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Abstract

A local tournament is an oriented graph such that the positive as well
as the negative neighborhood of every vertex induces a tournament. Let
p > 2 be an integer and let 7' be a strongly connected tournament such
that every vertex has at least p positive neighbors and at least p negative
neighbors. Kotani (Australas. J. Combin. 36 (2006), 27-38) showed that
T has at least k vertices zy, s, ..., 2z, where k = min{|V(T")|,4p — 2},
such that 7' — x; (1 = 1,2,...,k) is strongly connected. In this paper
we shall show that this proposition is true for local tournaments, thereby
generalizing Kotani’s result.

1 Terminology and introduction

All digraphs mentioned here are finite without loops and multiple arcs. For a digraph
D, we denote by V(D) and E(D) the vertex set and arc set of D, respectively. The
number |V(D)]| is the order of the digraph D. The subdigraph induced by a subset
A of V(D) is denoted by D[A]. By D — A we denote the digraph D[V(D) — A]. If
A = {z} is a single vertex, then we write D — z instead of D — {z}.

If zy € E(D), then y is a positive neighbor of x and z is a negative neighbor of
y, and we also say that x dominates y, denoted by x — y. If A and B are two
disjoint subdigraphs of a digraph D such that every vertex of A dominates every
vertex of B in D, then we say that A dominates B, denoted by A — B. The outset
(inset) NT(z) (N~ (x)) of a vertex x is the set of positive (negative) neighbors of
x. More generally, for arbitrary subdigraphs A and B of D, the outset N (A, B)
is the set of vertices in B to which there is an arc from a vertex in A, and the
inset N~ (A, B) is defined analogously. The numbers d*(z) = [N*(z)| and d™~(z) =
|N~(z)| are called outdegree and indegree of x, respectively. The minimum outdegree



302 DIRK MEIERLING AND LUTZ VOLKMANN

d1(D) and the minimum indegree §~ (D) of D are given by min{d*(z) | z € V(D)}
and min {d~(z) | € V(D)}, respectively. Analogously, we define the mazimum
outdegree A1 (D) = max{d*(z) | « € V(D)} and the mazimum indegree A~(D) =
max {d~(z) | € V(D)} of D. In addition, let 6(D) = min{6*(D),é~(D)} be the
minimum degree and A(D) = max {A*(D), A" (D)} be the mazimum degree of D.

Throughout this paper, directed cycles and paths are simply called cycles and paths.
A cycle or path of order k is a k-cycle or a k-path, respectively. If C' is a cycle
of a digraph D with order |V(D)|, then C' is called a Hamiltonian cycle. Let P =
T1Ty ... xp be apath or C = 1@, ... xxa; be a cycle of D with order k. Then Plx;, x;]
(or Clw;, x|, respectively), where 1 < 4,j < k, denotes the subpath @;x;y1 ...z, of
P (or C, respectively) with initial vertez x; and terminal verter x;.

We speak of a connected digraph if the underlying graph is connected. A digraph D
is said to be strongly connected or just strong, if for every pair z,y of vertices of D,
there is a path from = to y. A strong component of D is a maximal induced strong
subdigraph of D.

A vertex z is called a nonseparating vertex of a strong digraph D if D — x is strong.

A digraph is semicomplete if for any two different vertices x and y, there is at least
one arc between them. A tournament is a semicomplete digraph without 2-cycles. A
digraph D is locally semicomplete if D[N*(x)] as well as D[N~ (x)] are semicomplete
for every vertex x of D. A local tournament is a digraph without 2-cycles such that
the inset as well as the outset of every vertex induces a tournament.

We speak of an r-regular tournament T if §(T') = A(T') = r. Similarly, an almost-
regular tournament is a tournament such that |A(T) — 6(T)| < 1.

Throughout this paper all subscripts are taken modulo the corresponding number.

Local tournaments were introduced by Bang-Jensen [1] in 1990. In transferring the
general adjacency only to vertices that have a common positive or negative neighbor,
local tournaments form an interesting generalization of tournaments. Since then a lot
of research has been done concerning this class of digraphs, in particular the Ph.D.
theses of Guo [3] and Huang [5] handled this subject in detail. For more information
concerning different generalizations of tournaments, the reader may be refered to the
survey article of Bang-Jensen and Gutin [2].

In 1966, Moon [9] proved the following well-known result.

Theorem 1.1 (Moon [9] 1966). If T is a strong tournament, then every vertex of
T belongs to a cycle of length k for k =3,4,...,|V(T)|.

The next well-known proposition follows directly from Theorem 1.1. It was formu-

lated and proved by Korvin [6] in 1967.

Corollary 1.2 (Korvin [6] 1967). If T is a strong tournament with |V(T)| > 4,
then T contains at least two nonseparating vertices.

In 1975, Las Vergnas [8] determined all strong tournaments with three nonseparating
vertices.
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Theorem 1.3 (Las Vergnas [8] 1975). A strong tournament T' on n vertices has
at least three nonseparating vertices, unless T is isomorphic to Q,, where Q, is the
tournament of order n consisting of a path vivs ...v, and all arcs vyv; for i > 7+ 1.

Bang-Jensen [1] and Guo, Volkmann [4] proved the following related results for locally
semicomplete digraphs.

Theorem 1.4 (Bang-Jensen [1] 1990). Let D be a strong locally semicomplete
digraph that is not a cycle. Then D has a nonseparating vertez.

Theorem 1.5 (Guo and Volkmann [4] 1994). Let D be a strong locally semi-
complete digraph on n > 4 vertices. If D has at least n + 2 arcs, then it contains at
least two nonseparating vertices.

In 2006, Kotani [7] gave the following variants of Corollary 1.2 for tournaments with
minimum degree at least two.

Theorem 1.6 (Kotani [7] 2006). Let T be a strong tournament and let p > 2
be an integer. If §(T) > p, then T has at least k = min {|V(T)|,4p — 2} wvertices
T1,Za, ..., ¢, such that T — x; is strong for i =1,2,...,k.

Theorem 1.7 (Kotani [7] 2006). Let T be a strong tournament and let p > 2 be
an integer. If §(T) > p and |V(T)| > 4p, then T has at least k = 4p — 1 vertices
X1,%a, ..., T, such that T — x; is strong fort=1,2,... k.

Theorem 1.8 (Kotani [7] 2006). Let T be a strong tournament and let p > 3 be
an integer. If 6(T) > p and |V(T)| > 4p + 1, then T has at least k = 4p vertices
T1,Za, ..., ¢, such that T — x; is strong for i =1,2,...,k.

In this paper, we will show that Theorem 1.6 is true for local tournaments and
characterize the class of local tournaments that do not fulfill Theorems 1.7 and 1.8,
thereby generalizing Kotani’s results.

2 Preliminaries

The following known results play an important role in our proofs.

Theorem 2.1 (Bang-Jensen [1] 1990). If D is a strong local tournament with
|V(D)| > 3, then D has a Hamiltonian cycle.

Lemma 2.2 (Bang-Jensen [1] 1990). Let D be a local tournament containing
a cycle C = wyus ... uguy. If there exists a vertex v € V(D) — V(C) such that
Nt(v,C) # 0 (or N~ (v,C) # 0), then either v — C (C — v, respectively) or
u; = v = ujpy for some integer 1 < ¢ < k, i.e., there exists a cycle C' in D such

that V(C") = V(C) U {v}.
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Theorem 2.3 (Bang-Jensen [1] 1990). Let D be a connected local tournament
that is not strong. Then the strong components of D can be ordered in a unique way
Dy, Dy, ..., D, such that there are no arcs from Dj to D; for j > i and D; dominates
Dy fori=1,2,...,p—1.

We call the ordering of the strong components as in Theorem 2.3 the strong decom-
position of D. The subdigraphs D, and D, are the initial and terminal component
of D, respectively.

The next three lemmas will be frequently used in Section 3.

Lemma 2.4. Let D be a strong digraph of order n and let q be an integer such that
1 < g <n-—1. Suppose that for every subset X C V(D) with 1 < |X| < ¢ there
exists a cycle C of order n — 1 in D such that X C V(C). Then D contains at least
q + 1 vertices &1, s, ..., Zqq1 such that D — x; is strong fori=1,2,...,¢+ 1.

Proof. Let X = {& € V(D) | D — « is strong} be the set of nonseparating vertices
of D. Suppose to the contrary that | X| < ¢g. By the assumption of this lemma, there
exists an (n — 1)-cycle C'in D such that X C V(C). Let {v} = V(D) — V(C). On
the one hand this implies that v ¢ X, but on the other hand C is a Hamiltonian
cycle of D — v and thus, D — v is strong. It follows that v € X, a contradiction. [

Lemma 2.5. Let D be a digraph of order n without cycles of length two and let r > 1
be an integer. If 6*(D) > r or 6 (D) > r, then |V(D)| > 2r + 1.

Proof. Suppose, without loss of generality, that §*(D) > r. It follows that
R
wEV(D)
which finally implies that n > 2r + 1. O

Lemma 2.6. Let D be a digraph of order n without cycles of length two and let
r > 1 be an integer. If 6T(D) > r and there exists a vertex v € V(D) such that
dt(z) > r+1 orif 6=(D) > r and there exists a vertex & € V(D) such that
d~(z) > r+1, then |V(D)| > 2r + 2.

Proof. Suppose, without loss of generality, that §+(D) > r and that there exists a
vertex © € V(D) such that dt(z) > r + 1. It follows that

—1
nin 1) Z dt(z)>r+14+n—-1)r=nr+1
wEV(D)

Since n is an integer, it follows that n > 2r + 2. O
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3 Main results

We begin this section by showing that Theorems 1.7 and 1.8 do not hold for local
tournaments in general.

Definition 3.1. Let p > 2 be an integer. Let Ty and Ty be two (p — 1)-regular
tournaments. Let u,v be two vertices such that u,v & V(1;) fori=1,2.

We define T* as the set of all local tournaments D with vertex set V(D) = V(T1) U
V(Ty) U {u,v}. The arc set E(D) is defined as follows.

e D contains all arcs of Ty and Ty,
o u—T —v—Ty = uand

o D contains the arc uwv or the arc vu or there is no arc between u and v in D.

Let p > 3 be an integer. Let Ty be defined as above and let Ty be an almost reqular
tournament on 2p vertices such that p—1 < §(To), A(To) < p. Let u,v be two vertices
such that u,v ¢ V(T;) fori=0,1. We define T** as the set of all local tournaments
D with vertex set V(D) = V(Tp) UV(T1) U {u,v}. The arc set E(D) is defined as
follows.

e D contains all arcs of Ty and Ty,
o u—T —v—Ty—u and
e D contains the arc uv or the arc vu or there ts no arc between uw and v in D.

Remark 3.2. a) Let D € T* be a local tournament. Then |V(D)| = 4p, 6(D) =p
and V(T1) UV (Ty) is the set of nonseparating vertices of D, i.e., D does not fulfill
Theorem 1.7.

b) Let D € T** be a local tournament. Then |V(D)| = 4p + 1, §(D) = p and
V(To) U V(1Y) is the set of nonseparating vertices of D, i.e., D does not fulfill
Theorem 1.8.

In this section we characterize 7* (7**) as the class of local tournaments that are
exceptions for Theorem 1.7 (Theorem 1.8, respectively).

Throughout this section, let p > 2 be an integer and let D be a strong local tourna-
ment such that §(D) > p. Let X be a subset of V(D) such that 0 # X # V(D). Ob-
viously D contains a strong induced subdigraph D’ such that V(D) -V (D) —X # 0
(any vertex z € X satisfies this condition). Assume now that we have chosen a
strong induced subdigraph D’ of D under the following conditions:

A. V(D) - V(D)= X £0,

B. under condition A: [V(D') N X| is maximal and
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C. under condition B: |V(D’)| is maximal.

Note that, since D' is a strong local tournament, according to Theorem 2.1, the
digraph D' has a Hamiltonian cycle C' = vyvy ... v,v; (if k& = 1, then, for the sake of
simplicity, the single vertex v; will in the following be called a Hamiltonian cycle).
Let

Y=V(D)-V(C)-X

and define
Xt={veX-V()|C—v},
X ={veX-V(C)|v—>C},
X=X-V(C)-X*-X",
Yt={veY-V()|C —v},
Y ={veY-V(C)|v—C} and
V=Yy-Yr-vy".
Note that, according to these definitions,
NHXT,C)=N(X",C)=NtTY",C)=N(Y,C)=10 (1)
and D[V(C)] is a tournament if XTUX - UYTUY ™ #£0.
Using this notation, we prove the following claims.
Claim 1. X = {z € X = V(C) | N*(z,C) = N~(,C) = 0}.

Proof. Assume that there exists a vertex z € X such that Nt(z,C) # 0. Then,
according to Lemma 2.2, either © — C or there exists a cycle C' in D such that
V(C") = V(C) U {z}. But the first possibility is a contradiction to the definition of
X and the latter contradicts the choice of D'. It follows that N*(z,C) = 0. We can
analogously show that N~ (z,C) = 0. 0

Claim 2. Lety € Y be an arbitrary vertex.
a) If N*(y,C) # 0, then N*(y,X) = 0.
b) If N~(y,C) # 0, then N~ (y, X) = 0.
Proof. Assume to the contrary that there exists a vertex y € Y that has positive (or
negative) neighbors both in C' and X. Using the local tournament property of D, it

follows that these neighbors are adjacent, a contradiction to Claim 1. O

Analogously to Claim 1, we can prove the following claim.

Claim 3. If |Y] > 2, then N*(Y,C) = N~(Y,C) = 0.

Claim 4. N*(X,X*) = N*(X,Y*) = N~(X,X") = N~ (X,Y") = 0.

?
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Proof. Assume that D has an arc z;z, such that z; € X and s € XT. Then x5 has
negative neighbors both in V(C') and X. Since D is a local tournament, there exists
an arc between C and z,, a contradiction to Claim 1. Tt follows that N* (X, X*) = 0.
We can analogously solve the other three cases. O

Using Claim 3, we can prove the following claim analogously to Claim 4.

Claim 5. If [Y| > 2, then N*(Y,X") = NT(Y,YT) =N (Y, X )=N"(Y,Y")
— @

Claim 6. |Y*|,|Y 7| < 1.

Proof. Assume to the contrary that |[Y+| > 2. Let P = zyz; ... z» be a shortest path
in D such that 29 € Y* and N*(z,,C) # 0. Then |[V(P)NY*| = 1. We may assume,
without loss of generality, that z, — v;. But then C" = C[vy,vx]Pv; is a cycle with
V(C) CV(C") and V(C) # V(C") which contradicts the choice of D'. It follows that
|| < 1. We can analogously show that [Y | < 1. O

Lemma 3.3. Let D be a strong local tournament and let C, X+, X, X, X, Yt Y-,
Y,Y be defined as in the paragraph proceeding Claim 1. Let u,w € V(D) —V(C) be
two vertices of D such that N*(w,C) # 0 and N~ (u,C) # 0 and let P be a path in
V(D) — V(C) with initial vertex u and final vertex w. Then Y C V(P) and

(i.) if w — C — u, then V(C) C X,
(ii.) if N~(w,C) # 0, then Y = {w},
(iii.) if N*(u,C) # 0, then Y = {u}.

Proof. By Lemma 2.2, it follows that either w — C or N~ (w, C) # () and that either
C = uor N*(u,C) £ 0.

Case 1: Suppose that w — C — w. If Y — V(P) # 0, then the cycle ¢' =
v PClvy,vg] yields a contradiction to the choice of D', where D' is defined as in the
paragraph preceeding Claim 1, since V(C) C V(C') and V(C) # V(C"). Therefore
Y C V(P). Now assume to the contrary that V(C) — X # 0, say v, ¢ X. Then
C" = vp_1 PC[vy,v4-1] is a cycle with [V(C")| > |V(C)] and V(C)NX CV(C')NX
which contradicts the choice of D'. It follows that V(C) C X.

Case 2: Suppose that N~ (w, C') # 0. Then, according to (1), w ¢ X TUYTUX~UY ™.
Furthermore, in view of Claim 1, w ¢ X which implies that w € Y. Using Claim 3,
we conclude that Y =Y = {w} and, in particular, ¥ C V(P). We can analogously
solve the case N*(u,C) # 0. O

We get the following two claims as immediate corollaries of Lemma 3.3.
Claim 7. N*(X* X7)=0.

Claim 8. If Y| =|Y | =1, then N*(XT,Y")=N*Y*,X")=0.
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Until the end of Lemma 3.6, we assume now that X — V(C) # 0.

I:emma 3.4. Let D be a strong local tournament and let C, X+, X, X, X, Yt Y-,
Y.,Y be defined as above. Let X — V(C) #£ 0. If|Y| > 2, then XTUYT £ 0 and
X-UY~£0.

Proof. Assume to the contrary that X~ UY ™~ = (). Note that, according to Claim 6,
[Y*[,[Y~] < 1. Since |Y] > 2 and Y~ = 0, we conclude that ¥ # (. In view of
Claim 1, N*(X,C) = 0 which implies N*(Y,C) # 0 , since D is strong. This is a
contradiction to Claim 3. We can analogously show that Xt U Y™ # (). O

Lemma 3.5. Let D be a strong local tournament and let C, Xt X" X, X, Yt Y-,
Y.,Y be defined as above. Let (D) > p > 2 and let X — V(C) # 0. If |X| =
|[V(D)| — 1, then |X| > 4p — 2.

Proof. Note that V(C) C X. Let {y} =V(D)-X =Y.

Case 1. Suppose that Xt #£ ) and X~ # (0. Note that Nt( X+, X7) = NT(X*t,C) =
N (X,X") =N (X",C) = 0. Using Lemma 2.5, it follows that |X*| > 2p —1
and |X~| > 2p — 1 and thus,

X[ > V() + X+ X7 > 4p - 1.

Case 2. Suppose that X* = (). Since [Y| = [V(D) — V(C) - X| = 1, we consider
the three subcases [Y| = 1, [Y*| = 1 and |Y | = 1. We shall show first that
V() =2p—1.

IfY =V = {y}, then N*(C) — V(C) C {y} according to Claim 1 and (1). Using
Lemma 2.5, we conclude that [V(C)| > 2p — 1.

If Y = Y* = {y}, then note that N*(X,C) = § according to Claim 1. Since D
is strong, it follows that X~ # (. In view of Claim 1, N*(C,X) = 0 and thus,
NT(C) - V(C) C {y}. Using Lemma 2.5, it follows that |V(C)| > 2p — 1. In the
case that Y =Y~ = {y} we can show analogously that |V (C)| > 2p — 1.

Note that N™(X~,C) = (0 by definition and N=(X,C) = 0 by Claim 1. Using
Lemma 2.5, it follows that | X~ U X| > 2p — 1 and thus,

[X| > [V(O)| +XTUX|>dp -2

The case X~ = () can be solved analogously which completes the proof of this
lemma. a

I:emma 3.6. Let D be a strong local tournament and let C, X+, X, X, X, YT Y-,
Y,Y be defined as above. Let X — V(C) # 0 and let | X| < |V(D)] — 2.

a) If (D) >p > 2, then | X| >4p—1 or |X|=4p—2 and D € T*.

b) If (D) > p >3, then | X| >4p or |X|=4p—1and D € T* or |X| =4p—2
and D € T*.
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Proof. Recall that |Y| > 1. If |Y| = 1, we conclude |V(C) — X| > 1, since |X| <
|[V(D)|—-2. If |Y| > 2, we derive by Lemma 3.4 that XTUY ™" £ ) and X~ UY ™ # 0.
Since D is strong, there exists an (X* UY™*)-(X~ UY~)-path in D that omits C'.
Together with Lemma 3.3, this implies that V(C') C X. We will now consider the
cases |Y|=1and |V(C)—X| > 1 (Case 1), [Y|>2, V(C) C X and Y = 0 (Case 2)
and |[Y|>2, V(C) C X and Y # () (Case 3).

Case 1. Suppose that |Y| =1 and |V(C) — X| > 1.

Case 1.1. Suppose that XTUY ™' #£ ) and X~ UY ™ # (. There exists an (XTUY)-
(X~ UY )-path in D that omits C'. Using Lemma 3.3.(1), it follows that V(C) C X
which contradicts |V(C) — X| > 1.

Case 1.2. Suppose, without loss of generality, that X* UY™* = (). Using (1) and
the assumption that D is strong, it follows that N*(C,Y) # 0 which immediately
implies that ¥ = {y} and Y~ = (. Additionally it follows by (1) that N~ (X) —
X = 0 and thus, since D is strong, X = 0. Note that D[X~] is a tournament
and let Dy, Dy, ..., D, be the strong decomposition of D[X~], where ¢ > 1. Since
N~=(D;) — V(D;) C {y}, it follows by Lemma 2.5 that [V(D;)| > 2p — 1 and by
Lemma 2.6 that |V(Dy)| > 2p if y /4 D;.

Case 1.2.1. Suppose that |V(D;)| > 2p. Let C' be a Hamiltonian cycle of D;. Then
V(D) —V(C") — X # 0 and by choice of C it follows that

|X| > [V(C)nX|+ |V(C"| > 2[V(C")| > 4p.

Case 1.2.2. Suppose that |V(D;)| = 2p — 1. In this case y — D;. Then V(D) —
V(C') — X # 0 for an arbitrary Hamiltonian cycle C' of D; and thus, we have

[ViC)nX|>|V(CYnX|>2p-1

by choice of C'. Note that y and each vertex of X~ are adjacent.
If ¢ > 3 or |V(Ds)| > 3, we conclude that | X~| > 2p+ 1 and thus,

X] > [V(C) N X] + X7| > 4p.

If g =2, V(D;) = {z} and z — y, let P be a Hamiltonian path of D; with initial
vertex w. In this case C* = Pzyw is a cycle in D such that V(D) — V(C*) —= X # 0.
By choice of C' it follows that

| X| > V(C)NX|+|X"| > |V(C)NX|+|X™| > 4p.

If ¢g =2, V(Dy) ={z} and y — 2z or if ¢ = 1, it follows that y — X~ and that
IN~(y,C)| > p. Let P be a Hamiltonian path of D[X~]. We consider two cases
depending on the value of p.

Case 1.2.2.1. Suppose that p = 2. Let v; and v; be two distinct negative neighbors
of y on C. Note that [V(C)NX| > |V(Dy)| > 2p—1 = 3. Therefore we may assume,
without loss of generality, that V(Clvjs1,v;]) N X # 0 and V(Clvig1,v5]) — X # 0.
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It follows that C" = yPClv;41,v;]y is a cycle in D such that V(D) —V(C') — X # 0.
Consequently,
V(@) nX[ = V(C)NX]| 2 |X7|+122p,

and thus,
X > [V(O) N X[+ X | > dp— 1.

Case 1.2.2.2. Suppose that p > 3. Let v;, v; and vy be three distinct negative
neighbors of y on C such that i < j < k. Note that [V(C)NX| > |[V(D,)| > 2p—1>
5. Therefore we may assume, without loss of generality, that |V (Clvjt1,v]) N X| > 2
and V(Clvit1, vj]) — X # 0. It follows that C' = yPClvj41,v]y is a cycle in D such
that V(D) — V(C") — X # 0. Consequently,

VC)nX|>|V(ICYNX|>|X |+2>2p+1,

and thus,
1] 2 [V(C) N X] + X7 = 4p.

Case 2. Suppose that ¥ = 0. Note that, according to Claim 6, [Y+],]Y~| <1 and
thus, Y7 =|Y~|=1. Let Y = {y;} and Y~ = {y»}. We define

A = { v | there exists a path from X7 to v that omits y, }

and

B = { v | there exists a path from v to X~ that omits y»} .
Now we consider two cases.
Case 2.1. Suppose that X # () and X~ # (.
Note that, in view of Lemma 3.3, Xt C AC X - V(C), X~ C BC X - V(C)
and AN B = (. Furthermore, N*(A) — A C {y1} and N=(B) — B C {y»}. Using
Lemma 2.5, it follows that |A|,|B| > 2p — 1.

We will show now that [V (C)| > 3. Assume to the contrary that |V (C)| = 1. Since
d(D) > p > 2, each vertex of A has at least one positive neighbor in A. It follows
that D[A] contains a cycle, a contradiction to the choice of D'. This implies that
V(O)l = 3.

All in all we have shown that

1X] > [A] + |B] + [V(C)] > 4p+ L.

Case 2.2. Suppose that XT =0 and X~ # 0. In view of Claim 1 and (1), N*(C) —
V(C) C {y1}. Using Lemma 2.5, it follows that |[V(C)| > 2p — 1.

We will show now that X # (0. Assume to the contrary that X = (). Since § > p>2,
we conclude that Nt (y;, X7) # 0, a contradiction to Claim 8. It follows that X # 0.

Note that, according to Claims 1 and 4, N=(X) - X C {y;}. This implies that
|X| > 2p —1in view of Lemma 2.5.
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Case 2.2.1. Suppose that there exists a vertex z € X such that y,z ¢ E(D), ie.,
N~(z) C X. Using Lemma 2.6, we conclude that |X| > 2p. It follows that

IX| > |X|+ [V(C)| + X | > 4p.

Case 2.2.2. Suppose that y; — X.

If N*(X,X") # 0, say @2, € E(D), where z; € X and 2, € X~, then the cycle
C' = Cluy, vgJyrw1z2v1 yields a contradiction to the choice of D'

If N*(X,X~) =0, then note that N*(Y*, X~) = () in view of Claim 8. We conclude
that N~(X~) — X~ C {y.} and thus, using Lemma 2.5, |[X~| > 2p — 1. It follows
that R

[ X| 2 [X[+[V(O) + |X7| 2 6p = 3 = 4p.

The case that X # () and X~ = () can be solved analogously to Case 2.2.

Case 2.3. Suppose that X* = X~ = ). Note that, according to Claim 1, N~ (X, C)
= Nt(X,0) = 0. It follows that N*(C)=V(C) C {3} and that N~ (X)—X C {1},
in view of Claim 4. Using Lemma 2.5, we conclude that |V(C)| > 2p — 1 and
|X| > 2p —1 and thus, |X| = [V(C)| + |X| > 4p — 2.

We will show now that if | X| < 4p — 1, then either | X|=4p—2,p>2and D e T*
or | X|=4p—1,p>3and D € T*. Note that, since C — y;, the set V(C) induces
a strong tournament in D.

Assume to the contrary that X does not induce a tournament in D. Since D is a
local tournament, it follows that y; 4 X and X 4 y,. Using Lemma 2.6, it follows
that |X| > 2p. Together with the assumption that |X| < 4p — 1, this implies that
|X|=2p, |V(C)| =2p—1and |[X| = 4p—1. Now let z; and z, be two non-adjacent
vertices in X. Since D is a local tournament, it follows that N*(z;) N N*(z2) = 0.
But N*(21) UNT(22) C {y2} U(X — {1, 22}) and [{2} U (X — {@1,22})| = 2p -1,

a contradiction to the assumption that 6(D) > p > 2. It follows that D[X] is a
tournament.

Assume to the contrary that the tournament 7' = D[X] is not strong. We consider the
strong decomposition 11, T, ..., T, of T, where ¢ > 2. Note that N*(T}) — V(1) C
{y2} and thus, in view of Lemma 2.5, |V (T,)| > 2p — 1. Analogously we show that
|[V(T1)| > 2p — 1. It follows that

X1 = V(O + V(T + [V(Ty)] = 6p = 3 > 4p,

a contradiction. It follows that X induces a strongly connected tournament.

Assume to the contrary that [V(C)| < |X|. Since D[X] is a strong tournament, it is
Hamiltonian, a contradiction to the definition of D’.

It follows that |X| = 2p — 1 and 2p — 1 < |V(C)| < 2p. Using Lemmas 2.5 and 2.6
and the assumption that 6(D) > p > 2, it follows that X induces a (p — 1)-regular
tournament in D. Furthermore, if |V(C)| = 2p—1, then D[V (C)] is a (p — 1)-regular
tournament and if |V(C)| = 2p, then D[V(C)] is an almost regular tournament with
p—1<6A<p.
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With D[X] = Ty, D[V(C)] = T} (D[V(C)] = Tp, if |V(C)| = 2p), u = y; and v = y,,
it is easy to see that D € T* (D € T**, respectively) as defined in Definition 3.1.
Case 3. Suppose that ¥ #£ 0. Let P = zyz, ...z be a shortest path leading from
XtUYTto X UY . Then 2 € XTUY™*, 2z, € X UY and z € X UY for all
l=1,2,...,7 — 1. In addition Y C V(P) in view of Lemma 3.3. Since Y #40, it
follows that 7 > 2. Let i be the smallest integer such that z; € Y and let j be the
greatest integer such that z; € Y.

First we consider the positive and negative neighborhood of z; and z,_;. According
to Claims 1, 3, 4 and 5, N*(2,) C XUYUX UY ™ and N~ (z,) C XUYUXtTUY™.
Furthermore since P is a shortest path, the only positive neighbor of z; on P is
23 Analogously we can show that N*t(z,_1) C XUYUX UY and N™ (z.-1) C
XUYUXTUY™ and that the only negative neighbor of z,_; on P is z,_s.

Next we consider the positive and negative neighborhood of z;, where 2 < s < r — 2.
If z, has a positive neighbor in X~ U Y™ or a negative neighbor in X* U Y, then
P is not a shortest path, a contradiction. It follows that N*(z,) C X UY and
N~ (z) C X UY. We show now that z,.; is the only positive neighbor of z, on P.
Assume to the contrary that z; # 2,41 is a positive neighbor of z; on P. Since P
is a shortest path, it follows that ¢ < s — 1. Using the local tournament property
of D, we conclude now that either z; — zp or that there exists a vertex z, that
dominates z;, where ¢ < s — 2. The first possibility is a contradiction to Claim 4
or Claim 5, respectively, and the second possibility contradicts the minimal choice
of P. It follows that N*(z;) N V(P) = {z5:1}. We can analogously show that

N=(2) NV(P) = {z_1}.

Next we define
A = { v | there exists a path from z; ; to v that omits z;}

and

B = { v | there exists a path from v to z;41 that omits z;}.
By definition of A and B, we have Nt(A)— A C {z;} and N~ (B)— B C {z;}. Using
Lemma 3.3 and the observations above, it follows that A C {20, 21,...,2i-1}UX T U
Y+ U (X — V(P)) and that B C {2j.1,2j42,-- -, 2 UX"UY~ U (X - V(P)). In
addition, Lemma 3.3 yields AN B = (). Using Lemma 2.5, it follows that |A|, |B] >
2p — 1 and thus |[ANX|,|BNX| > 2p — 2.

Case 3.1. Suppose that |[V(C)| > 4. In this case
I X| > ANnX|+ |BNX|+|V(C)| > 4p
and we are done.

Case 3.2. Suppose that |V(C)| = 3 and that |A| > 2p or |B| > 2p. Again it follows
that
X2 [ANX|+[BNX|+|V(C)| = 4p.

Case 3.3. Suppose that |[V(C)| =3 and |A| = |B| = 2p — 1. It follows that
IX| > |ANX|+ [BNX|+|V(C)| > 4p - 1.
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It remains to consider the case p > 3.

We show that A — z;. Assume to the contrary that A /4 z;. Then §(D[A]) >p—1
and there exists a vertex a € A with d*(a, D[A]) > p. Using Lemma 2.6, it follows
that |A| > 2p, a contradiction to our assumption. It follows that A — z; and thus,
since D is a local tournament, A induces a tournament in D.

Let Dy, Dy, ..., D, be the strong decomposition of D[A], where ¢ > 1. Since D, is
strong and 67(D,) > p — 1, it has a Hamiltonian cycle of length 2p — 1 > 5. This
cycle is a contradiction to the choice of D'.

Case 3.4. Suppose that |V(C)| = 1. Similarly to Case 3.3, let Dy, Dy, ..., D, be the
strong decomposition of the local tournament D[A], where g > 1. Since D, is strong
and 67(D,) > p—1 > 1, it has a Hamiltonian cycle of length 2p — 1 > 3. This cycle
is a contradiction to the choice of D'.

This completes the proof of this lemma. O

Lemma 3.7. Let D be a strong local tournament and let C, Xt,X‘, XA, X, Yt Y-,
Y, Y be defined as above. If X C V(C'), then V(D) —=V(C) =Y and |Y| = 1.

Proof. Using Claim 6, we conclude that [Y*],|Y 7| < 1.

Case 1. Assume that |Y™| = |[Y~| = 1. Since D is strongly connected, there exists
an Y*t-Y -path in D. Let P = yoy; ...y, be a shortest such path. According to
Lemma 3.3, V(P) = Y. Since P is minimal, it follows that N*(yo) = {y1} which
contradicts 6+(D) > 2.

Case 2. Assume that |[Y*| = 1 and Y~ = 0. Since D is strong and C' — Y, we
conclude that Y # 0. Using Claim 3, it follows that N*(Y,C) = N~ (Y,C) = 0. It
follows N~=(C) C V(C), a contradiction to the assumption that D is strong.

The case that Y| =1 and Yt = can be solved analogously to Case 2.
Case 3. Assume that Y* = Y~ = (. Then Y # 0. Since D is strong, N*(V,C),

N~=(Y,C) # 0. Using Claim 3, it follows that |Y| < 1 which completes the proof of
this lemma. O

Theorem 3.8. Let p > 2 be an integer and let D be a strongly connected local
tournament with 6(D) > p. If X C V(D) with |X| < 4p — 3 and X # V(D), then
there exists a cycle C in D such that X CV(C) and |V (C)| = |V(D)| — 1.

Proof. Let X be a subset of V(D) such that |X| < 4p — 3 and X # V(D). Let C,
XT, X7, X, X, YVt V™, Y and Y be defined as above.

Assume that X — V(C) # 0. If | X| = |[V(D)| — 1, then we get a contradiction by
Lemma 3.5. If | X| < |V(D)| — 2, then we get a contradiction by Lemma 3.6.(a).

Hence, we obtain X C V(C) and |V(C)| = |V(D)| — 1 by Lemma 3.7. O

Theorem 3.9. Let p > 2 be an integer and let D be a strongly connected local
tournament with |V (D)| > 4p and §(D) > p. If X C V(D) with |X| < 4p — 2, then
either
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(i) there exists a cycle C' in D such that X CV(C) and |V(C)| = |V(D)| -1 or
(ii) D€ T*.

Proof. Let X be a subset of V(D) such that |X| < 4p — 2 and let C, X*, X, X,
X, Yt Y™, Y and Y be defined as above. In addition, let D ¢ T*.

Assume that X —V(C) # 0. Since D ¢ T*, Lemma 3.6.(a) implies that | X| > 4p—1,
a contradiction to our assumption. Hence, by Lemma 3.7, it follows that X C V(C)
and |V(C)| = |V(D)| - 1. |

Theorem 3.10. Let p > 3 be an integer. Let D be a strongly connected local tour-
nament with |V (D)| > 4p+ 1 and 6(D) > p. If X C V(D) with |X| < 4p — 1, then
either

(i) there ewxists a cycle C' in D such that X C V(C) and |V(C)| = |V(D)| -1 or
(i) D € T*.

Proof. Let X be a subset of V(D) such that [X| < 4p — 1 and let C, Xt X, X,
X, YT, Y, Y and Y be defined as above. In addition, let D ¢ T**.

Assume that X —V(C) # 0. Note that D ¢ T*, since [V(D)| > 4p+ 1. Additionally
D ¢ T* and thus, Lemma 3.6.(b) implies that |X| > 4p, a contradiction to our
assumption. Hence, by Lemma 3.7, it follows that X C V(C) and |V(C)| = |V(D)|—
1. O

Combining Lemma 2.4 and the theorems above we derive the following results.

Theorem 3.11. Let D be a strong local tournament and let p > 2 be an integer. If
d(D) > p, then D has at least k = min{|V(D)|,4p — 2} vertices &1, s, ..., x) such
that D — x; is strong for i =1,2,... k.

Theorem 3.12. Let D be a strong local tournament such that D ¢ T* and let p > 2
be an integer. If 5(D) > p and |V(D)| > 4p, then D has at least k = 4p — 1 vertices
X1,%3, ..., such that D — x; is strong fori=1,2,... k.

Theorem 3.13. Let D be a strong local tournament such that D ¢ T** and letp > 3
be an integer. If (D) > p and |V(D)| > 4p+ 1, then D has at least k = 4p vertices
X1,%3, ..., such that D — x; is strong fori=1,2,... k.

Since the classes 7* and 7** of local tournaments do not contain any tournaments,
Theorems 1.6-1.8 by Kotani [7] are direct consequences of Theorems 3.11-3.13.
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