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Abstract

Motivated by Barcucci et al., (Order 22 (2005), 311-328), we consider a
natural distributive lattice structure on both Motzkin and Schroder paths
of a given length and transfer it to suitable subsets of (coloured) noncross-
ing partitions and (coloured) generalized pattern avoiding permutations.
Among our results there are some new order structures on partitions as
well as the fact that the sets S, (31 — 2,k — (k —1)(k —2)---21) with the
induced strong Bruhat order are distributive lattices, for any k& > 2.

1 Introduction

The starting point of the present paper is the main result of [3] (also summarized in
Section 2), i.e. the fact that the distributive lattice of Dyck paths of length 2n induced
by the natural partial order considered in [11] can be alternatively described using
noncrossing partitions and 312-avoiding permutations of an n-set. In the former
case, a new lattice structure is obtained and then studied (a particular emphasis is
put on the fact that the resulting lattice is distributive, whereas the lattice induced
by the refinement order is not); instead, in the latter case, it comes out that the
partial order on S,(312) coincides with the strong Bruhat order, so that S,(312) is a
distributive sublattice of S,, (which does not possess a lattice structure as a whole).
One of the main tool to get the above described results is a well-known bijection
between Dyck paths and noncrossing partitions, which is reported, for example, in
[15] and whose origins are probably to be traced back to some mathematical folklore.
This bijection, which will be useful also in the present paper, can be described as
follows: given a Dyck path, number its up steps in increasing order from left to right,
then label each of its down steps with the number of the up step it is matched with
and, finally, consider the partition whose blocks are given by the labels of consecutive
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sequences of down steps. Such a partition is easily seen to be noncrossing, and the
above described construction can be immediately inverted, so that it is actually a
bijection. Such a bijection is the essential link which allows us to transfer our order
structure from Dyck paths to noncrossing partitions. On the other hand, in order
to do the same thing from noncrossing partitions to 312-avoiding permutations, we
make use of the following notation: each noncrossing partition m = By|By---|By
is expressed by listing its blocks B; in increasing order of their maxima, whereas
the elements inside each block are listed in decreasing order. It is clear that every
(noncrossing) partition can be uniquely written in this way, which will be called
here the standard notation for (noncrossing) partitions. Now it is not difficult to
observe that removing the vertical bars from a noncrossing partition 7 = By|--- | By,
gives rise to a permutation which turns out to be 312-avoiding. This “bar-removing”
bijection is precisely what we needed to transfer the order structure from noncrossing
partitions to 312-avoiding permutations.

The main goal of the present paper is to find analogous results starting from
the distributive lattices of Motzkin and Schroder paths. More precisely, we aim
at finding suitable modifications of the above described bijections which allow us
to obtain distributive lattice structures on some kind of noncrossing partitions and
pattern avoiding permutations having some combinatorial relevance. In the Motzkin
case, our results are reported in Section 3 and are strikingly similar to those of the
Catalan family. Our basic tool is a bijection described in [10] which codifies Motzkin
paths by means of a special kind of Dyck paths. Moreover, our main result is the
fact that S,(31 —2),k — (k — 1)(k — 2)...21 is a distributive lattice (endowed with
the strong Bruhat order) for every k > 2; to the best of our knowledge, this is a new
result of order-theoretic flavor concerning classes of pattern avoiding permutations.

In the Schroder case, things are not so neat, and we need to introduce coloured
objects to achieve some satisfactory results (which are described in Section 4). The
last section is devoted to the presentation of some open problems (many of which
are also scattered throughout the paper), as well as of some possible directions of
future research.

At the end of this introduction, we give explanations concerning some notations
we will use in the paper.

The word “bar” is used to denote both vertical and horizontal bars, so that its
meaning depends on the context. When we speak of “bar-removing bijection”, we
mean the function which removes the vertical bars in the standard notation of a
partition to obtain a permutation, whereas the terms “barring” and “unbarring”
indicate the operation of putting and removing a horizontal bar over an element of
a permutation. However, the choice between vertical and horizontal should be clear
from the context.

The sequences of Schréoder and Narayana numbers will be denoted by (R, )nen
and (N(n, k)), ren, respectively.

The up, horizontal and down steps in Dyck, Motzkin and Schréder paths will be
denoted u, h, d, respectively. A Dyck path of length 2n is a lattice path consisting of
u and d steps, from (0,0) to (2r,0) which never pass below the z-axis. A Motzkin
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path of length n is a lattice path which uses u, d and h steps, from (0,0) to (n,0),
never passing below the z-axis. A Schroder path of length 2n is a lattice path starting
from (0,0) to (2n,0) consisting of v, d and hh (double horizontal) steps, never going
below the z-axis.

[n] ={1,2,...,n} is the set of the first n positive integers.

A set partition is said to be noncrossing when, given four elements, 1 < a <
b < ¢ < d<n,such that a,c are in the same block and b,d are in the same block,
then the two blocks coincide. The set of all noncrossing partitions of an n-set will be
denoted NC(n). For a given noncrossing partition 7 € NC(n), its maz-vector [3] is
the vector max(m) = (w1, . .., tn) such that u; is the maximum of the first 7 elements
of  (written in standard notation).

The symmetric group on n elements will be denoted by S,, whereas the set of
coloured permutations on n elements will be denoted by S,. If 7 = m ---m, and
0 = 0y--+0p are two permutations of S, and Sy, respectively, then 7 avoids the
pattern o if there are no indexes ¢; < i3 < -+- < 4} such that m;, m;, - -+ m;,_ is in the
same relative order as 0;,0y, - - 0;,. The subset of o-avoiding permutations of S, is
denoted S,(0). A generalized pattern 7 [1] is a pattern with some dashes inserted,
so that two consecutive elements of 7 are adjacent if there is no dash between them
(e.g. 261 —4 —35 is a generalized pattern of length 6). A permutation 7 contains the
generalized pattern 7 if the elements of 7 corresponding to the elements of 7 are in
the same relative order and any pair of elements of 7w corresponding to two adjacent
elements of 7 must be adjacent in 7 as well. A permutation 7w avoids a generalized
pattern 7 if 7 does not contain 7. For instance, the permutation 35241 contains
321 but not 32 — 1. More generally, if T is a set of patterns, S,(T") denotes the set
of permutations of [n] avoiding each pattern of 7. Some references on generalized
pattern avoidance, also useful for this paper, are [5, 7].

2 Dyck paths

Let 7 be a permutation of length 3. In this section we describe the structure of S, (7)
when such a set is a lattice with respect to the strong Bruhat order. This problem
has been solved in [3] for 7 = 312, however it is immediate to extend such a result
to any other permutation of length 3. We start by recalling the poset structures we
need for our purposes.

The set D,, of Dyck paths of length 2n can be endowed with a natural partial
order by declaring P < @ when P lies weakly below @, that is, for any k& < 2n, the
ordinate of P is less than or equal to the ordinate of Q) at k (see fig. below).

- R P
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It is possible to show that such a poset is indeed a distributive lattice, whose rank
function is essentially given by the area, i.e.

where A(P) is the area of the region included between P and the z-axis. We will
refer to this lattice as the Dyck lattice of order n. In NC(n) define a partial order by
setting 7 < p when max(m) < max(p) in the coordinatewise order. It turns out that
such a poset is a distributive lattice, called the Bruhat noncrossing partition lattice
of order n [3].

The main result of [3] is summarized in the following theorem.

Theorem 2.1 For any n € N, the following order structures are isomorphic:
1. the Dyck lattice D,;
2. the Bruhat noncrossing partition lattice NC'(n);

3. S,(312) as a subposet of S,, endowed with the strong Bruhat order.

In particular, S, (312) is a distributive lattice with respect to the strong Bruhat order.

The above results on 312-avoiding permutations give some useful information on
the order structure of S,(7), for any 7 € Ss. To this aim, a crucial step is represented
by the following general lemma, whose proof can be found in [12].

Lemma 2.1 Letr,c,i: S, — S, be the reverse, complement and inverse functions
on permutations. Then, with respect to the strong Bruhat order, i s an isomorphism,
whereas r,c are antiisomorphisms.

As a consequence of this lemma, given S,(7), for some 7 € S, endowed with the
strong Bruhat order, if we consider the reverse of each element, we get S,(p), with
p = r(7), endowed with the dual order. Analogous considerations can be done for
the complement and the inverse functions, whence the following proposition holds.

Proposition 2.1 For every n € N, S,(312) is order-isomorphic to S,(231) and
order-antiisomorphic to S,(132) and S,(213). Therefore all the above posets are
distributive lattices. The posets S,,(123) and S,(321) are not even lattices, since they
do not have minimum and mazimum, respectively.

Clearly, thanks to Lemma 2.1, the posets S,(123) and S,(321) are antiisomor-
phic.

Open problem 1. Describe the poset S,(123).

Open problem 2. Fixed k € N, k > 3, for which 7 € S}, is Sj,(7) a (distributive)
lattice under the strong Bruhat order? In case of a positive answer, is it possible to

give some alternative combinatorial descriptions of such lattices? We point out that
this problem has been solved in [8] for the weak Bruhat order.
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3 Motzkin paths

We start by recalling a bijection introduced by Elizalde and Mansour [10] between
the set M, of Motzkin paths of length n and the set DY) of Dyck p))aths of length 2n
without three consecutive down steps. Every Dyck path P € D can be uniquely
decomposed into factors of the following three types: u, ud, udd. Define a Motzkin
path f(P) by translating the above factors according to the following:

u — u
ud — h
udd — d.

The path f(P) has length n and it is possible to show that the function f is a
bijection. Our next proposition shows that f has some more structural properties.

Proposition 3.1 The function f : DY — M,, is an order-isomorphism.

Proof. Let P,Q € DY such that P =< . This means that @ is obtained from
P by changing a valley into a peak. Call box the two steps on which P and @
differ. However, we notice that, unlike it happens for the whole D,,, performing the
above operation on paths belonging to DY) does not necessarily produce a path of
the same kind: this occurs precisely when a valley is followed by two or more down
steps. When we apply f to P and @, several different things can happen, according
to the type of the steps next to the box. Since the down step of a valley cannot be
preceded by two or more down steps, there are only two possibilities for P and @,
namely the box is preceded either by u or by ud. Analogously, the down step of a
peak cannot be followed by two or more down steps, whence also in this case we have
two different cases, i.e. the box is followed either by u or by du. Therefore we have
a total of four cases, depicted in the figure below:

NN NN NN
N NN NS ,/\./\/

Now apply f to each of the above, to obtain respectively the following four cases on
the corresponding Motzkin paths:

*/\/\/\ S— _/\/\/\
N NN £/ AN
As it is clear, each situation yields two Motzkin paths f(P), f(Q) such that
f(P) = f(Q), as desired.

Conversely, an analogous argument shows that, if P, are arbitrary Motzkin
paths for which P < @, then f~!(P) < f~1(Q), so the proof is complete. M

The bijection between D, and NC(n) recalled in the introduction can be re-
stricted to DS’); the corresponding subset of NC(n) is easily seen to consist of non-
crossing partitions whose blocks have cardinality at most 2. Call such partitions
Motzkin noncrossing partitions. Thanks to the last proposition we can establish the
following result.
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Theorem 3.1 The set MNC(n) of Motzkin noncrossing n-partitions can be en-
dowed with a distributive lattice structure, which is isomorphic to the lattice of
Motzkin paths of length n. More precisely, given w,p € MCN(n), we have that
T X p if p is obtained from w by moving the minimum of some block B of w into the
block B containing the element 3 = max B + 1 if = min B. In this case, either:

1. keep 8 inside B, if |E| =1, or

2. add a new block B = {B}, if |B| =2.

Proof. The first part of the theorem is an easy consequence of Proposition 3.1.
As far as the covering relation is concerned, the above result for Motzkin noncrossing
partitions immediately derives from the analogous one given in [3] for general non-
crossing partitions. The only thing to take into account is that a Motzkin noncrossing
partitions has blocks of cardinality at most 2, and so, if |B| = 2 and § = max B,
the above mentioned rule cannot be applied since the resulting partition would not
belong to MNC(n). W

Ezample. Given the partition 2|31|65|74|8 € M NC(n), there are two partitions
covering it, which are 2|3|4]65|71|8 (1 has been moved into a block with two elements)
and 2|31|65|7|84 (4 has been moved into a block with one element). Note that the
partitions obtained by moving 2 or 5 are not listed above, since the elements 3 and
7 are not the minima of their blocks.

Remark. Another consequence of Proposition 3.1 is that the rank of a partition
of MNC(n) corresponds to the area of the associated Motzkin path, this meaning
that two partitions of MNC(n) have the same rank if and only if the associated
Motzkin paths have the same area. Also in this case, a formula expressing the area
using parameters on partitions (such as cardinality of a block and maximum of a
block) can be found as in [3].

Similarly to [3], it is possible to transfer the distributive lattice structure of
Motzkin noncrossing partitions to a suitable subset of pattern avoiding permutations
via a bar-removing bijection. In [7] it is shown (bijectively) that S,(3 — 21,31 — 2)
is counted by Motzkin numbers. Here we give an essentially equivalent bijection
between M NC(n) (and so Motzkin paths) and S,(3 — 21,31 — 2).

Proposition 3.2 Removing the vertical bars in Motzkin noncrossing partitions de-
fines a bijection between MNC(n) and the set S,,(3 — 21,31 — 2) of pattern avoiding
permutations of [n], for any n € N.

Proof. Let 7 be a permutation of S, (3 — 21,31 — 2). It is straightforward to see
that the associated partition is a noncrossing partition, since m avoids the pattern
31 —2 ([3]). If = contains a block with three or more elements, then the associated
permutation would show the forbidden pattern 3 — 21, against the hypothesis. So 7
is a Motzkin noncrossing partition. On the other hand, if 7 € MNC(n), then the
associated permutation avoids the pattern 31 — 2. Moreover, if 7 contains a pattern
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3 — 21 in the entries 7;, T, Tr41, then necessarily mp_1 < 7, otherwise m would have
a block with three elements. So the entries 7;, 7,1 and 7, are a pattern 3 — 12 which
induces the presence in 7 of the forbidden pattern 31 —2 (see [5]). We conclude that
TES(3—-21,31—2). W

To prove that the above bar-removing bijection between MNC(n) and S,(3 —
21,31 — 2) is also an order-isomorphism, we just notice that such a bijection is
obtained by simply restricting the bar-removing isomorphism between NC(n) and
Sn(312) considered in [3]. Therefore the following theorem holds.

Theorem 3.2 Let (S,(3 — 21,31 — 2); <) be the poset obtained by transferring the
distributive lattice structure defined in Theorem 3.1 along the bar-removing bijection.
This is precisely the subposet induced on S,(3 —21,31—2) by the strong Bruhat order
of the symmetric group S,. Therefore S,(3 — 21,31 — 2) is a distributive sublattice
of S, endowed with the strong Bruhat order.

An immediate consequence of the above theorem is stated in the following, re-
markable corollary.

Corollary 3.1 For any n € N, the Motzkin lattice M,, is isomorphic to the lattice
Sn(3 — 21,31 — 2) with the strong Bruhat order.

We conclude this section by generalizing the bijection of Elizalde and Mansour
between DY and M,. Denote by DY) the set of Dyck paths of length 2n having
at most £ — 1 consecutive down steps and by el the set of paths of length n
starting from the origin, ending on the z-axis, never falling below the x-axis and
using steps of the kind (1,7), for j € {-k+2,—k +1,...,—1,0,1} (this notation
is borrowed from [11]). Each path in DY) can be uniquely factorized using factors
of type ud’, for 0 < j < k — 1. Therefore we can define a bijection analogous to {
by mapping the factor ud’*! into the step (1, —j), thus obtaining a path in lekﬂ’l .
Call f; such a bijection (with this notation, clearly f = f3;). Using an argument
similar to Proposition 3.1, it is possible to show that f is an order-isomorphism, for
any k > 2. Moreover, from a general result proved in [11], each set of paths ol
is a distributive lattice with the usual order. As a consequence, our previous results
on the order structure of paths, partitions and permutations counted by Motzkin

numbers can be extended as follows:

Proposition 3.3 For any k > 2, the following distributive lattice structures are
1somorphic:

1. the set lekﬂ’l] with the usual order on paths;

2. the set KNC(n) of noncrossing partitions of an n-set having blocks of cardinality
at most k—1, endowed with the order inherited by the Bruhat order of NC(n);

3. the set of generalized pattern avoiding permutations Sp(31 — 2,k — (k — 1)(k —
2)---21) endowed with the strong Bruhat order.



266 ANTONIO BERNINI AND LUCA FERRARI

When £ tends to infinity, we get a bijection f, between Dyck paths of length 2n
and paths of length n using the unique positive step (1,1) and any kind of negative
step (1,—j). This latter class of paths will be called here the class of Lukasiewicz
paths. Observe that Lukasiewicz paths are usually defined dually (in [2] they cor-
respond to our paths read from right to left), anyway both enumerative results and
order properties are not affected by this slight change of notation. The above propo-
sition translates into the fact that the distributive lattices of Lukasiewicz paths are
isomorphic to those of Dyck paths, as well as to the Bruhat noncrossing partition
lattices and 312-avoiding permutations with the strong Bruhat order.

From an enumerative point of view, we observe that for £ = 2 we get the sequence
1,1,1,..., for £ = 3 we get the Motzkin numbers and for & = oo we get the Catalan
numbers. Therefore the sequences obtained for a generic k interpolate between the
Motzkin and the Catalan numbers. A strikingly similar result has been found in [4],
where the authors use classes of pattern avoiding permutations different from ours:
it would be interesting to relate the two approaches.

4 Schroder paths

In this section we try to find analogous results starting from the lattices of Schroder
paths.

A first attempt in this direction consists of reading Schroder paths as special
Motzkin paths, namely a Schroder path can be regarded as a Motzkin path in which
any set of consecutive horizontal steps has even cardinality. From this point of
view, we can consider a suitable restriction of the bijection of Proposition 3.1. As
a consequence of this approach, we obtain that Schroder lattices are isomorphic to
the lattices of Motzkin noncrossing partitions where any bunch of singletons made
of consecutive integers has even cardinality. Unfortunately, we have not been able to
determine the set of pattern avoiding permutations associated with the above subset
of Motzkin noncrossing partitions via the bar-removing bijection.

Open problem 3. Find a set of patterns T such that S, (T") corresponds to the
set of Schroder paths of length n via a suitable restriction of the bijection between
Dyck paths and 312-avoiding permutations recalled in the introduction.

A totally different approach consists of interpreting Schréder paths as Dyck paths
with bicoloured peaks. Denote by D,, the set of Dyck paths of length 2n whose peaks
can be coloured either white or black. There is an obvious bijection between D, and
the set S, of Schroder paths of length 2n (just map white peaks into simple peaks,
black peaks into a pair of consecutive horizontal steps, and leave the remaining
steps unchanged; from this bijection, which has been considered in [16], the identity
R, =i, 2°N(n, k) immediately follows). Thanks to this simple observation, it is
not difficult to find a suitable set of coloured noncrossing partitions in bijection with
Schroder paths.
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N AW AN I
/ N =— AN\ N, == 2I3I5l64 1

Figure 1: The bijections connecting S,,, D,, and NC(n) for n =6

Proposition 4.1 Denote by NC(n) the set of noncrossing partitions of an n-set
such that the mazimum of the blocks can be either coloured white or black. Then
there is a bijection between S,, and NC(n).

Proof. Given a Schréder path, consider the associated bicoloured Dyck paths
and take the noncrossing partition determined by the classical bijection, taking care
of colouring each element of the partition with the same colour of the corresponding
down step. W

An example illustrating the bijections connecting S,,, D,, and NC'(n) for n = 6
is given in figure 1.

The elements of NC(n) will be called Schrider noncrossing partitions. From
now on, in a Schroder noncrossing partition we will denote black elements using a
horizontal bar, and we will simply call them coloured elements.

Similarly to Dyck paths, Schroder paths can be endowed with a natural partial
order structure, and the obtained poset is again a distributive lattice [11]. Here we
only recall the covering relation: if U is a Schroder path, then a path V' covering it
(U < V) is obtained either by:

e changing a pair du in U into a pair hh in V, or

e changing a pair hh in U into a pair ud in V. Note that, in this second case,
the replacement is possible only if the hh in U is followed by an even number
of h steps, otherwise the path V' would not be a Schréder path.

The natural order on Schrdder paths of length 2n can be transferred to NC'(n)
by means of the bijection of Proposition 4.1. We have the following theorem:

Theorem 4.1 (Characterization of coverings) Given two coloured noncrossing par-
titions w, p € NC(n), we have 1 < p if and only if p is obtained from m by either

1. unbarring a coloured element of w, or

2. mowving the minimum of some block B of ® into the block B containing the
element f = max B + 1 only when [ is not coloured; moreover:

(a) if 3 = max B, then keep 3 inside B and bar it;
(b) if B # max B, then add the coloured block B = {B}.
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Proof (sketch). We can proceed as we did in Theorem 4.1 of [3] for the covering
relation on NC(n), so we omit a detailed proof. However, it is worth noticing that
the bijection between S, and D, implies that if P,Q € D, are such that P < Q,
then @) is obtained from P by either changing a black peak into a white peak or
replacing a valley with a black peak (observe that this last operation on valleys can
be only performed when the steps are both white). W

Ezample. Given the partition 543|62|871|9 € NC(n), there are precisely four
partitions covering it, which are 543|62|871|9 (5 has been unbarred), 54|632|871|9
(3 has been moved and 6 was the maximum of its block), 543|6|7821|9 (2 has been
moved and 7 was not the maximum of its block) and 543|62|871|9 (9 has been un-
barred). Note that the partition obtained by moving 1 into the block containing 9
(i. e. the maximum of its block plus 1) is not listed above, since 9 is coloured.

The area A(P) of a Schréder path P can be derived from the Dyck path P’
obtained by replacing each double horizontal step with a coloured peak. If C' is
the number of coloured peaks of P', then it is easily seen that A(P) = A(P') — C.
Now, the rank of the associated Schroder noncrossing partition 7 can be expressed
by recalling the formula in [3] for the rank of a noncrossing partition. Denoting by
n' € NC the (noncoloured) noncrossing partition associated with 7, we have

Ay =Y (|Bz‘| (sz' - 22 |B;| — |Bi|>> :

i=1 j=1
whence the rank of 7 is given by:
r(m) = A(r') — () ,

where ¢(7) is the number of coloured elements of .

Following the lines of [3], we now look for a suitable set of coloured pattern
avoiding permutations in bijection with both Schroder paths and Schréder noncross-
ing partitions. The study of the enumerative properties of coloured pattern avoiding
permutations has been pursued by several authors, see for example [13]. The next
result has been independently proved by Egge [9] using algebraic arguments; here
we propose a bijective proof, as well as a presumably new order structure connect-
ing a certain class of permutations with Schréder paths and Schroder noncrossing
partitions.

Theorem 4.2 Removing the vertical bars in Schrioder noncrossing partitions defines
a bijection between NC(n) and the set S,(21,21,312,312), for any n € N.

Proof. Let 7 be a partition of NC(n). We show that 7 avoids the four patterns
312,21,21,312.

If 7’ denotes the associated permutation via the bar-removing bijection, then it
is known [3] that 7’ is a 312-avoiding permutation, since 7 is a noncrossing partition
(just recall the standard representation of partitions given in the introduction).
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Suppose that 7' contains 21. Since in 7 only the maxima of the blocks can be
coloured, it means that 7 contains two maxima in decreasing order, which is not
possible due to our standard notation.

If 7' contains 21 in its elements @ and b, with a > b, then, regarded as elements
of 7, they belong to two different blocks and b is the maximum of its block. Then,
considering b and the maximum of the block containing a, two maxima in decreasing
order would appear in 7, against the hypothesis.

Let us suppose that 7' contains a 312 pattern in the elements @, b and ¢, with
@ > c > b. Then, in 7, b and c lie in two different blocks. Suppose that @ is the
maximum of the block containing b. Let d be the maximum of the block containing c.
Clearly d > a, since maxima are in increasing order. The elements a, b, ¢, d constitute
a crossing being a in the same block of b, d in the same block of cand b < ¢ < a < d.
This is not possible since 7 € NC(n). If @ is not the maximum of the block of b, the
same argument of the previous point can be repeated considering the maximum g
of the block containing b. So 7’ is also a 312-pattern avoiding permutation, whence
7 € 5,(21,21,312,312).

Vice versa, given 7' € S,(21,21,312,312), consider the partition 7 obtained by
inserting a vertical bar before each left-to-right maximum other than the first one.
In this way, the maxima of the blocks of 7 are precisely the left-to-right maxima
of m'. Moreover, the fact that 7' avoids the two patterns 21,21 implies that the
only elements of 7 which can be coloured are the maxima of its blocks. Finally, the
avoidance of the two patterns 312,312 forces the partition 7 to be both in standard
notation and noncrossing. W

Remark. The above set of coloured pattern avoiding permutations clearly co-
incides with ©,,(21,21), where ©, is the set of coloured permutations of length n
avoiding any coloured version of the pattern 312 (and so |©,| = 2"C,,).

Using the above bar-removing bijection we can now transfer the order structure of
Schréder paths to the set S,(21,21,312,312). What we obtain is clearly a distributive
lattice; its covering relation is described in the next proposition, whose proof is
omitted.

Proposition 4.2 Given m,p € S,(21,21,312,312), it is 7 < p if and only if p is
obtained from m by either:

1. unbarring an element of m, or

2. interchanging the element a immediately preceding a left-to-right mazimum of
m with B + 1, where [ is the left-to-right maximum before a, and colouring
B+ 1; this last operation can be performed exclusively when a and B+ 1 are
both unbarred.

Ezample. The reader can reconsider the example presented at the end of Theorem
4.1: just delete the vertical bars and read the covering rules according to the last
proposition.
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Remark. We recall that it is possible to define a notion of Bruhat order on
coloured permutations, as it is reported, for instance, in [6]. Unfortunately, the
restriction of this Bruhat order to S,(21,21,312,312) does not match our posets.

Open problem 4. Concerning the above remark, the Bruhat order on S,
is defined in [6] as the Bruhat order on the set of permutations with ground set
{1,...n,1,...m}, where the elements are linearly ordered as they are listed above
(le, 1 <+ <n<1<---<n) Isit possible to find a suitable linear order
on {1,...n,1,...7} such that the resulting Bruhat order on S, coincides with our

partial order?

Let 7 € S; we denote by inv(r) the set of the inversions of 7 and nb(r) the
number of the unbarred entries of 7. Then the following proposition holds:

Proposition 4.3 The rank of an element 7 € S,(21,21,312,312) is given by
r(m) = 2linv(m)| + nb(w) . (1)

Proof. We proceed by induction.

If r(m) = 0, then 7 = 12...7 and inv(r) = 0, nb(r) = 0, whence formula (1) is
true.

Suppose that r(7) = 2|inv(r)| + nb(r) for = € 5,(21,21,312,312) such that
r(m) = s. Let p be a permutation of S,,(21,21,312,312) such that 7 < p, then r(p) =
s + 1. We have to show that r(p) = 2|inv(p)| + nb(p). There are two possibilities
for p: p is obtained from 7 either by unbarring an element or by interchanging the
elements of a pattern 12 of 7m obeying condition 2 of Proposition 4.2 to obtain a
pattern 21 in p (in this way p has precisely one more inversion than 7). In the first
case inv(p) = inv(m) and nb(p) = nb(r) 4+ 1. Then,

r(p) = r(m) + 1 = 2Jinv(w)| + nb(r) + 1 = 2[inv(p)| + nb(p) .
In the second case |inv(p)| = |inv(7)| + 1 and nb(p) = nb(w) — 1. Then,
r(p) = 2|inv(m)| + nb(r) + 1 = 2(Jinv(p)| — 1) + nb(p) + 1 + 1 = 2|inv(p)| + nb(p) .

In both cases, formula (1) holds. M

5 Hints for further work

In this last section we propose some ideas to get a better insight into the properties
of the above considered order structures.

Given a Dyck path P of length 2n, it is very natural to consider the Dyck
path m(P) obtained by reading P from right to left. So, for example, if P =
wuvuuddudduddd, then m(P) = vuuduuduuddddd. The function m maps D, into
itself, and it is clearly an involution which preserves the area, therefore it is a rank-
preserving involution. More precisely, m is an order-isomorphism of D,,. Therefore,
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if we transfer m to NC(n) and S,(312), we obtain an order-isomorphism (still to be
denoted m) of both the Bruhat noncrossing partition lattice of order n and the set
of 312-avoiding permutations of length n with the strong Bruhat order. The next
proposition allows to determine m(n) for any # € NC(n). The translation of this
result on S,(312) is straightforward.

Proposition 5.1 Let 1 = By|Bs|---|By € NC(n). Then m(w) = Cy|Cy| -+ |Cy €
NC(n) where |C;| = max By_;41 — max By_; and maxC; = Zf;kfiﬂ | Bj|-

Proof. First of all we observe that a noncrossing partition is uniquely determined
by the cardinalities and the maxima of its blocks.

Let P be the Dyck path associated with 7. By definition, the partition m()
is obtained by numbering the down steps of P in decreasing order, then labelling
each of its up steps with the number of the down step it is matched with and taking
as blocks the sets of labels of consecutive sequences of up steps. Now suppose that
m(n) = Cy|Cy| - -+ |Cy, is written in standard notation, as usual. Since the difference
between the maxima of two consecutive blocks B and B’ of 7 represents the number
of consecutive up steps of P between the two sequences of down steps corresponding
to B and B', it is clear that |C;| = max By_;41 — max By,_;. Moreover, the maximum
c of a block of m(7) coincides with the number of down steps of P following the up
step corresponding to ¢, and so max C; = Zf:k—i-ﬁ—l |B;|. W

It is clear that an analogous involution can be defined also for Motzkin and
Schroder paths. As far as Motzkin paths are concerned, there are two possible
approaches. First, given a Motzkin path P € M,, one can read it from right to left,
so obtaining another Motzkin path of M,,. On the other hand, one can restrict m to
the set DY of Dyck paths of length 2n having at most two consecutive down steps.
In this way, the image of m is the set ®)D,, of Dyck paths without three consecutive
up steps. Anyway, both in the Motzkin and Schréder case, it seems not too difficult
to find results on partitions and permutations analogous to the last proposition.

A much more difficult task consists of interpreting the bar-removing bijection in
an alternative way. More precisely, given a noncrossing partition 7 written in stan-
dard notation, we associate with it the permutation obtained by reading each block
of m as a cycle. For instance, the partition 543|62|871|9 is mapped into the permu-
tation (543)(62)(871)(9). It is evident that the permutations obtained in this way
have a special cycle structure [14]; it would be interesting to see if such a structure
can be expressed in terms of (possibly generalized) pattern avoidance. Moreover,
transferring to this set of permutations the order structure of Dyck paths leads to
a new partial order on permutations, whose properties are probably worth being
investigated.

We point out that the above map from noncrossing partitions to permutations
written in cycle form has already been considered in [14], where the author describes
the partial order obtained in S, by transferring the refinement order of NC,,.
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