On upper bounds and connectivity of cages

Gabriela Araujo* Diego González*

Instituto de Matemáticas Universidad Nacional Autónoma de México Ciudad Universitaria Coyoacán 04510 Mexico

garaujo@math.unam.mx gmoreno@math.unam.mx

Juan José Montellano-Ballesteros

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria Coyoacán 04510
Mexico
juancho@math.unam.mx

ORIOL SERRA

Dep. Matemàtica Aplicada IV Universitat Politècnica de Catalunya 08034 Barcelona Spain oserra@ma4.upc.edu

Abstract

In this paper we give an upper bound for the order of (k,g)-cages when k-1 is not a prime power and $g \in \{6,8,12\}$. As an application we obtain new upper bounds for the order of cages when g=11 and g=12 and k-1 is not a prime power. We also confirm a conjecture of Fu, Huang and Rodger on the k-connectivity of (k,g)-cages for g=12, and for g=7,11 when k-1 is a prime power.

^{*} Supported by PAPIIT-UNAM, México, Proyecto IN106305-3.

 $^{^\}dagger$ Supported by the Spanish Research Council under grant MTM2005-08990-C02-01 and the Catalan Research Council under grant 2005SGR00256.

1 Introduction

Given two integers $k \geq 2$ and $g \geq 3$, a (k,g)-graph is a k-regular graph G with girth g(G) = g. A (k,g)-graph of minimum order is called a (k,g)-cage. For references on cages see for instance the survey of Wong [9] or the website of Royle [7], which contains the current best known bounds for the order of (k,g) cages.

We denote as $\nu(k,g)$ the order of the (k,g)-cages. The problem of determining the value of $\nu(k,g)$ is still wide open for most pairs (k,g). By counting the vertices emerging from a vertex or from an edge the following lower bounds are easily obtained:

$$\nu(k,g) \ge \nu_l(k,g) = \begin{cases} 2\sum_{i=0}^{\frac{g-2}{2}} (k-1)^i = \frac{2(k-1)^{(g/2)} - 2}{k-2} & \text{if } g \text{ is even,} \\ 1 + \sum_{i=1}^{\frac{g-1}{2}} k(k-1)^{i-1} = \frac{k(k-1)^{(g-1)/2} - 2}{k-2} & \text{if } g \text{ is odd.} \end{cases}$$
(1)

Improving on previous results of Sauer [8], Lazebnik, Ustimenko and Woldar [5] recently obtained the following upper bounds

$$\nu(k,g) \le 2kq^{\frac{3g}{4}-a},\tag{2}$$

where q is the smallest odd prime power satisfying $k \leq q$ and $a=4,\frac{11}{4},\frac{7}{2},\frac{13}{4}$ for $g\equiv 0,1,2,3\pmod 4$ respectively.

Fu, Huang and Rodger [3] established that $\nu(k,\cdot)$ is a monotone function of the girth. More precisely, they showed that

For
$$3 \le k \le g_1 \le g_2$$
 we have $\nu(k, g_1) < \nu(k, g_2)$. (3)

In the special case when $\nu(k,g) = \nu_l(k,g)$, the (k,g)-cages are called Moore graphs when g is odd and generalized polygons if g is even. It is known that Moore graphs exist only for k=2 (cycles), g=3 (complete graphs) or g=5 and k=3,7 or (possibly) 57; see [4]. On the other hand, for even girth, generalized polygons with g=4 are the complete bipartite graphs; when k-1 is a prime power, known examples of (k,g) cages are the incidence graphs of projective planes for g=6, of generalized quadrangles for g=8 and of generalized hexagons for g=12.

In this paper we prove the following result.

Theorem 1 Let $g \in \{6, 8, 12\}$ and $k \geq 3$. Let q be the smallest prime power greater than or equal to k. Then

$$\nu(k,g) \le 2kq^{\frac{g-4}{2}}.$$

Moreover,

$$\nu(k,g) \le \begin{cases} 2k(k-1)^{\frac{g-4}{2}} (\frac{7}{6})^{\frac{g-4}{2}} & \text{if } 3275 \ge k \ge 7, \\ 2k(k-1)^{\frac{g-4}{2}} (1 + \frac{1}{2\ln^2(k)})^{\frac{g-4}{2}} & \text{if } k \ge 3276. \end{cases}$$

Theorem 1, combined with the monotonocity of $\nu(k,\cdot)$, improves the upper bound (2) given by Lazebnik, Ustimenko and Woldar when g=11 and g=12.

It is worth mentioning that, by using similar arguments as in [1], the construction in the proof of Theorem 1 for graphs of girth g = 6 can be extended to degrees k close to q still keeping their girth exactly six.

Concerning the structure of cages, an interesting problem is that of their vertex-connectivity. Fu, Huang and Rodger [3] conjectured that every (k, g)-cage is k-connected and they proved the statement for k=3. Marcote, Balbuena and Pelayo [6] show that every (k,g)-cage is k-connected when g=6 or g=8 and also showed that some (k,5)-cages have connectivity k, including the cases when k-1 is a prime power. To prove their results these authors prove that a connected graph G with minimum degree $\delta \geq 3$, girth g and order g is g-connected for g is g if g in g is g-connected for g is a direct consequence of this result, and for the convenience of the reader we include a short proof.

Proposition 2 Let G be a graph with minimum degree $\delta(G) = k \geq 3$, girth g(G) = g and vertex-connectivity $\kappa(G) \leq k - 1$. Then $|V(G)| \geq 2\nu_l(k,g) - \kappa(G)$.

We also prove the following result.

```
Theorem 3 Let G be a (k,g)-cage. If

i) g = 12, or

ii) g \in \{7,11\} and k-1 is a prime power,

then G is k-connected.
```

Therefore we confirm the conjecture of Fu, Huang and Rodger for the value g = 12 and for infinitely many values of k when g = 7 or 11.

2 Notation

In what follows G denotes an undirected graph with no loops and no multiple edges. For each vertex $x \in V(G)$, $N_G(x)$ and $d_G(x)$ denote the set of neighbors and the degree of x in G respectively. The minimum degree of G will be denoted as $\delta(G)$. Given a pair of vertices $x, y \in V(G)$, by an (xy)-path we mean a sequence x_0, \ldots, x_r of vertices of G such that $x_0 = x$, $x_r = y$ and, for every $0 \le i \le r-1$, $x_i x_{i+1} \in E(G)$. If x = y, an (xy)-path is a cycle. The length of an (xy)-path (or cycle) x_0, \ldots, x_r is r. Given two vertices $x, y \in V(G)$ the distance between x and y is the minimum length of an (xy)-path in G, and will be denoted by $D_G(x, y)$. A matching is a 1-regular graph.

For a subset $S \subseteq V(G)$ we denote by G[S] the subgraph of G induced by S. A subset $S \subset V(G)$ will be said to be *independent* if no two vertices in S are adjacent

in G. Given $x \in V(G)$, an (x, S)-path is an (xy)-path where $y \in S$ and we denote $D_G(x, S) = \min\{D_G(x, y) : y \in S\}$. For simplicity, if e = wy is an edge of G and $x \in V(G)$, we will write (e, x)-path and $D_G(e, x)$ instead of $(\{w, y\}, x)$ -path and $D_G(\{w, y\}, x)$, respectively.

Let D be a directed graph. The *out-degree* of x is the cardinality of the set $\{y \in V(D) : (x,y) \in A(D)\}$. An *oriented cycle* C of D is a sequence $x_0, x_1, \ldots, x_{r-1}, x_r = x_0$ of vertices such that, for each $0 \le i \le r-1$, $(x_i, x_{i+1}) \in A(D)$.

We shall use the following result on the existence of prime powers in short intervals of integers; see e.g. Dusart [2].

If
$$k \ge 3275$$
 then the interval $[k, k(1 + \frac{1}{2ln^2(k)})]$ contains a prime number. (4)

If
$$6 \le k \le 3276$$
 then the interval $[k, \frac{7k}{6}]$ contains a prime power. (5)

3 Proofs of the Theorems

Proof of Theorem 1. Let $k \geq 3$. If k-1 is a prime power, $\nu_l(k,g) = \nu(k,g)$ and the result follows. Let us suppose that k-1 is not a prime power. Let q be the smallest prime power greater than or equal to k and let $g \in \{6, 8, 12\}$. Let G = (V, E) be a (q+1, g)-cage, that is, a (q+1, g)-graph of minimum order.

For a given edge e = xy of G and for each $i \ge 0$, let

$$\mathcal{N}_i(e) = \{ z \in V(G) : D_G(e, z) = i \}.$$

The subgraph spanned by the vertices within distance $l \leq \frac{g-2}{2}$ from $\{x,y\}$ is a tree as shown in Figure 1. Therefore, for $0 \leq i \leq \frac{g-2}{2}$, we have

$$|\mathcal{N}_i(e)| = 2q^i.$$

Since q is a prime power and G is a (q+1,g)-cage,

$$V(G) = \bigcup_{0 \le i \le \frac{g-2}{2}} \mathcal{N}_i(e).$$

This implies that the subgraph of G induced by $\mathcal{N}_{\frac{g-2}{2}}(e)$ is a q-regular graph (see an illustration in Figure 1.)

Let $N_G(x) \setminus y = \{x_1, \dots, x_q\}$ and $N_G(y) \setminus x = \{y_1, \dots, y_q\}$, and, for each $1 \le i \le q$, let

$$\mathcal{B}(x_i) = \{ z \in \mathcal{N}_{\frac{g-2}{2}}(e) : D_G(x_i, z) = \frac{g-4}{2} \}$$

and

$$\mathcal{B}(y_i) = \{ z \in \mathcal{N}_{\frac{g-2}{2}}(e) : D_G(y_i, z) = \frac{g-4}{2} \}.$$

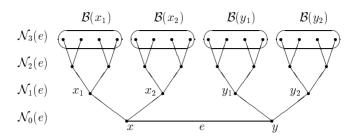


Figure 1: Tree of neighbors emerging from an edge for k=3 and g=8.

For each vertex $z \in \mathcal{N}_{\frac{q-2}{2}}(e)$ there is exactly one (e,z)-path of length $\frac{g-2}{2}$ in G. It follows that $\{B(x_1),\ldots,B(x_q),B(y_1),\ldots,B(y_q)\}$ is a partition of $\mathcal{N}_{\frac{g-2}{2}}(e)$. In particular,

$$|\mathcal{B}(x_i)| = |\mathcal{B}(y_i)| = q^{\frac{g-4}{2}}, \ i = 1, \dots, q.$$

Note that the set $U = \mathcal{B}(x_1) \cup \ldots \cup \mathcal{B}(x_q)$ is an independent set, and similarly $W = \mathcal{B}(y_1) \cup \ldots \cup \mathcal{B}(y_q)$ is also an independent set. Furthermore, for $1 \leq i, j \leq q$, a vertex in $B(x_i)$ can be joined by an edge to at most one vertex in $B(y_j)$, since otherwise the graph would contain a cycle of length at most g-1. Since the subgraph of G induced by $U \cup W = \mathcal{N}_{\frac{g-2}{2}}(e)$ is q-regular, the subgraph $G[B(x_i), B(y_j)]$ induced by $B(x_i) \cup B(y_j)$ is a matching for each i, j with $1 \leq i, j \leq q$.

For each $1 \leq k \leq q$ let G_k be the subgraph induced by $\bigcup_{i=1}^k (\mathcal{B}(x_i) \cup \mathcal{B}(y_i))$. By the above remarks, G_k is k-regular, has order $2kq^{(g-4)/2}$ and, being a subgraph of G, it has girth $g_k \geq g$.

In particular we have $\nu(k, g_k) \leq 2kq^{(g-4)/2}$ for each $k = 3, \ldots, q$. Since $g \leq g_k$, by (3) we have that

$$\nu(k,g) \le 2kq^{(g-4)/2}. (6)$$

Finally, since k-1 is not a prime power, by (4) and (5) we see that, for $k-1 \ge 3275$, there is a prime in the interval $[k,(k-1)(1+\frac{1}{2ln^2(k)})]$ and, for $3275 \ge k-1 \ge 6$, there is a prime power in the interval $[k,\frac{(k-1)7}{6}]$. Therefore,

$$q \le \begin{cases} \frac{(k-1)^7}{6} & \text{if } 7 \le k \le 3276; \\ (k-1)(1+\frac{1}{2\ln^2(k)}) & \text{if } k \ge 3276. \end{cases}$$

Substitution of the above inequalities in (6) gives the second inequality in Theorem 1.

Proof of Proposition 2. Let G be a graph with girth g(G) = g, minimum degree $\delta(G) = k \geq 3$ and connectivity $\kappa(G) \leq k - 1$.

For each vertex $x \in V(G)$ define

$$\mathcal{B}(x) = \{ z \in V(G) : D_G(x, z) \le \lfloor \frac{g-1}{2} \rfloor \},$$

and, for each $y \in N_G(x)$, let $\mathcal{B}_x(y)$ be the set of vertices z of G such that there is a (zy)-path in G of length at most $\lfloor \frac{g-1}{2} \rfloor - 1$ which does not use the edge xy. Since g(G) = g, the set $\{\mathcal{B}_x(y) : y \in N_G(x)\}$ is a partition of $\mathcal{B}(x) \setminus x$ for each $x \in V(G)$ (see an ilustration in Figure 2).

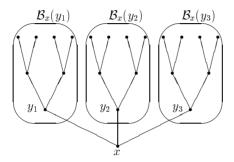


Figure 2: Tree emerging from a vertex x for $\lfloor \frac{g-1}{2} \rfloor = 3$ and k = 3.

Let $S \subseteq V(G)$ be a minimum cutset of G and let H be a connected component of $G \setminus S$. Since $\delta(G) = k > \kappa(G) = |S|$, each vertex $x \in V(G)$ has a neighbor $y \in N_G(x)$ such that $\mathcal{B}_x(y) \cap S = \emptyset$. In particular, for each $x \in V(H)$, there is $y \in N_G(x) \cap V(H)$ such that $\mathcal{B}_x(y) \subseteq V(H)$.

Let D be a digraph defined as follows: the vertex set of D is V(D) = V(H) and (x, y) is an arc of D if and only if $\mathcal{B}_x(y) \subseteq V(H)$. By the above remark, the minimum out-degree of D is at least 1. It follows that D contains an oriented cycle $\mathcal{C} = (x_1, \ldots, x_t), t \geq 2$.

We claim that

$$\min\{D_G(S, x_i), \ i = 1, \dots, t\} \ge \lfloor \frac{g - 1}{2} \rfloor. \tag{7}$$

Suppose on the contrary that $m = \min\{D_G(S, x_i), i = 1, ..., t\} \le \lfloor \frac{g-1}{2} \rfloor - 1$; say $D_G(S, x_{i+1}) = m$. Let P be a (S, x_{i+1}) -path in G of length m. Since (x_i, x_{i+1}) is an arc of D, we have $\mathcal{B}_{x_i}(x_{i+1}) \subseteq V(H)$. Therefore P must use the edge $x_i x_{i+1}$, which implies $D_G(x_i, S) = m - 1$, a contradiction. This proves (7).

By (7), each connected component H of $G \setminus S$ contains at least two adjacent vertices x, y such that

$$\min\{D_G(S,x), D_G(S,y)\} \ge \lfloor \frac{g-1}{2} \rfloor.$$

It follows that $\mathcal{B}(x) \cup \mathcal{B}(y) \subseteq V(H) \cup S$.

Suppose that g is even. Then $\mathcal{B}(x) \cup \mathcal{B}(y) = \{z \in V(G) : D_G(xy, z) \leq \lfloor \frac{g-1}{2} \rfloor \}$. By comparing with (1) we have $|\mathcal{B}(x) \cup \mathcal{B}(y)| \geq \nu_l(k, g)$. This implies that each connected component of $G \setminus S$ has order at least $\nu_l(k, g) - |S|$.

Suppose now that g is odd. Then it is clear that $|V(H)| \ge |\mathcal{B}(x)| - |S|$ and again $|\mathcal{B}(x)| \ge \nu_l(k,g)$, which implies that each connected component of $G \setminus S$ has order at least $\nu_l(k,g) - |S|$.

In both cases we get

$$|V(G)| \ge 2\nu_l(k,g) - |S|.$$

Proof of Theorem 3. Let G be a (k,g)-cage. The statement will follow from Proposition 2 if we show that $|V(G)| < 2\nu_l(k,g) - (k-1)$ whenever g = 12, or whenever $g \in \{7,11\}$ and k-1 is a prime power.

i) Let g=12, and let q be the smallest prime power greater than or equal to k-1. If q=k-1 then G is a minimal (k,12)-cage and $|V(G)|=\nu_l(k,12)<2\nu_l(k,12)-(k-1)$. Suppose that k-1 is not a prime power. Since $1+\frac{1}{2\ln^2(k)}\leq \frac{7}{6}$ whenever $k\geq 3276$, by Theorem 1 we may assume that $|V(G)|\leq 2k(k-1)^4(\frac{7}{6})^4$ and so $|V(G)|<4k(k-1)^4$. Using (1) we have

$$\begin{split} |V(G)| &< 4k(k-1)^4 = 4((k-1)^5 + (k-1)^4) \\ &\leq 4((k-1)^5 + (k-1)^4 + (k-1)^3) - (k-1) \\ &\leq 2\nu_l(k,12) - (k-1). \end{split}$$

ii) Let $g \in \{7,11\}$ and suppose that k-1 is a prime power. By (3) we have $|V(G)| < \nu(k,g+1)$. Since k-1 is a prime power we have

$$|V(G)| < \nu_l(k, g+1) = \frac{2(k-1)^{\frac{g+1}{2}} - 2}{k-2}.$$

On the other hand

$$\begin{array}{rcl} 2\nu_l(k,g)-(k-1) & = & \frac{2k(k-1)^{\frac{g-1}{2}}-4}{k-2}-(k-1) \\ & = & \frac{2(k-1)^{\frac{g+1}{2}}+2(k-1)^{\frac{g-1}{2}}-4}{k-2}-(k-1) \\ & = & \nu_l(k,g+1)+\frac{2(k-1)^{\frac{g-1}{2}}-2}{k-2}-(k-1), \end{array}$$

and since

$$\frac{2(k-1)^{\frac{g-1}{2}} - 2}{k-2} = \frac{2(k-2)(k-1)^{\frac{g-3}{2}} + 2(k-1)^{\frac{g-3}{2}} - 2}{k-2}$$
$$= 2(k-1)^{\frac{g-3}{2}} + \frac{2(k-1)^{\frac{g-3}{2}} - 2}{k-2}$$
$$> (k-1)$$

it follows that $\nu_l(k, g+1) < 2\nu_l(k, g) - (k-1)$ and so $|V(G)| < 2\nu_l(k, g) - (k-1)$.

References

- [1] G. Araujo, M. Noy and O. Serra, A geometric construction of large vertex transitive graphs of diameter 2, *J. Combin. Math. Combin. Comput.* **57** (2006), 97–102.
- [2] P. Dusart, The k^{th} prime is greater than $k(\ln k + \ln \ln k 1)$ for $k \geq 2$, Math. Comp. **68** no. 225, (1999), 411–415.
- [3] H. Fu, K. Huang and C.A. Rodger, Connectivity of Cages, J. Graph Theory 24 (1997), 187–191.
- [4] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. Res. Dev. 4 (1960), 497–504.
- [5] F. Lazebnik, V.A. Ustimenko and A.J. Woldar, New upper bounds on the order of cages, Elec. J. Combin. 14 R13, (1997), 1-11.
- [6] X. Marcote, C. Balbuena and I. Pelayo, On the connectivity of cages with girth five, six and eight, Discrete Math. Krakov 2002, in press.
- [7] G. Royle, Cages of higher valency, http://www.csse.uwa.edu.au/~gordon/cages/allcages.html
- [8] N. Sauer, Extremaleigenschaften regulärer Graphen gegebener Taillenweite, I and II, Sitzungsberichte Österreich. Acad. Wiss. Math. Natur. Kl., S-B II, 176 (1967), 9-25; 176 (1967), 27-43.
- [9] P.K. Wong, Cages—A Survey, J. Graph Theory 6 (1982), 1–22.

(Received 17 May 2006; revised 25 Nov 2006)