF —2
V(@) <nlkg+1) = D22
On the other hand

Ue(k —1)"T — 4

wilk,g) —(k—1) = =~ = (k-1
v(k,g) — (k—1) P (k=1)
2k — 1) 42k -1)T —4
= — (k=1
k-2 (k=1)
20k — 1) — 2
= kg BTN T 22 gy
k-2
and since
2k - 1) -2 2k-2)(k—1)= +2(k -1 -2
k-2 B k-2
=3
_ (et AR UTE 22

k-2
> (k=1)
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it follows that v(k,g+1) < 2y(k,9) — (k—1) and so |V(G)| < 2y(k,g9) — (k—1). O
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