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Abstract

Let G be a 2-connected graph of order n. For any u € V(G) and | €
{m,m+1,...,n}, if G has a cycle of length I, then G is called [m,n]-
pancyclic, and if G has a cycle of length [ which contains u, then G is
called [m, n]-vertex pancyclic. Let §(G) be a minimum degree of G and let
Ng(z) be the neighborhood of a vertex z in G. In [Australas. J. Combin.
12 (1995), 81-91] Liu, Lou and Zhao proved that if |Ng(u) U Ng(v)| +
d(G) > n+1 for any nonadjacent vertices u, v of G, then G is [3, n]-vertex
pancyclic. In this paper, we prove if n > 6 and | Ng(u)UNg(v)|+dg(w) >
n for every triple independent vertices u,v,w of G, then (i) G is [3,n]-
pancyclic or isomorphic to the complete bipartite graph K, /2,2, and (ii)
G is [5, n]-vertex pancyclic or isomorphic to the complete bipartite graph
Kn/2,n/2-

1 Introduction

In this paper, we consider only finite graphs without loops or multiple edges. For
standard graph-theoretic terminology not explained in this paper, we refer the reader
to [3]. We denote by Ng(z) the neighborhood of a vertex x in a graph G. For a
subgraph H of G and a vertex z € V(G), we also denote Ny(z) := Ng(z) NV (H)



16 R. MATSUBARA, M. TSUGAKI AND T. YAMASHITA

and dg(x) := |Ny(z)|. For X C V(G), Ng(X) denote the set of vertices in G\X
which are adjacent to some vertex in X. If there is no fear of confusion, then we
often identify a subgraph H of a graph G with its vertex set V(H). Let G be a
graph of order n and a,b be two integers with 3 < a < b < n. Then G is said to
be [a, b]-pancyclic if for every | € {a,a + 1,...,b}, it contains a cycle of length .
Especially, [3, n]-pancyclic is called pancyclic.

The study of pancyclic graphs was initiated by Bondy [1] in 1971. In [1], he proved
that if G is a graph of order n with dg(x) + dg(y) > n for each pair of nonadjacent
vertices x,y of G, then G is either pancyclic or isomorphic to the complete bipartite
graph K, /2 /2. In particular, a pancyclic graph is hamiltonian. Therefore this shows
that Ore’s condition for a graph to be hamiltonian also implies that it is pancyclic
except for some exceptional graphs. He proposed in [2] his famous “metaconjecture”.
It says that almost all nontrivial sufficient conditions for a graph to be hamiltonian
also imply that it is pancyclic except for maybe a simple family of exceptional graphs.

The following proposition concerning hamiltonian graphs is obtained easily.

Proposition 1. Let G be a 2-connected graph of order n. Suppose that |Ng(z) U
Neo(y)| + dg(z) > n for every triple independent vertices x,y,z of G. Then G is
hamiltonian.

The condition of Proposition 1 is weaker than Ore’s condition. In this paper,
motivated by Proposition 1 and Bondy’s metaconjecture, we prove the following.

Theorem 2. Let G be a 2-connected graph of order n > 6. Suppose that |[Ng(x) U
Neo(y)| + dg(z) > n for every triple independent vertices x,y,z of G. Then G is
pancyclic or isomorphic to the complete bipartite graph Ky 2 ,/0.

Let G be a 2-connected graph of order n. For any u € V(G) and | € {m,m +
1,---,n}, if G has a cycle of length [ which contains wu, then G is called [m,n]-
vertex pancyclic. Especially, [3,n]-vertex pancyclic is called vertex pancyclic. Let
k(@) and §(G) be the connectivity and the minimum degree of a graph G. In [4],
Faudree, Gould, Jacobson and Lesniak conjectured that if a connected graph G
of order n with (G) > k(G) + 1 satisfies |Ng(u) U Ng(v)] > n — &(G) for any
nonadjacent vertices u,v of G, then G is vertex pancyclic. Song, in [6], refomulated
this conjecture. He conjectured that if a 2-connected graph G of order n satisfies
|[Ne(u) U Ng(v)| > n— §(G) + 1 for any nonadjacent vertices u,v of G, then G is
vertex pancyclic. Obviously, Song’s conjecture implies the conjecture by Faudree et
al. In [5], Liu, Lou and Zhao settled Song’s conjecture.

Theorem 3 (Liu, Lou and Zhao [5]). Let G be a 2-connected graph of order n.
Suppose that |Ng(u) U Ng(v)|4+6(G) > n+1 for any nonadjacent vertices u,v of G.
Then G is vertex pancyclic.

By observing Theorems 2 and 3, one might expect the condition of Theorem 2
can yield vertex pancyclic. However, there exist graphs which satisfy the conditions
of Theorem 2 but do not have a cycle of length 3 and 4 containing some u € V(G).
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We define a graph Gg of order 3m + 3 as follows: let H;(1 < ¢ < 3) be complete
graphs of order m > 3, and let

V(Go) = U V(H;) U {a1, a2} U {u},
E(Gy) = U (E(H;) U{vw: v e V(H;),w € V(Hi1)})

U{av: v € V(H1)} U{agw: w € V(H)} U {aru, agu},

where Hy = Hy;. Then Gy is not isomorphic to a complete bipartite graph and does
not have a cycle of length 3 and 4 containing u, and |Ng,(a;) U Ng, (w)| + dg,(az) =
dm+12>3m+4 = |V(Gy)| + 1, where w € V(Hj3).

Therefore, we prove the following theorem.

Theorem 4. Let G be a 2-connected graph of order n > 6. Suppose that |Ng(z) U
Na(y)| + da(z) > n for every triple independent vertices x,y,z of G. Then G is
[5, n]-vertex pancyclic or isomorphic to the complete bipartite graph Ko, /2.

By Theorem 4, we can obtain the following corollary. Again, by considering
Gy, we cannot replace the conclusion “[5,n]-vertex pancyclic” with “[4, n]-vertex
pancyclic”.

Corollary 5. Let G be a 2-connected graph of order n > 6. Suppose that |[Ng(z) U
Ne(y)| 4+ da(z) = n+1 for every triple independent vertices x,y,z of G. Then G is
[5, n]-vertex pancyclic.

In [7], Wei and Zhu considered similar conditions for [a, b-panconnected graphs.
A graph G is called [a, b]-panconnected, if for any two distinct vertices u, v, there
exists a path joining u and v with [ vertices, for each a <1 <.

Theorem 6 (Wei and Zhu [7]). Let G be a 3-connected graph of order n. Suppose
that |Ng(z) U Ng(y)| + da(2) > n+ 1 for every triple independent vertices x,y,z of
G. Then G is [7,n]-panconnected.

We write a cycle C' with a given orientation by C.Forze V(C), we denote the
successor and the predecessor of x on c by 2+t and 27(©), respectively. If there is
no fear of confusion, we write vt and v~ in stead of v and v=(©), respectively. For
acycle C and X C V(C), we define X :={at: 2 € X} and X~ :={z7: 2z € X}
For z,y € V(C), we denote by C|x, y] a path from x to y on C. The reverse sequence
of C[z,y] is denoted by C~ [y, z]. For x,y € V(G), we let dg(z,y) denote the length
of the shortest path connecting x and y. For a subset S of V(G), we let G[S] denote
the subgraph induced by S in G.

2 Proof of Theorem 4

Suppose that G satisfies the assumptions of Theorem 4. Then we can obtain the
following fact.
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Fact 2.1. If G is a bipartite graph, then G is balanced and complete.

Let u € V(G) and let C,, be the set of cycles of length m which contains u.
Lemma 2.2. At least one of the following statements hold:
(i) C3#£ 0 and Cy # 0.
(ii) C4 # 0 and C5 # 0.
(iii) C5 # 0 and Co # 0.
(iv) G = Kyon)o-
Proof. Suppose that (i)—(iv) do not hold. Let
A = {veV(G): dg(u,v) =1},
Ay = {veV(G): dg(u,v) =2} and
Ay = {0 e V(G): daluv) = 3).
Claim 1. dg(u) >3

Proof. Suppose that dg(u) = 2. Let Ng(u) = {v1,v2}. Further assume that there
exist z,y € Ay U A3 such that zy ¢ E(G). Then {u,z,y} is an independent set, and
we obtain

[Na(2) UNa(y)l +da(v) < [V(G)] = {u, 2,4} + {or, 00} =n =1,

a contradiction. Therefore G[A; U Ajz] is complete. Since |A; U A3 > n—3 >3
and G is 2-connected, there exist wy,ws € Ay such that viwy, vows € E(G). Then
uvywwav 1y € Cs. Let wy € (As U A3)\{wi, ws}. Then uvjwiwswavou € Cg because
wiws, wows € E(G). This contradicts that (iii) does not hold. O

CASE 1. C; = 0.
Claim 2. Let z,y,z € A;. If (Ng(z) N Ng(y))\{u} # 0, then |(Ng(z) U Ng(y)) N
Ng(2)| < 2.

Proof. Suppose that there exist z,y, z € A; such that (Ng(z) N Ng(y))\{u} # 0 and
[((Ng(x) U Ng(y)) N Ng(2))\{u}| > 2. We may assume there exist a € (Ng(z) N
Ne(y)\{u} and b € (Ng(x) N Ng(z))\{u} such that a # b. Then uyazbzu € Cs.
This contradicts the assumption of CASE 1. O

Claim 3. The independence number of Ay is at most two.

Proof. Suppose that there exists an independent set {x,y,z} C A;. By Claim 2, we
may assume |(Ng(z) U Ng(y)) N Ng(z)| < 2. Therefore we have

[No(z)UNG(y)| < [V(G)| =Kz y,2} = (INa(2)] - 2)
= n—dg(z) —1,

a contradiction. O
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Since (i) does not hold, we obtain the following claim.

Claim 4. The order of a component of G[A;] is at most two.

By Claims 1, 3 and 4, G[A;] consists of two components H; and Hy with |H;| = 2
and |Hs| < 2. Then note that dg(u) < 4. Since G is 2-connected, Ng(H1) N Ag #
and Ng(Hz)N Ay # O hold. Let x € Ng(H;)NAs and y € Ng(Hs) N Ay, By Claims 1
and 3, C3 # (0. Since (i) does not hold, we obtain x # y and |(Ng(z)UNg(y))NA;| =
2. Since Cg = 0, we have zy ¢ E(G). Thus, {x,y,u} is an independent set, and we
obtain

|Na(z) U Na(y)| + da(u)

IN

(2+ A2 U As| — [{z, y}]) +4
n—1,

a contradiction.
CASE 2. Cg # 0.
Then Cs = ) holds. Hence we can easily obtain the following claim.

Claim 5. For C = ujuguguqusuguy € Cs with uy = u, {uy, us, us} is an independent
set.

Claim 6. For C € Cg, |[V(C)N A | = |V(C)N Ay| = 2.

Proof. Let C' = vivgusvgvsvgy; € Cg and v; = u. By Claim 5, vs,v5 € Ajp, that is,
v3,v5 € Ay. Therefore it suffices to show vy € A3 U As. Assume vy € As. Since
Cs = 0, Ng(vq) N Ay = 0. This contradicts the definition of A;. Hence assume
vy € Ay. First, suppose that |A;] < |Ay|. Since Cs = 0, (Ng(v3) U Ng(vs)) N Ay = 0.
Therefore {vs3,vs,u} is an independent set by Claim 5, and we obtain

ING(vs3) U Na(vs)| + dg(u) |Ar] + [As] + | Ai]
|Ay| + |Ag] + | As]

n—1,

IN N

a contradiction. Next, suppose that |As| < |A;|—1. Since uvovsvgu € Cy and (i) does
not hold, A; is an independent set. Especially, we see Ng(v;) N A; = 0 for i = 2,4,6
and {vq, vy, v6} is an independent set. Therefore we obtain

|NG(v2) U Ne(ve)| + da(va)

IN

14 |Ag| 4+ |Aa| +1
|A2| + |A2| + 2.

If |As| < |A1|—2or A3 # 0, then |Ng(v2)UNg(v6)| +dg(vs) < n—1, a contradiction.
Hence |As| = |A1] — 1, A3 = @ and Ng(ve) U Ng(vs) = Ng(va) = Ao U{u}. Therefore
Aj is an independent set, because Cs = (). By Fact 2.1, G is a balanced complete
bipartite graph, which contradicts that (iv) does not hold. O
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Let C' = vivuzvgvsvev; € Cg with v; = u. By Claim 6, we see vy, vg € Aj,v3,v5 €
Ay and vy € As. By Claim 1, Aj\{va, v} # 0, say @ € A;\{va,v6}. Assume
v3,v5 & Ng(z). Then {z,vs,vs5} is an independent set by Claim 5. Since C5 = 0,
Ne(x) N Ne(vs) C {v2} and Ng(z) N Ng(vs) C {vg}. Thus we have

[Na(vs) U Na(vs)| < [V(G)] = {2, v3, 05} = [Na(x)\{v2, ve} |
= n—dg(z) -1,

a contradiction. Hence v3 € Ng(x) or vs € Ng(x) holds. By symmetry, we may
assume that vs € Ng(z). By Claim 6, vsvs, zvs ¢ E(G). Since uzvsvg € C4 and (i)
dose not hold, it follows that vs ¢ Ng(z). Hence {vs,vs,z} is an independent set.
Since Cs = 0, we see Ng(v3) N Ng(vs) = 0 and Ng(v3) N Ng(z) = (. Thus, we obtain

|Ne(vs) U No ()]

IN

IV(G) — Hus, vs, 2} — [ Ne(vs)]
n—dg(vs) — 3,

a contradiction. O

Lemma 2.3. IfC,, # 0 for 3 <m <n — 2, then Cpya # 0 holds.

Proof. Suppose that there exists 3 < m < n — 2 such that C,, # 0 and C,,,o = 0.
Since Cpy2 = 0, we obtain the following two claims.

Claim 7. Neve(2) N Neve(y™) = 0 holds for C € Cp,, © € V(G\C') and y € Ne(z).
Claim 8. For C € Cyq1, © € V(G\C) and y, z € No(x), the followings hold.

(i) y* & No(x).
(i) {z,y", 2"} is an independent set.
(i) Ne(@)™ N (Ne(y™) UNe(27)) = 0.

Claim 9. Suppose that C 1is a cycle and {x,y,z} is an independent set such that
(C1) z € V(G\C) and y,z € V(C) or (C2) x € V(C) and y,z € V(G\C). Then
one of the following holds.

(i) If (C1) holds, then |Nc(x)t N (Ne(y) U Ne(2))| > 1. If (C2) holds, then
INo(z)™ N (Ne(y) U Ne(2))] 2 2 and [Ne(z)™ 0 (Ne(y) U Ne(z2)] = 2.

(it) Nevo() N (Nee(y) U Nore(2)) # 0.
Proof. Suppose that neither (i) nor (ii) holds. Since (i) does not hold, we have

|Ne(y) U Ne(z)| + de(x) [Ne(y) U Ne(2)] + [ Ne (@)

V(C)| + [N (@)™ N (Ne(y) U Ne(2))]
V()|

IAIA
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if (C'1) holds; otherwise similarly |N¢(y) U Ne(2)| + de(z) < |[V(C)| + 1. In either
case, we obtain

INo(y) U No(2)| + do(x) < [V(C) + [V(G\C) N {z,y, 2} - 1.
Since (ii) does not hold, we now obtain

|INavc(y) U Navo(2)| +dave(z) = [(Neve(y) U Neve(2)) U Neve ()|
< [V(G\O)| = [V(G\C) N {z,y, 2}

Therefore we deduce |Ng(y) U Ng(2)| + da(z) < n — 1, a contradiction. O

CASE 1. {v € V(G\C) : |Nc(v)| > 2}| > 2 for some C' € Cp,.

Let C € C,, with |[{v € V(G\C) : |Nc(v)| > 2}| > 2, say x1,22 € {v € V(G\C) :
|Ne(v)| = 2}

CASE 1.1. |NC(.T1) U NC(J}Q)‘ = 2.

Let Ne(z1) = Ne(za) = {vi,v2}. We may assume that vy # vs. Suppose
that 129 ¢ E(G). Then {z;,z9,v]} is an independent set. By the assumption
of CASE 1.1, Ne(vi)™ N (Ne(z1) U Ne(x2)) € {ve}. By Claim 7, Neye(vf) N
(Nevo(@1) U Newe(z2)) = 0. This contradicts Claim 9. Hence z12, € F(G) holds.
By Claim 7, we obtain vy # v; and so v, vf & Ng(z;). If va; € E(G), then
Clvs, vi]z129C0~ [vg, v Jvg € Cpipa, a contradiction. Thus {vi, vy, 21} is an indepen-
dent set. Hence, by the assumption of CASE 1.1, Ne(z1)* N (Ne (v ) UNe(vd)) = 0
By Claim 7, Neye(21) N (Neve (v]) U Newe(vy)) = 0. These contradict Claim 9.

CASE 1.2. |N¢(21) U No(as)| > 3.

Let Bi={v e V(C) :v,v~ € Ng(z;)} for i =1,2.
Claim 10. For some 1 <i <2, B; = (.

Proof. Suppose that By # () and By # 0. Since C,q2 = 0, it follows that B; =
By, |B1] = |By] = 1 and 2129 ¢ E(G). Let By = {v}. Then {xy,75,0v]} is an
independent set. By Claim 7, Nevo(v) N (Nevo(z1) U Neve(x2)) = 0. By Claim 9,
(Ne(vi)"N(Ne(z1)UNe(22)))\{vy } # 0. Without loss of generality, we may assume
that vy € (Nc(v1 )"NNe(z1))\{v; }. Note that vy # vy because v; € No(vf)~. Then
210~ [vg, v |Clvy, vy JzoviZ1 € Ciya, a contradiction. O

Claim 11. For some 1 < i < 2, there exist vy, vy € No(x;) such that (i) v, vy &
Ne(a:), (i) vi'vg € B(G) and (iii) Ne(vs-i)\{v1, v2} # 0.

Proof. If By = By = 0, then |Ng(z;)| > 3 for some ¢ by the assumption of CASE
1.2. If B; # 0 for some 1 < i < 2, then B;_; = @ by Claim 10. Let v €
B;. Then {v,v} € Nc(x3-;) because Bs_; = (. Therefore we may assume
that there exist vy,vy € Nc(xl) such that {v], vy, 07,05} N Ne(z) = @ and
Ne(z2)\{v1,va} # 0. If vivf € E(G), then vy, v2 € Ne(z;) are desired vertices.
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Hence we may assume that {x1,v;, 05} is an independent set. By Claims 7 and 9,
we have (N¢(x1)™ N (Ne(vi) U Ne(vd))\{v1, va} # 0. By symmetry, we may assume
that v € (Ne(z1)™ N Ne(vf)\{vr,v2}. If Ne(z2) # {v1,vs}, then vy, v3 € No(21)
are desired vertices; otherwise vy, v3 € No(x2) are desired vertices. O

By Claim 11, we may assume that there exist v1,vy € No(21) such that v, v] &
Ne(z1), vivd € E(G) and Ng(x2)\{vi,va} # 0. Let Cy = 2,C~ [vy,v5 |Cvy, valzy
and wy,wy € Neo(xe) such that {wy,ws} # {v1,v2}. By Claims 8 (ii),(iii) and 9,
Ng\CI(Ig)ﬂ(Ng\Cl(wT(Cﬁ)UNG\Cl(w;<Cl))) # ). Without loss of generality, we may
assume that NG\CI(:L'Q)ONg\CI(wf(CI)) # 0, say x5 € Ng\cl(:L'Q)ﬂNg\cl(wf(Cl)). By
Claim 7, w; and wf(cn are not consecutive vertices on C. Therefore w, € {vy, vy }.
By considering Cy = 21C~ [vg, v |C[vs, v1]x1, it follows from Claim 11 (i) that ws €
{v,v{}. By Claim 8 (i) we have {w;,ws} # {v5,v{}. Therefore we may assume

{wi,we} = {v5,v1} by symmetry. Then z3C[v}, vi]zazs € Cpiio, a contradiction.
CASE 2. |[{v € V(G\C) : |[N¢(v)| > 2}| <1 for any C € C,,.

Let C € C,, be a cycle and P = zy; - - - yrz be a path such that z,z € V(C) and
y; € V(G\C) for 1 <i < k. Since m < n — 2, it follows that |V (G\C)| > 2. By the
assumption of CASE 2, we may assume that No(y;) = {z} and k > 2. Take such a
cycle C and a path P as (a-i) |V(P)]| is as small as possible, and (a-ii) [V(C|z, z])]
is as small as possible subject to (a-i).

CASE 2.1. k=2

Since Cppi2 = 0, it follows that 2t # z and zt # z. Since No(y1) = {x}, we
obtain at, 2" & No(y). If 21zt € E(G), then y1y.C~ [z,2T|C[z, 2]y1 € Crnyo,
a contradiction. Thus ztzt ¢ E(G). Hence {y1,27,z"} is an independent set.
Since Ne(y1) = {z}, Ne(y1)™ N (Ne(at) U Ne(21)) = 0. By Claim 7, Ngyo(zt) N
Neve(yr) = 0. By (a-ii), Novo(27) N Neve(y1) = 0. These contradict Claim 9.

CASE 2.2. k=3.

Suppose that m > 4. Since Cp,42 = 0, either |V (Clx, z])| > 4 or |V(C|z,z])| > 4
holds. Therefore |V (C[z,z])| > 4 holds by (a-ii). Then note that zt* € Cfz,z7].
By (a-i), 11ys ¢ E(G). First, assume 2 # u. Since Cpio = 0, ysatt ¢ E(G). Thus
{y1,ys, 21"} is an independent set. Since Neo(y1) = {a}, No(ztT)" N Ne(y1) = {z}.
Since Cppy2 = 0, No(z™)™ N Ne(ys) € {z}. By (a-i) and the assumption of
CASE 2, Neve(z™) N (Neve(y1) U Neve(ys)) = 0. These contradict Claim 9.
Next, assume 7 = w. Then note that 2=~ € Clu,z]. Since Ng(y1) = {z}
and Cpya = 0, No(z77)" N No(y) = 0. It v € (Ne(z77)" N Ne(ys))\{z}, then
C" = y3Cv, 27 7]C~[v™, z]lys € Cp and zy1yays is a path such that z,y; € V(C")
and y1,y2 € V(G\C'). This contradicts (a-i). Hence Ng(z~ ")t N Ne(ys) = {z}.
This implies y3z~~ ¢ E(G). Hence {y1,y3, 2"~} is an independent set. By (a-i),
Neve(277) N (Neve (y1) U Newe(ys)) = 0. These contradict Claim 9.

Suppose that m = 3. Since C5 = (), we see that C' = uzzu, N(u) N (Ng(y1) U
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Na(ys)) = {z,z} and {u,y1,ys} is an independent set. Then we obtain |N(y;) U
N(y3)| + da(u) = |V(G)| — {v1,ys, u}| + {z, 2z} <n — 1, a contradiction.

CASE 2.3. k> 4.

Let v € V(C\{z}). By (a-1), we obtain y,ys,vys ¢ E(G) and No(v)” N Ne(ys) =
(. Hence {y1,ys,v} is an independent set. Since Ne(y1) = {z}, Ne(v)™ N Ne(y1) C
{x}. By (a-i), Neve(v) N (Neve(y1) U Neve(ys)) = 0. These contradict Claim 9. [

By Lemmas 2.2 and 2.3, Theorem 4 holds immediately.

3 Proof of Theorem 2

Proof. Suppose that G satisfies the assumption of Theorem 2. By Theorem 4, we
have only to show that G has cycles of length 3 and 4 or G is isomorphic to the
complete bipartite graph K, /3 /2.

First, we shall show that G has a cycle of length 4. Suppose not. Assume
de(v) = 2 holds for any v € V(G). If n = 6, then |Ng(z) U Ng(y)| + da(z) < 5
hold for every triple independent vertices x,y, z of G, a contradiction. If n > 7,
then |Ng(z) U Ne(y)| + de(z) < 6 holds for every triple independent vertices z,y, z
of G, a contradiction. Therefore there exists u € V(@) such that dg(u) > 3. Let
Uy = {v e V(G): dg(u,v) = 1}, Uy = {v € V(GQ): dg(u,v) = 2} and Us = {v €
V(G): dg(u,v) > 3}. Let z,y,z € U;. Then (Ng(z) U Ne(y)) N Ng(z) = {u}. If
{z,y, 2} is an independent set, then we obtain

|Na(z) U Ne(y)| + da(z) < V()] = {z,y, 2} + {u} <n =2,

a contradiction. Therefore we may assume that zy € E(G). Note that ((Ng(z) U
Ng(y)) N U)\{z,y} = 0. Since G is 2-connected, we may assume that there exists
w € Uy such that zw € E(G). Since G does not have a cycle of length 4, {y, z, w} is
an independent set and (Ng(z) U Ng(w)) N Ng(y) = {z,u}. Hence we obtain

[Na(2) U No(w)| + da(y) < [V(G)| =y, z,wi + {z, u}| <n —1,

a contradiction. Therefore G has a cycle of length 4.

Next, suppose that G has no cycle of length 3. Let C' = wjususugu; be a cycle
of length 4. Since n > 6, we may assume that there exists w € V(G) such that
wuy € E(G). Let Wy = {v € V(G): dg(w,v) =1}, Wo = {v € V(G): dg(w,v) = 2}
and W5 = {v € V(G): dg(w,v) > 3}. Then W; and {w, us, u4} are independent sets,
Ug, uy € Wo and V(C) NnNWw; C {Ul,U3}. If ((Ng(’ttg) @] Ng(U4)) N Wl)\{’ul,u;g} = @,
then we obtain

|Ne(u2) U Ne(ua)| +da(w) < (24 [Wo\{ug, ust| + [Ws]) + [Wi| <n —1,

a contradiction. Therefore we may assume that there exists us € (Ng(ug) NW1i)\{u1,
ug}. Since G does not have a cycle of length 3, we see that (Ng(u1) U Ng(uz)) N
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(Ng(u2) U Ng(ug)) = 0 and {uy,us, us} is an independent set. Hence we obtain

2n < ([Ng(ui) U Ng(us)| + de(us)) + (|[Na(uz2) U Ne(ua)| + da(w))
= (|[Ng(u1) U Ng(us)| + [Ne(uz) U Ne(us)) + de(us) + da(w)
< (14 W+ |[Wa| + |[Wa]) + (14 |[Wa]) + [Wh]| < 2n — |[Ws.

This yields W3 = 0 and Ng(uz) = WoU{w}. Hence WoU{w} is an independent set,
because GG has no cycle of length 3. Thus G is a bipartite graph. By Fact 2.1, G is
balanced and complete. This completes the proof of Theorem 2. O

4 Further results

We consider the graph Gy, again. Since dg,(u) = 2, one might expect that the
conditions of Theorem 4 guarantee the existence of a cycle of length I, 3 < 1 < |V(G)]
containing any vertex u € V(G) with dg(u) > 3. However, there exist examples
which satisfy the conditions of Theorem 4 but have no cycle of length 3 or 4 containing
some vertex u of degree three. We first construct a graph G; which has no cycle of
length 3 containing for some u € V(G;). We define a graph G, of order m + 4 as
follows: Let H be a complete graph of order m > 2, and let

V(Gy) = V(H)U{a,az,a3} U{u},
E(G)) = EH)U{aw,aqu:1<i<3, veV(H)}.

Then G; has no cycle of length 3 containing u, and |Ng, (a1) U Ng, (a2)| + dg, (a3) =
2m+2>m+4=|V(Gy)|.

Next, we construct a graph G5 which does not have a cycle of length 4 containing
for some u € V(G3). We define a graph Go of order 3m + 4 as follows: let H;(1 <
i < 3) be complete graphs of order m > 1, and let

V(G = | (V(H)U{ai}) Ufu},

1<i<3

U (E(H;) U{a;v,a;u,vw: v € V(H;),w € V(H;11)}) U{azas},

1<i<3

E(G)

where Hy = H;. Then G, does not have a cycle of length 4 containing u, and
|Ng,(a1) U Ng, (w)| + dg,(a2) = 4m + 3 > 3m + 4 = |V(G3)|, where w € V(Hj).

Therefore we prove the following two theorems.

Theorem 7. Let G be a 2-connected graph of order n > 6 and u € V(G) with
dg(u) > 3. Suppose that |Ng(x) U Ne(y)| + da(z) > n for every triple independent
vertices x,y,z of G. Then G has a cycle containing u of length I, 1 = 3,5,6,...,n or
a cycle containing u of length m, m = 4,5,6,...,n or is isomorphic to the complete
bipartite graph K,z n/2.
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Theorem 8. Let G be a 2-connected graph of order n > 6 and u € V(G) with
de(u) > 5. Suppose that |[Ng(z) U Ng(y)| + da(z) > n for every triple independent
vertices x,y,z of G. Then G has a cycle containing u of length I, | = 4,5,6,...,n
or is isomorphic to the complete bipartite graph K2 5/2.

Proof. For u € V(G), let C; and A; be as in the proof of Theorem 4. Suppose that
dg(u) > 3 and C3 = C4 = (). Then A; is an independent set such that |A;] > 3. Let
z,y,z € Ay. Since Cqy = 0, Ng(z) N Ng(z) = {u} and Ng(y) N Ng(z) = {u}. These
imply

|Na(x) U Ne(y)

IN

V(&) = {z,y, 23] = [Na(2)\{u}]
= n—2—dg(z),

a contradiction. Next, suppose that dg(u) > 5 and Cy = (). Then the independence
number of A; is at least 3. Therefore we obtain a same contradiction as above. Hence
Theorem 4 implies Theorems 7 and 8. O
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