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Abstract

For positive integers m and n (1 < m < (3)), let Jn(n) be the class
of all distinct subgraphs of K, of size m. Let G,H € J,(n). Then
G is said to be obtained from H by an edge jump if there exist four
distinct vertices w,v,w, and « of K, such that e = wv ¢ E(H), f =
wz € E(H) and o(e, f)H == H+e — f = G. The minimum number
of edge jumps required to transform H to G is the jump distance from
H to G. The graph J,,(n) is that graph having J,,(n) as its vertex set
where two vertices of J,,(n) are adjacent if and only if the jump distance
between the corresponding subgraphs is 1. Let C,,(n) be the subset of
Jm(n) consisting of all connected graphs. We prove in this paper that the
graph J,,(n) is connected and the subgraph of the graph J,,(n) induced
by C,(n) is also connected. Several graph parameters are proved to
interpolate over the class J,(n) and C,,(n). Algorithms for determining
the extreme values for the chromatic number y and the clique number w
are also provided.

1 Introduction

We limit our discussion to graphs that are simple and finite. For the most part,
our notation and terminology follows that of Bondy and Murty [1]. Let G = (V, E)
denote a graph with vertex set V = V(G) and edge set E = E(G). Let V(G) =
{vi,ve,---,v,} and E(G) = {e1, €2, -+ ,en}. We use |S] to denote the cardinality of
a set S and define n = v(G) = |V| to be the order of G and m = ¢(G) = |E| the size
of G. We write e = wv for an edge e that joins vertex u to vertex v. A path of order
k in a graph G, denoted by Py, is a sequence of distinct vertices ujus - - - ug of G such
that for all i = 1,2,--- k — 1, w;u;y; is an edge of G. The degree of a vertex v of
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a graph G is defined as dg(v) = |{e € E : e = wv for some u € V}|. The maximum
degree and the minimum degree of a graph G is usually denoted by A(G) and §(G),
respectively. If S C V(G), the graph G[S] is the subgraph of G induced by S. We
also use the notation £(S) for £(G[S]). For a graph G and X C E(G), we denote by
G — X the graph obtained from G by removing all edges in X. If X = {e}, we write
G — e for G — {e}. For a graph G and X C V(G), G — X is the graph obtained
from G by removing all vertices in X and all edges incident with vertices in X. For
a graph G and X C E(G), G + X denotes the graph obtained from G by adding
all edges in X. If X = {e}, we simply write G + e for G + {e}. Two graphs G and
H are disjoint if V(G) N V(H) = (. For any two disjoint graphs G and H, GU H
is defined by V(GU H) = V(G)UV(H) and E(GU H) = E(G)U E(H). We can
extend this definition to a finite union of pairwise disjoint graphs.

For positive integers m and n (1 < m < (3)), let Jyu(n) be the class of all distinct
subgraphs of K, of size m. Let G,H € J,,(n). Then G is said to be obtained from
H by an edge jump if there exist four distinct vertices u, v, w, and = of K, such that
e=w ¢ E(H), f =wz € E(H) and o(e, f)H := H+ e — f = G. The minimum
number of edge jumps required to transform H to G is the jump distance from H
to G. The graph J,,(n) is that graph having J,,(n) as its vertex set and where two
vertices are adjacent if and only if the jump distance between the corresponding
subgraphs is 1. Let C,,(n) be the subset of J,,(n) consisting of all connected graphs.
It is clear that the graph J,(n) has order (), where N = (7).

Note that the operation o(e, f) is well defined on G if and only if o(f,e) is well
defined on o(e, )G and o(f,e)o(e, f)G = G. Thus the graph J,,(n) is simple.

The concept of the edge jump is not new. Harary et al. [6, 7, 8, 9, 10, 11, 12]
introduced this concept in late 1980 and called it an edge exchange. They used this
concept to prove interpolation problems raised by Chartrand. Structure of specific
classes of jump graphs were also studied by Chartrand et al. [2, 3].

Theorem 1.1 Let G, H € J,,(n). Then G = H or there is a finite sequence of edge

Jumps oleq, f1),0(ez2, f2), -+, 0(es, fi) such that
H =o(ey, fr)o(e1, fiu1) - oler, 1)G.

Proof. Let G, H € J,,(n). If G # H, then E(G) — E(H) # 0. Let E(G) — E(H) =
{fi, fo,--, fi} and E(H) — E(G) = {e1,e2,---,¢e;}. Since G and H are of the same
size, it follows that ¢ = k. Since e; ¢ E(G) and f; € E(G), it follows that o(ey, f1)
is a well defined edge jump on G and |E(G1) N E(H)| = |E(G) N E(H)| + 1, where
Gy = o(e1, f1)G. Further, for all i = 2,3,---,t, o(e;, fi) is a well defined operation
on Gi_]_ and |E(GZ)QE(H)| = |.E(C'}1Z_]_)0.E(]¥)|-i-l7 where GZ = O'(ei7 fz)Gz—l Thus
Gy = H and the proof is complete. O

Corollary 1.2 The graph J,(n) is connected.

Theorem 1.3 Let G,H € C,(n). Then G = H or there is a finite sequence
of edge jumps o(er, f1), olez, f2), -+, oles fi) such that for all i = 1,2,---t,
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oles, fi)o(eim1, fi—1) - ole1, f1)G € Cp(n) and
H = o(eq, fr)o(er-1, fio1) ---oler, f1)G.

Proof. Note that C,,(n) # 0 if and only if m > n — 1. If m = n — 1, then C,,(n)
contains all trees of order n. We first prove the theorem when m = n — 1. Let
T),,Ty € Coy(n) and Ty £ Ty. Then E(T)) — E(Ty) # 0, E(Ty) — E(Ty) £ 0,
and |E(Ty) — E(T2)| = |E(T2) — E(T1)|. For any e; € E(Ty) — E(T3), Ty + e, con-
tains a cycle. Thus there exists f € E(T1) — E(1), say fi1, such that Ty +e; — f
is a tree. In this case |E(T} + e; — f1) N E(T3)| = |E(Th) N E(Ty)| + 1. Thus
there exists a finite sequence of edge jumps o(ey, fi),o(e2, fa), -+, 0(es, fr) such
that for all 4 = 1,2,---,¢t, ole;, fi)o(ei—1, fi-1)---c(er, f1)G € Cpo1(n) and Ty =
ole;, fi)o(ei—1, fiz1) - --oler, f1)T1. Let G,H € Cp(n), m > n. Let T and T be
spanning trees of G and H, respectively. Then, by the previous argument, we may
assume that Ty = Tp. Thus E(G) N E(H) contains E(T}). Put E(G) — E(H) =
{fi, fo,++, fi} and E(H) — E(G) = {e1,es,---,e;}. Thus there is a finite se-
quence of edge jumps o(ey, f1),0(es, f2), -, 0(et, fi) such that for all i = 1,2,--- ¢,
olei, fi)oleir, fi-1) - o(er, )G € Cu(n) and H = o(e, fr)oler1, fi1) -+
o(e1, f1)G. m|

Corollary 1.4 The graph Cy,(n) is connected.

Let G be the class of all simple graphs. A function 7 : G — Z is called a graph
parameter if 7(G) = w(H) for all isomorphic graphs G and H. A graph parameter =
is called an interpolation graph parameter over J C G if there exist integers x and y
such that

{n(G):Gel}=[zr,y ={k€Z z<k<y}

If 7 is an interpolation graph parameter over J, then {n(G) : G € J} is uniquely
determined by min(7,J) := min{n(G) : G € I} and max(m,J) := max{r(G) :
G € J}. In the case where J = J(n) we write min(7m;m,n) and max(m;m,n) for
min(m, J,(n)) and max(m,J,(n)), respectively, and in the case where J = C,,(n) we
write Min(m; m,n) and Max(m; m,n) for min(w, G, (n)) and max(mr, C,,(n)), respec-
tively.

2 Interpolation Theorems

Studying interpolation theorems for graph parameters may be divided into two parts.
The first part deals with the following question: Given a graph parameter 7 and a
subset J of G, does 7 interpolate over J? If m interpolates over J, then {n(G) :
G € J} is uniquely determined by min(m, J) and max(w,J). The second part of the
interpolation theorems for graph parameters is to find the values of min(w,J) and
max(m,J) for the corresponding interpolation graph parameters and this part is, in
fact, the extremal problem in graph theory.
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The interest in the interpolation properties of graph parameters was motivated by an
open question posed by Chartrand during a conference held at Kalamazoo in 1980.
He posed the following question: If a graph G contains spanning trees having m and
n end-vertices, with m < n, does G contain a spanning tree with & end-vertices for
every integer k£ with m < k < n? This question (which was answered affirmatively)
led to a host of papers studying the interpolation properties of invariants of spanning
trees of a given graph. The details can be found in [6, 7, 8, 9, 10, 11, 12]. In [16],
several graph parameters were proved to interpolate over the class of all graphs with
the same degree sequence and presented the two parts of the interpolation theorems.

For any integers m and n, it was shown in the previous section that the graph J,,(n) is
connected and the subgraph of the graph J,,(n) induced by C,,(n) is also connected.
Let 7 be a graph parameter. Thus we have the following theorems.

Theorem 2.1 For a graph G € J,(n) and an edge jump o(e, f), if
|m(G) —m(o(e, )G)| < 1,

then m is an interpolation graph parameter over J,(n).

Theorem 2.2 For a graph G € C,,(n) and an edge jump o(e, f), if
[m(G) = m(o(e, /)G) < 1,

then m is an interpolation graph parameter over Cy,(n).

Theorem 2.3 Let J C J,,(n) and the subgraph of the graph J,(n) induced by J be
connected. For a graph G € J and an edge jump o(e, f), if |n(G) —n(o(e, f)G)| < 1,
then m is an interpolation graph parameter over J.

3 Interpolation Graph Parameters

We will now present various graph parameters and prove interpolation results on the
corresponding graph parameters with respect to J,,(n) and C,,(n). We first state
the definition of x. A k-coloring of a graph G = (V, E) is a partition of its vertex set
Vas ViUVaU--- UV} such that no two vertices in V; (1 <@ < k) are adjacent. The
Vi’s are called the color classes. A function ¢: V' — {1,2,---,k} such that c¢(v) = ¢
for each v € V;(1 < i < k) is called a color function. If G has a k-coloring, it is
said to be k-colorable and the minimum integer k for which G is k-colorable is called
the chromatic number of G and is denoted by x(G). If x(G) = k, we say that G is
k-chromatic.

Remark 3.1 In a proper coloring, each color class contains no edge, so G is k-
colorable if and only if G is a k-partite graph. Thus a graph is 2-colorable if and
only if it is bipartite. Thus a graph containing an odd cycle must be at least 3-
colorable.
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Theorem 3.2 Let G € J,,(n) and o(e, f) be an edge jump on G. Then |x(G) —
x(o(e, N)G) < 1.

Proof. Let G be a graph. If ¢ ¢ E(G), then x(G) < x(G +¢€) < x(G) +1 and if
f € E(G), then x(G+e)—1 < x(G+e—f) < x(G+e). Since either x(G+e) = x(G)
or x(G +e) = x(G) + 1, it follows that x(G) < x(G+e — f) < x(G) + 1. Hence
IX(G) = x(o(e, /)G < 1. O

A maximal complete subgraph of a graph G is called a clique of G. The maximum
order of clique of G is called the cligue number of G and is denoted by w(G).

In general there is no formula for the chromatic number of a graph. Determining the
chromatic number of even a relatively small graph is often a challenging problem.
However, lower bounds for the chromatic number of a graph G can be given in term
of the clique number of G. That is x(G) > w(G), for any graph G.

Theorem 3.3 Let G € J,(n) and o(e, f) be an edge jump on G. Then |w(G) —
w(ole, /)G)| < 1.

Proof. Let G be a graph. If e ¢ E(G), then w(G) < w(G +e) < w(G) +1 and if
f € E(G),then w(G+e)—1 < w(G+e—f) < w(G+e). Since either w(G+e) = w(G)
or w(G +e) = w(G) + 1, it follows that w(G) < w(G +e — f) < w(G) + 1. Hence
w(G) = wlole, /)G)| < 1. O

A graph containing no cycle as its subgraph is called an acyclic graph. An acyclic
graph is called a forest. Thus each component of an acyclic graph is a tree.

Let G be a graph and F C V(G). This subset F is called an induced forest of G if
the subgraph of G induced by F contains no cycle. The maximum cardinality of an
induced forest of a graph G is called the forest number of G and is denoted by I(G).
That is

I(G) := max{|F| : F is an induced forest in G}.

We have the following theorem.

Theorem 3.4 Let G € Jy(n) and o(e, f) be an edge jump on G. Then |I(G) —
I(o(e, N)G)| < 1.

Proof. Let G be a graph and F be a maximum induced forest of G. For any e ¢ E(G)
we see that the subgraph of G + e induced by F' contains at most one cycle. Thus
I(G +e) > I(G) — 1. It is clear that any induced forest F' of G + e is an induced
forest of G. Thus I(G + ¢e) < I(G). Therefore I(G) — 1 < I(G +e) < I(G). Let
f € E(G). Then I(G+e) < I(GHe—f) < I(G+e)+1. Since either I(G+e) = I(G)
or I(G +e) = I(G) — 1, it follows that I(G) — 1 < I(G +e— f) < I(G). Hence
1(G) — I(o(e, ))G)| < 1. 0

There is a counterpart graph parameter of I called the decycling number. Let G be a
graph. The minimum number of vertices of G whose removal eliminates all cycles in
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the graph G is called the decycling number of G and is denoted by ¢(G). Evidently,
for a graph G of order n, ¢(G) + I(G) = n. Thus we obtain the following corollary.

Corollary 3.5 Let G € J,n(n) and o(e, f) be an edge jump on G. Then |$(G) —
¢(o(e, f)G)| < 1.

A subset U of the vertex set V(G) of a graph G is said to be an independent set of
G if the subgraph of G induced by U contains no edge. An independent set of G
with maximum number of vertices is called a mazimum independent set of G. The
number of vertices of a maximum independent set of G is called the independence
number of G and is denoted by ay(G).

It is clear that ay(G) = w(G), for any graph G. Observe that a graph G' € Jp(n)
if and only if G € J(n)im(n). Thus we have the following corollary as a direct
2

consequence of Theorem 3.5.

Corollary 3.6 Let G € J,u(n) and o(e, f) be an edge jump on G. Then |ag(G) —
ap(ole, f)G)| < L.

A vertex of a graph G = (V, E) is said to cover the edges incident with it. A vertex
cover of a graph G is a set of vertices covering all the edges of G. The minimum
cardinality of a vertex cover of a graph G is called the vertex covering number of G
and is denoted by 5o(G).

A subset M of the edge set E(G) of a graph G is an independent edge set or matching
of G if no two distinct edges in M have a common vertex. A matching M of G is
mazimum if there is no matching M’ of G with |M’'| > |M]|. The cardinality of a
maximum matching of G is called the matching number of G and is denoted by
a1 (G).

There is an analogous covering concept for edges. An edge of a graph G is said to
cover two vertices incident with it. An edge cover of a graph G is a set of edges
covering all the vertices of G. The minimum cardinality of an edge cover of G is
called the edge covering number of G and is denoted by §:(G).

Theorem 3.7 Let G € J(n) and o(e, f) be an edge jump on G. Then oy (G) —
ai(ofe, f)G)| < L.

Proof. Let G be a graph and M be a matching of G. For any e € E(G) we see that
M is also a matching of G 4+ e. Thus a;(G 4 ¢) > a1(G). On the other hand, for
any matching M’ of G + e we see that M’ is a matching of G if e ¢ M’ and M' — ¢
is a matching of G if e € M'. Thus a;(G) — 1 < a(G +e) < ay(G). Let f € E(G).
Then a1(G+e) — 1 < a1(G+e— f) < ay(G +e). Since either ay(G +€) = a1 (G)
or I(G +e) = I(G) — 1, it follows that o (G) — 1 < oy (G + e — f) < a;(G). Hence
la1(G) — ar(o(e, f)G)| < 1. O
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Let n be a positive integer. The star of order n + 1 is the complete bipartite graph
K, 1. The edges covered by one vertex in a vertex cover are the edges incident to it;
they form a star. The vertex cover problem can be described as covering the edge
set with the fewest number of stars. This is equivalent to our next graph parameter.

A dominating set of a graph G is a subset D of V(G) such that each vertex of
V(G) — D is adjacent to at least one vertex of D. The domination number, v(G), is
the cardinality of a minimal dominating set with the least number of elements.

Theorem 3.8 Let G € J,(n) and o(e, f) be an edge jump on G. Then |y(G) —
ole, @) < 1.

Proof. Let G be a graph and D be a dominating set of G. For any ¢ ¢ E(G)
we see that D is also a dominating set of G +e. Thus v(G +¢) < 7(G). On the
other hand, for any dominating set D' of G + e, where e = uv, we see that D' is a
dominating set of G if either u,v € D' or u,v ¢ D', otherwise D' U {u} or D' U {v}
is a dominating set of G. Thus v(G) — 1 < (G +¢€) < 7(G). Let f € E(G).
Then 7(G +¢) < (G +e— f) < v(G +¢)+ 1. Since either v(G + ¢) = (G)
or 7(G +¢) = 7(G) + 1, it follows that 7(G) < v(G + e — f) < v(G) + 1. Hence
(G) =~(ale, )G < 1. O

Gallai [5] and Norman-Rabin [14] proved the following results concerning relationship
between g and 3y, and between a1, and (31, respectively.

Theorem 3.9 For any graph G of order n, oy + By = n.
Theorem 3.10 For any graph G of order n and § > 1,ay + 1 = n.
As a direct consequence of the previous two theorems, we have the following corollary.

Corollary 3.11 Let G € J,(n) and o(e, f) be an edge jump on G. Then |Bo(G) —
folo(e, G| < 1. and |5,(G) - Bu(ole, FIG)] < 1.

The following theorems are obtained as consequences of our results.

Theorem 3.12 x, w, I, ¢, wy, a1, By, b1 and 7y are interpolation graph parame-
ters over Jp(n).

Theorem 3.13 x, w, I, ¢, a, a1, Bo, b1 and 7y are interpolation graph parame-

ters over Gy, (n).

Theorem 3.14 Let m € {x,w, I, d, ao, a1, B0, b1,7}. Then there exist integers a =
min(m;m,n) and b ;= max(m;m,n) such that there exists G € J,,(n) with 7(G) = ¢
if and only if ¢ is an integer satisfying a < ¢ < b.

Theorem 3.15 Let m € {x,w, I, d, o, a1, B0, 51,7} Then there exist integers a =
Min(m;m,n) and b := Max(m;m,n) such that there exists G € Gy, (n) with 7(G) = ¢
if and only if ¢ is an integer satisfying a < ¢ < b.
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4 Extremal Problems for Graph Parameters

We have already proved interpolation property of various graph parameters in Section
3. Thus for an interpolation graph parameter = over J C G, the values of {7(G) :
G € J} is uniquely determined by min(w,J) and max(7,J). The problem of finding
min(7, J) and max(, J) is so called the extremal problem in graph theory.

An extremal problem asks for minimum and maximum values of a function over a
class of objects.

Remark 4.1 Proving that A = min{n(G) : G € J} requires showing two things:

1. n7(G) > Aforall G € ].
2. m(G) = A for some G € J.

The proof of the bound must apply to every G € J. For equality it suffices to obtain
an example in J with the desired value of 7.

Changing “ > " to “ <7 yields the criteria for a maximum.

A study of extremal problems for graph parameters was motivated by Dirac’s con-
jecture as state in the following.

In the graph-theoretic colloquium at Smolenice in 1963, Dirac conjectured that the
chromatic number of a proper regular subgraph of a complete n-gon is at most 3?"
Erdés and Gallai answered this conjecture immediately and presented their result
during the conference. Their article was entitled “Solution to a problem of Dirac”
[4], and it appeared in the proceedings of the symposium, Smolenice, in 1964. In
fact, the result was more than Dirac asked for. In addition, they found all regular

graphs reaching the upper bound as stated in the following theorem.

Theorem 4.2 An r-regular graph G of order n > r + 1 has chromatic number
k < =, with equality holds if and only if the complementary graph G of G is a union
of b-cycles.

In [15] we generalized the result of the above theorem by introducing the notion of
F(j)-graphs and using these graphs to obtain generalized results.

Let j be a positive integer. An F(j)-graph is a (j — 1)-regular graph G of minimum
order f(j) satisfying x(G) > f(j)/2.

It is easy to see that an F'(3)-graph is C5 and f(3) = 5. We will see that F(j)-graphs,
j > 5, are not unique.

We have found F(j)-graphs for all odd integers j as we state in the following theorem.

Theorem 4.3 For odd integers j with j > 3, we have f(j) = %(j—l) if j = 3(mod 4)
and f(j) =1+ 2(j — 1) if j = 1(mod 4).
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The following result can be found in [15] which is a generalization of Theorem 4.2.

Theorem 4.4 Any r-regular graph of order n with n —r = j odd and j > 3 has
fG)+1

chromatic number at most —=——-n, and this bound is achieved precisely for those

f(7)
graphs with complement equal to a disjoint union of F(j)-graphs.

As we have already proved the interpolation property of x with respect to J,,(n) and
Cp(n) in Section 3, it is natural to ask the same for min(x;m,n), max(x;m,n),
Min(x; m,n) and Max(x;m,n). We will consider this question in this section.

First, we state some elementary facts concerning the chromatic number of graphs of
order n and size m.

1. Every k-chromatic graph with n vertices has at least (’2”) edges. Equality holds
for the graph K U (n — k)K;.

2. If the connectivity is concerned, one can ask for the minimum size among
connected k-chromatic graphs with n vertices. This question was answered in
[18]: the minimum size of such a graph is at least (’2”) +n—k. Equality holds for
a graph G with V/(G) = {v1,vs, -+, v,} and E(G) = {v1v; : 2 <@ < n}U{v; -
2<i<j<k}

3. Mantel proved in [13] that the maximum size of a triangle-free graph of order
. 2 . . .
n is | %] Equality holds for the complete bipartite graph K|z |27

Mantel’s theorem provides the maximum number of edges that a 2-chromatic graph of
order n can have. On the other hand the minimum number of edges in a 2-chromatic
graph of order n > 2 is 1 and the minimum number of edges in a 2-chromatic
connected graph of order n > 2 is n — 1. Turdn [17] extended the result of Mantel
by introducing the Turdn graph. The famous result of Turdn is viewed as the origin
of extremal graph theory.

The Turdn graph T,, is the complete r-partite graph of order n whose partite sets
differ in size by at most 1.

Theorem 4.5 Among the graphs of order n containing no complete subgraph of
order r + 1, T5, » has the mazimum number of edges.

In order to apply Turdn’s theorem in our context, we would like to state the following
facts.

1.Ifn=rg+t 0<t<r, then T,, consists of ¢ partite sets of cardinality [%]
and r — t partite sets of cardinality [%].

2. Let G € J,u(n). If w(G) <7, then m < e(T5,,).

3. £(To) = (%5%) + (= 1)(*7), where a — (2]
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(T%,). Then for a fixed n, by using elementary arithmetic, we

€
1) < t(n,r) forallr, 2 <+ < n. Infact t(n,r)—t(n,r—1) > (G;I),

We have the following theorems.

Theorem 4.6 Let n,m and k be positive integers satisfying n > k > 3 and (g) <

m < (!

). Then max(x;n,m) = k.

Proof. By above observation, we see that every k-chromatic graph has at least ('2”)
edges. Thus for n,m and k satisfying conditions of the theorem, max(x;n,m) < k.
Observe that if n = k, then m = (;) Thus max(x; k, (;)) = k. Suppose n > k. Since

(';) <m< (kzl), it follows that m — (’;) < ('”;rl) - (’2“) = k. Let G be a graph with
V(G) ={v1,vs,-++,v,} and E(G) = {vv; : 1 <i<j < k}U{v,u;: 1 <i < m—('”)}.
O

2
It is easy to see that G € J,,(n) and x(G) = k. Thus max(x;n,m) = k.

Theorem 4.7 Let n,m and k > 2 be positive integers satisfying t(n,k —1) < m <
t(n,k). Then min(x;n,m) = k.

Proof. By definition of T}, , and above observation, we find that if t(n,k—1) < m <
t(n, k), them min(x; m,n) > k. Let G be a graph of order n obtained from removal
t(n, k) —m edges from T}, ;. Thus G € J;n(n) and G is a subgraph of T, ;. Therefore
X(G) < x(T,x) = k. This proves that min(x;m,n) = k. ]

As we have mentioned earlier, the graph parameters x and w are closely related in
the sense that x(G) > w(G). However, it is known that for any positive integer ¢,
there exists a graph G such that x(G) —w(G) > ¢. But this situation does not occur
from the results of the previous two theorems. The results are still true if we replace
X by w as state in the following corollaries.

Corollary 4.8 Let n,m and k be positive integers satisfying n > k and (’2”) <m<
(**). Then max(w;n,m) = k.

Corollary 4.9 Let n,m and k be positive integers satisfying t(n,k — 1) < m <
t(n,k). Then min(w;n,m) = k.

Since G, (n) C J;n(n), one sees that min(x;m,n) < Min(x; m,n) and Max(x; m,n) <
max(x;m,n). A graph G that we constructed in the proof of Theorem 4.7 contains
enough edges to be connected. Thus min(x;m,n) = Min(x;m,n).

Corollary 4.10 Let n,m and k > 2 be positive integers satisfying t(n,k—1) < m <
t(n,k). Then Min(x;n,m) = k.
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Corollary 4.11 Let n,m and k > 2 be positive integers satisfying t(n,k—1) < m <
t(n,k). Then Min(w;n,m) = k.

Results can be obtained similarly as stated in the following theorems.

Theorem 4.12 Let n,m and k be positive integers satisfying n > k > 3 and (;) +
n—k<m< (k-gl) +n —k—1. Then Max(x;n,m) = k.
Theorem 4.13 Let n,m and k be positive integers satisfying n > k > 3 and (g) +
n—k<m< (k-gl) +n—k—1. Then Max(w;n,m) = k.

Thus all extreme values of x and w in J;,(n) and G, (n) are obtained in all situations.
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