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Abstract

A graph G is called edge-magic if there exists a bijection f : V (G) ∪
E(G) → {1, 2, 3, . . . , |V (G) ∪ E(G)|} such that f(x) + f(xy) + f(y) is a
constant for every edge xy ∈ E(G). A graph G is said to be super edge-
magic if f(V (G)) = {1, 2, 3, . . . , |V (G)|}. Furthermore, the edge-magic
deficiency of a graph G, µ(G), is defined as the minimum nonnegative
integer n such that G∪nK1 is edge-magic. Similarly, the super edge-magic
deficiency of a graph G, µs(G), is either the minimum nonnegative integer
n such that G ∪ nK1 is super edge-magic or +∞ if there exists no such
integer n.
In this paper, we present the super edge-magic deficiencies of some classes
of graphs.

1 Introduction

We consider finite and simple graphs; we denote the vertex and edge sets of a graph
G by V (G) and E(G), respectively, and p = |V (G)| and q = |E(G)|. For most graph
theory notions, we refer the reader to Chartrand and Lesniak [3].

An edge-magic total labeling of G is a bijective function f from V (G) ∪ E(G) to
{1, 2, 3, . . . , p + q} such that f(x) + f(xy) + f(y) is a constant k, which is called the



4 A.A.G. NGURAH, E.T. BASKORO AND R. SIMANJUNTAK

magic constant of f for any edge xy of G. An edge-magic total labeling f is called
super edge-magic total if f(V (G)) = {1, 2, 3, . . . , p}. A graph G is called edge-magic
(super edge-magic) if there exists an edge-magic (super edge-magic, respectively)
total labeling of G. The concept of edge-magic total labeling was first introduced
and studied by Kotzig and Rosa [12, 13], using a different name “magic valuations”.
Meanwhile, the super edge-magic total labeling was introduced by Enomoto, Lladó,
Nakamigawa and Ringel [4]. Recently several papers of (super) edge-magic total
labeling have been published by several authors; for instance see [8, 9, 10, 11, 15].

In [12], Kotzig and Rosa proved that for every graph G there exists an edge-magic
graph H such that H ∼= G∪nK1 for some nonnegative integer n. This fact motivates
the emergence of the concept of the edge-magic deficiency of a graph. The edge-
magic deficiency of a graph G, µ(G), is the minimum nonnegative integer n such
that G ∪ nK1 has an edge-magic total labeling. Kotzig and Rosa [12] give an upper
bound of the edge-magic deficiency for a graph G with n vertices, that is, µ(G) ≤
Fn+2 − 2 − n − 1

2
n(n − 1), where Fn is the n-th Fibonacci number.

Motivated by Kotzig and Rosa’s concept of edge-magic deficiency, Figueroa-Centeno
et al. [6] defined a similar concept for the super edge-magic total labeling. The super
edge-magic deficiency of a graph G, µs(G), is the minimum nonnegative integer n

such that G ∪ nK1 has a super edge-magic total labeling or +∞ if there exists no
such n. Unlike the edge-magic deficiency, not all graphs have finite super edge-magic
deficiency. Examples of such graphs can be found in [6]. As a consequence of the
above two definitions, we have that for every graph G, µ(G) ≤ µs(G).

Figueroa-Centeno et al. in two separate papers [6, 7] provided the exact values of
(super) edge-magic deficiencies of several classes of graphs, such as cycles, complete
graphs, some classes of forests, 2-regular graphs, and complete bipartite graphs K2,m.
They also provided some upper bounds of the super edge-magic deficiency of complete
bipartite graphs Km,n.

In this paper, we present the exact value of the super edge-magic deficiency of a
particular type of chain graphs, and of fans Fn, double fans Fn,2, and wheels Wn,
for small values of n. We also describe some upper and lower bounds of the super
edge-magic deficiency for general chain graphs, fans, double fans, wheels, bipartite
and tripartite graphs.

The following three lemmas will be used frequently. The first lemma characterizes
super edge-magic graphs. The second lemma gives a sufficient condition for nonex-
istence of a super edge-magic total labeling of a graph. The last lemma gives a
sufficient condition for graphs with infinite super edge-magic deficiencies.

Lemma 1 [5] A graph G with p vertices and q edges is super edge-magic if and
only if there exists a bijective function f : V (G) → {1, 2, . . . , p} such that the set
S = {f(x) + f(y) : xy ∈ E(G)} consists of q consecutive integers. In such a case, f

extends to a super edge-magic total labeling of G with the magic constant k = p+q+s,
where s = min(S).
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Lemma 2 [4] If a graph G with p vertices and q edges is super edge-magic, then
q ≤ 2p − 3.

Lemma 3 [6] If G is a graph of size q such that the degrees of all vertices are even
and q ≡ 2 (mod 4), then µs(G) = +∞.

In addition to these three lemmas, the notion of dual labeling will also appear fre-
quently in the next sections. A dual labeling of a super edge-magic total labeling f

is defined as

f ′(x) = p + 1 − f(x), for all x ∈ V (G),

and

f ′(xy) = 2p + q + 1 − f(xy), for all xy ∈ E(G).

It has been proved in [2] that the dual of a super edge-magic total labeling is also a
super edge-magic total labeling.

2 Super edge-magic deficiencies of chain graphs

By a block of a graph we mean a maximal subgraph with no cut-vertex. Following
[3], we define a block-cut-vertex graph of a graph G as a graph H where vertices of
H are blocks and cut-vertices in G and two vertices are adjacent in H if and only if
one vertex is a block in G and the other is a cut-vertex in G belonging to the block.

Barrientos [1] defines a chain graph as a graph with blocks B1, B2, B3, . . . , Bk such
that for every i, Bi and Bi+1 have a common vertex in such a way that the block-cut-
vertex graph is a path. We denote by kKn-path a chain graph with k blocks where
each block is identical and isomorphic to the complete graph Kn.

In this section, we consider super edge-magic deficiencies of kKn-paths for n = 2, 3,
and 4. If n = 2 then kK2-path ∼= Pk+1. It is well known that Pn is super edge-magic.
Consequently, µs(kK2-path) = 0.

If n = 3 then kK3-path is a triangular snake which is considered in [14], where Lee
and Wang showed that kK3-path is super edge-magic if and only if k ≡ 0, 1 (mod
4). Hence, µs(kK3-path) = 0 for k ≡ 0, 1 (mod 4). Additionally, as a consequence of
Lemma 3, we have µs(kK3-path) = +∞ for k ≡ 2 (mod 4). The next theorem gives
an upper bound for µs (kK3-path), k ≡ 3 (mod 4).

Theorem 1 If G is a kK3-path where k ≡ 3 (mod 4) then µs(G) ≤ k − 1.

Proof As explained before, µs(G) ≥ 1.

Next, define H ∼= G ∪ (k − 1)K1 as a graph with

V (H) = {ui : 1 ≤ i ≤ k + 1} ∪ {vi : 1 ≤ i ≤ k} ∪ {wi : 1 ≤ i ≤ k − 1}
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and
E(H) = {uiui+1 : 1 ≤ i ≤ k} ∪ {uivi, ui+1vi : 1 ≤ i ≤ k},

where k ≡ 3 (mod 4).

To show µs(G) ≤ k − 1, we define a vertex labeling f as follows.

f(x) =















1

2
(1 + i), if x = ui for ood i,

1

2
(k + i + 1), if x = ui for even i,

2k + 2 − i, if x = vi for ood i,

3k + 2 − i, if x = vi for even i,

where the remaining labels are placed in the isolated vertices wi, 1 ≤ i ≤ k − 1. It
can be checked that f extends to a super edge-magic total labeling of G∪ (k − 1)K1

with the magic constant 1

2
(13k + 5). Hence, µs(G) ≤ k − 1. �

Open problem 1 Find a better upper bound of the super edge-magic deficiencies of
kK3-paths.

The last chain graphs to be considered in this paper are kK4-paths. First, we define
the kK4-path as a graph having

V (kK4-path) = {ui : 1 ≤ i ≤ k + 1} ∪ {vi, wi : 1 ≤ i ≤ k},

and
E(kK4-path) = {uiui+1, uivi, uiwi, viwi, viui+1, wiui+1 : 1 ≤ i ≤ k}.

Observe that a kK4-path has 3k + 1 vertices and 6k edges. By Lemma 2, it is not
a super edge-magic graph. Consequently, µs(kK4-path) ≥ 1. In fact, the super
edge-magic deficiency of kK4-paths is 1 as we state in the following theorem.

Theorem 2 For every integer k, the super edge-magic deficiency of a kK4-path is 1.

Proof Applying Lemma 1, the following vertex labeling of kK4-path ∪K1 extends
to a super edge-magic total labeling with the magic constant 9k + 6.

f(x) =















3i − 2, if x = ui for i ≤ i ≤ k + 1,
3i, if x = vi for i ≤ i ≤ k,

3i + 2, if x = wi for i ≤ i ≤ k,

2, if x = K1.

Therefore, µs(kK4-path) = 1. �

Open problem 2 Find the super edge-magic deficiencies of kKn-paths, n ≥ 5.

In the next section, we consider three types of graphs which are often considered to
be closely connected to each other. They are fans, double fans, and wheels.
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3 Super edge-magic deficiencies of fans, double fans and

wheels

The fan Fn
∼= Pn + K1 is a graph resulting from connecting each vertex in a path to

a single vertex; this gives q = 2p − 3. In [5], Figueroa-Centeno et al. proved that Fn

is super edge-magic if and only if 1 ≤ n ≤ 6. Thus the super edge-magic deficiency
of Fn is 0 for 1 ≤ n ≤ 6 and at least 1 for n ≥ 7.

For the case n = 7, 8, 9, 10 and 11, label K1 with 4 and the vertices of the path Pn

with 7−5−9−6−2−1−3, 5−8−7−10−6−2−1−3, 5−11−8−10−7−6−2−1−3,
10−8−11−9−12−5−6−2−1−3, and 8−11−9−12−10−13−5−6−2−1−3,
respectively. Each of these labelings extends to a super edge-magic total labeling of
Fn ∪ K1. Hence, for 7 ≤ n ≤ 11, µs(Fn) = 1.

For the rest of the cases, we could only find upper bounds for the super edge-magic
deficiency of Fn. For 12 ≤ n ≤ 16, we have that µs(Fn) ≤ 2, as can be shown through
the following labelings:

• For n = 12, label K1 and P12 with 13 and 15 − 11 − 14 − 9 − 4 − 8 − 3 − 7 −
2 − 6 − 1 − 5, respectively.

• For n = 13, label K1 and P13 with 15 and 13 − 14 − 16 − 10 − 5 − 9 − 4 − 8 −
3 − 7 − 2 − 6 − 1, respectively.

• For n = 14, 15 and 16, label K1 with 16 and Pn with 14−15−17−11−5−10−
4−9−3−8−2−7−1−6, 15−14−18−17−11−5−10−4−9−3−8−2−7−1−6
and 15 − 14 − 18 − 19 − 17 − 11 − 5 − 10 − 4 − 9 − 3 − 8 − 2 − 7 − 1 − 6,
respectively.

Open problem 3 Find the exact values of µs(Fn), 12 ≤ n ≤ 16.

For other values of n, the upper bound of the super edge-magic deficiency of Fn is
stated in the following theorem.

Theorem 3 For every n ≥ 17, µs(Fn) ≤ ⌊1

2
(n − 2)⌋.

Proof Let H be isomorphic to Fn ∪ ⌊1

2
(n − 2)⌋K1 with

V (H) = {vi : 1 ≤ i ≤ n} ∪ {c} ∪ {ui : 1 ≤ i ≤ ⌊
1

2
(n − 2)⌋}

and
E(H) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {cvi : 1 ≤ i ≤ n}.

We found that the labelings for H are different for even and odd n as described in
the following two cases.
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Case 1 : n odd.

Consider the vertex labeling h : V (H) → {1, 2, 3, . . . , 3n−1

2
} such that

h(x) =







1

2
i, if x = vi for even i,

1

2
(n + i), if x = vi for odd i,

1

2
(3n − 1), if x = c,

and the remaining labels are placed arbitrarily on the isolated vertices. By applying
Lemma 1, h extends to a super edge-magic total labeling of H with the magic
constant k = 4n.

Case 2 : n even.

Consider the vertex labeling g : V (H) → {1, 2, 3, . . . , 3

2
n} such that

g(x) =







1

2
i, if x = vi for even i,

1

2
(n + 1 + i), if x = vi for odd i,

3

2
n, if x = c,

and the remaining labels are placed arbitrarily on the isolated vertices. This vertex
labeling extends to a super edge magic total labeling of H with the magic constant
k = 4n + 1. This completes the proof. �

Open problem 4 Find a better upper bound of the super edge-magic deficiency of
Fn, n ≥ 17.

To generalize the fan, we can always multiply the number of single vertices to be
connected to the vertices on the path. The simplest graph resulting from this con-
struction is the double fan Fn,2

∼= Pn + 2K1 which is a graph with n + 2 vertices and
3n − 1 edges.

Let
V (Fn,2) = {x, y} ∪ {zi|1 ≤ i ≤ n}

and

E(Fn,2) = {xzi|1 ≤ i ≤ n} ∪ {yzi|1 ≤ i ≤ n} ∪ {zizi+1|1 ≤ i ≤ n − 1}.

The next theorem gives the only two super edge-magic double fans.

Theorem 4 The graph Fn,2 is super edge-magic if and only if n ≤ 2.

Proof First, we show that Fn,2 is super edge-magic for n = 1, 2. The graph F1,2
∼= P3

is trivially super edge-magic. For n = 2, label 2K1 with {1, 4} and P2 with {2, 3}.
Then by Lemma 1, F2,2 is super edge-magic.

Conversely, let Fn,2 be a super edge-magic graph. Then, by Lemma 2 we have n ≤ 2.
�
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Since there is no super edge-magic total labeling of double fans for most values of n,
we thus try to find its super edge-magic deficiency. The following theorem gives the
upper and lower bounds of the deficiency.

Theorem 5 The super edge-magic deficiency of Fn,2 satisfies ⌊n−1

2
⌋ ≤ µs(Fn,2) ≤

n − 2 for all n ≥ 2.

Proof Define a labeling f as follows:

f(x) = 1, f(y) = 2n.

The rest of the vertices are labeled in the following way.

If n is even,

f(zi) =

{

1

2
(n + 1 + i), for i = 1, 3, 5, . . . , n − 1,

1

2
(2n + i), for i = 2, 4, 6, . . . , n;

and if n is odd,

f(zi) =

{

1

2
(n + i), for i = 1, 3, 5, . . . , n,

1

2
(2n + i), for i = 2, 4, 6, . . . , n − 1.

We can see that these labels of vertices constitute a set {f(x)+ f(y) | xy ∈ E(Fn,2)}
of 3n−1 consecutive integers. We can also see that no labels are repeated. However,
the largest vertex label used is 2n and there exist 2n− (n+2) = n−2 labels that are
not utilized. So, for each of the numbers between 1 and 2n that has not been used as
a label, we introduce a new vertex with that number as its label, which gives n − 2
new isolated vertices. By Lemma 1, this yields a super edge-magic total labeling of
a double fan Fn,2 ∪ (n − 2)K1 with the magic constant ⌊1

2
(11n + 2)⌋. Hence,

µs(Fn,2) ≤ n − 2.

For a lower bound, by Lemma 2, it is easy to check that

µs(Fn,2) ≥ ⌊n−1

2
⌋. �

For small values of n, we have found the exact values of the super edge-magic defi-
ciency of double fans Fn,2 such as µs(F3,2) = µs(F4,2) = 1, µs(F5,2) = µs(F6,2) =
2, and µs(F7,2) = 3. The label of vertices {x, y; z1, z2, . . . , zn} of Fn,2 for 3 ≤
n ≤ 7 are {1, 6; 2, 4, 3}, {3, 5; 1, 2, 6, 7}, {2, 9; 3, 1, 5, 6, 7}, {4, 7; 2, 1, 3, 8, 10, 9}, and
{3, 7; 4, 2, 1, 9, 11, 10, 12}, respectively.

Open problem 5 For n ≥ 8, find the exact values of the super edge-magic deficien-
cies of Fn,2.
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Let us now determine the super edge-magic deficiency of the wheel Wn
∼= Cn + {c},

n ≥ 3. Let
V (Wn) = {xi | 1 ≤ i ≤ n} ∪ {c},

and
E(Wn) = {cxi | 1 ≤ i ≤ n} ∪ {xixi+1 | 1 ≤ i ≤ n − 1} ∪ {xnx1}.

By Lemma 2, it is easy to see that Wn is not super edge-magic. Consequently,
µs(Wn) ≥ 1. In the next theorem we give exact values of super edge-magic deficien-
cies of Wn for small values of n, and the lower bound for other values of n.

Theorem 6 Let Wn be a wheel with n + 1 vertices. Then,

µs(Wn) =

{

1, for n = 3, 4, 6, 7,
2, for n = 5, 9, 10, 11, 12, 13,

and for other values of n, µs(Wn) ≥ 2.

Proof For W3, W4, W6 and W7, label (c; x1, x2, . . . , xn) as follows: (5; 1, 2, 3),
(3; 1, 4, 6, 5), (3; 1, 2, 4, 8, 6, 7) and (4; 1, 2, 8, 7, 9, 5, 3), respectively. Thus, µs(Wn) = 1
for n = 3, 4, 6, 7.

Next, we will show that µs(W5) = 2. Suppose that W5 ∪ K1 is a super edge-magic
graph. Then, there exists a vertex labeling f : V (W5 ∪ K1) −→ {1, 2, . . . , 7} that
extends to a super edge-magic total labeling of W5 ∪ K1. Let S = {f(x) + f(y) |
xy ∈ E(W5 ∪ K1)}. Then, we have two possible S, namely S1 = {3, 4, 5, . . . , 12} or
S2 = {4, 5, 6, . . . , 13}. Note that S1 and S2 are dual to each other under the labeling
f ′(x) = 8−f(x), for all x ∈ V (W5∪K1). So, it suffices to consider only one of them.
The sum of all elements of S1 is 75. This sum contains each label of xi, 1 ≤ i ≤ 5,
three times, and each label of c five times. Thus, we have

75 = 2
5

∑

i=1

xi + 4f(c) +
7

∑

i=1

i − f(K1).

Clearly, f(K1) must be odd. On the other hand, labels 1, 3, 5 and 7 must be
assigned to the vertices of W5, since otherwise we cannot obtain 4 and 12 in S1. So,
it is a contradiction to the fact that f(K1) is odd. Hence W5 ∪K1 cannot be a super
edge-magic graph. Thus µs(W5) ≥ 2. Furthermore, if we label (c; x1, x2, x3, x4, x5) by
(8; 1, 4, 2, 5, 3), this labeling extends to a super edge-magic total labeling of W5∪2K1.
Hence, we have µs(W5) = 2.

For n ≥ 8, we will show that Wn ∪ K1 is not super edge-magic by contradiction.
Assume that Wn ∪ K1 is super edge-magic with a labeling g. Then, there are two
possible cases of S = {g(x)+g(y) | xy ∈ E(Wn∪K1)}, namely S1 = {3, 4, 5, . . . , 2n+
2} and S2 = {4, 5, 6, . . . , 2n + 3}. Since they are dual to each other, it suffices to
consider only one of them. Let us consider S = {3, 4, 5, . . . , 2n + 2}. The only
possibility to get the sums 3, 4 and 5 in S is 3 = 1 + 2, 4 = 1 + 3 and 5 = 2 + 3 = 1
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+ 4. Then, the vertices of labels 1, 2 and 3 must form a triangle or the vertex of label
1 is adjacent to the vertices of labels 2, 3 and 4. So, 2n+2, 2n+1, 2n, . . . , n+g(c)+3
should be the sum of labels of two vertices in the cycle Cn of Wn. To obtain 2n + 2,
2n+1, 2n, 2n−1 we only have two possibilities: (n−3)−(n+2)−(n)−(n+1)−(n−1)
or (n − 2) − (n + 1) − (n − 1) − (n + 2) − (n). However for n = 8 and g(c) = 4 this
construction fails, since either edge-weight 8 or 9 or 10 cannot be obtained in this
case. Furthermore, if g(c) = 1, 2 or 3 and n ≥ 8 the edge-weight 2n− 2 is impossible
to be obtained. Hence, Wn ∪ K1 is not super edge-magic for n ≥ 8. In other word,
µs(Wn) ≥ 2 for n ≥ 8.

Further, we show that for 9 ≤ n ≤ 13, µs(Wn) = 2. For Wn, 9 ≤ n ≤ 13 label
(c; x1, x2, . . . , xn) as follows: (7; 1, 4, 2, 5, 9, 12, 8, 10, 3), (13; 1, 5, 2, 6, 3, 7, 4, 9, 12, 11),
(3; 1, 2, 4, 8, 10, 12, 11, 13, 6, 14, 7), (4; 1, 2, 8, 15, 7, 14, 12, 13, 11, 9, 5, 3) and (13; 1, 5, 2,
6, 3, 7, 4, 8, 14, 16, 15, 11, 12), respectively. This completes the proof. �

An upper bound of the super edge-magic deficiency of Wn can be found in the
following theorem. For n ≡ 3 (mod 4), this bound can be used as upper bound for
edge-magic deficiency which is better than Kotzig and Rosa’s one in [12].

Theorem 7 For odd n and n ≥ 3, µs(Wn) ≤ 1

2
(n − 1).

Proof Let G ∼= Wn ∪ 1

2
(n − 1)K1 be a graph with

V (G) = V (Wn) ∪ {ui : 1 ≤ i ≤
1

2
(n − 1)} and E(G) = E(Wn).

It suffices to show that G admits a super edge magic total labeling.

Now, consider the vertex labeling f : V (G) → {1, 2, 3, . . . , 1

2
(3n + 1)} such that

f(v) =







1

2
(i + 1), if v = xi for odd i,

1

2
(n + 1 + i), if v = xi for even i,

1

2
(3n + 1), if x = c,

and f(U) = {n + 1, n + 2, n + 3, . . . , 1

2
(3n − 1)}, where U = {ui : 1 ≤ i ≤ 1

2
(n − 1)}.

Then by Lemma 1, f extends to a super edge magic total labeling of G with the
magic constant k = 4n + 2. Consequently, for odd n, n ≥ 3, µs(Wn) ≤ 1

2
(n − 1).

�

Some open problems related the super edge-magic deficiency of Wn are presented
below.

Open problem 6 Find an upper bound of µs(Wn) for even n and n ≥ 14. Further,
find a better lower bound of µs(Wn) for every n ≥ 14 and a better upper bound of
µs(Wn) for odd n.
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4 Super edge-magic deficiencies of complete multipartite

graphs

In [4], it is proved that the only super edge-magic complete multipartite graphs are
K1,n and K1,1,n where n ≥ 1. In the next theorems, we give some upper bounds
of the super edge-magic deficiencies of particular complete 3-partite and 4-partite
graphs.

Theorem 8 µs(K1,m,n) ≤ mn − n − 1 for all positive integers m ≥ 2 and n ≥ 2.

Proof Let V1, V2 and V3 be the partite sets of K1,m,n, and let G ∼= K1,m,n∪(mn−n−
1)K1. We will show that G is a super edge-magic graph. Without loss of generality,
assume that m ≤ n.

Consider the vertex labeling f : V (G) → {1, 2, 3, . . . , m(n + 1)} such that f(V1) =
{n+2}, f(V2) = {1, 2(n+1), 3(n+1), . . . , m(n+1)}, and f(V3) = {2, 3, 4, . . . , n+1}
and the isolated vertices are labelled by the remaining labels. It is easy to verify
that S = {f(a) + f(b) | ab ∈ E(G)} = {3, 4, 5, . . . , (n + 1)(m + 1) + 1} consists of
mn + m + n consecutive integers.

Thus, f extends to a super edge-magic total labeling of G with the magic constant
k = (n + 1)(2m + 1) + 2. Consequently, G is a super edge-magic graph. �

Theorem 9 For m = 1, 2 and n ≥ 1, µs(K1,1,m,n) ≤ (m + 1)(n − 1) + m.

Proof Let V1, V2, V3 and V4 be the partite sets of K1,1,m,n, and let H ∼= K1,1,m,n ∪
((m + 1)(n − 1) + m)K1. We will show that H is a super edge-magic graph.

Now, consider the following function

f : V (H) → {1, 2, 3, . . . , m(n + 1) + 2n + 1}

defined as follows.

Case 1 : For m = 1

f(Vi) = {i} for i = 1, 2, 3 and f(V4) = {5, 8, 11, . . . , 3n + 2}.

Case 2 : For m = 2

f(Vi) = {i + 1} for i = 1, 2, f(V3) = {1, 4}, and

f(V4) = {7, 11, 15, . . . , 4n + 3}.

The remaining labels from 1 to m(n + 1) + 2n + 1 are used to label isolated vertices
of H. It can be verified that S = {f(x) + f(y) | xy ∈ E(H)} = {3, 4, 5, . . . , 3n + 5}
or S = {3, 4, 5, . . . , 4n + 7} if m = 1 or 2, respectively. By Lemma 1, f extends
to a super edge-magic total labeling of H with the magic constant k = 6n + 8 (for
m = 1), or k = 8n + 11 (for m = 2). �

By using Lemma 2, we have the following lower bounds for general complete 3-partite
and 4-partite graphs.
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Theorem 10 For n1 ≥ 1, and n2, n3 ≥ 2

µs(Kn1,n2,n3
) ≥ ⌊

1

2
(n2n3 + (n1 − 2)(n2 + n3) − 2n1 + 4)⌋.

Theorem 11 For all n1, n2, n3, and n4

µs(Kn1,n2,n3,n4
) ≥ ⌊

1

2
(n1(n2 + n3 + n4 − 2) + n2(n3 + n4 − 2) − n3(n4 − 2) − 2n4 + 4)⌋.

Open problem 7 Find an upper bound of the super edge-magic deficiency of
Kn1,n2,n3

and Kn1,n2,n3,n4
for all positive integers n1, n2, n3, n4.
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