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Abstract

We study k dimensional Latin hypercubes of order n. We describe the
automorphism groups of the hypercubes and define the parity of a hy-
percube and relate the parity with the determinant of a permutation
hypercube. We determine the parity in the orbits of the automorphism
group. Based on this definition of parity we make a conjecture similar to
the Alon-Tarsi conjecture. We define an orthogonality relation between
hypercubes and we show that a set of mutually orthogonal Latin k di-
mensional hypercubes correspond to MDS codes and to k+1 dimensional
permutation hypercubes satisfying a combinatorial condition.

1 Introduction

The study of Latin squares began with Euler’s landmark paper in 1782 [5]. In this
paper Euler describes orthogonal Latin squares in an attempt to solve the 36 officer
problem; see [14] for a full description. Since then numerous uses of Latin squares
have been found and various generalizations have been made; see [2] and [11] and
the references therein.

In this paper we study a generalization of Latin squares to more dimensions
beginning with the necessary definitions in Section 1. In Section 2, we study the
group of isometries of a Latin hypercube and describe the automorphism group,
isotopy class and the main class of a Latin hypercube. In Section 3, we define
various parities of a Latin hypercube and make a conjecture similar to the Alon-
Tarsi conjecture. In Section 4, we study a particular definition of orthogonality for
Latin hypercubes.

We begin with some definitions.

Definition 1.1 A Latin k-hypercube Lj1,...,jk
of order n is a k dimensional array

with nk elements given as a cube with each side containing n coordinates, where the
elements come from the set {0, 1, 2, . . . , n − 1}, such that if ji = j′i for all i 6= α and
jα 6= jα′ then Lj1,j2,...,jk

6= Lj′
1
,j′

2
,...,j′

k
.
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This definition implies that if k − 1 coordinates are fixed and the remaining
coordinate is allowed to take on all possibilities then these entries are a permutation
of the set {0, 1, 2, . . . , n− 1}. As an example, if k = 1 then a Latin k-hypercube is a
permutation, which we shall refer to as a Latin line. If k = 2 we have a Latin square.

The next proposition follows easily from the definition.

Proposition 1.2 The subhypercube of a Latin k-hypercube of order n formed by
fixing k − s coordinates is a Latin s-hypercube of order n.

Proof. Each line in the hypercube still contains each element exactly once. �

Theorem 1.3 For s ≤ k, a Latin k-hypercube of order n contains
(

k

k−s

)

nk−s =
(

k

s

)

nk−s s-hypercubes of order n.

Proof. There are
(

k

k−s

)

ways of picking k − s coordinates to fix, and at each
coordinate there are n choices of which element to fix. �

A subset of the subhypercubes can be seen to partition the hypercube. For
example, there are knk−1 Latin lines in a hypercube which split into k sets of nk−1,
each of which partition the hypercube. There are

(

k

2

)

nk−2 Latin squares which split

into
(

k

k−2

)

sets of nk−2 each of which partitions the hypercube. These two partitions
of the hypercube will be used in defining the i-parity and orthogonality respectively.
In general there are

(

k

s

)

nk−s Latin s-hypercubes which split into sets of size nk−s

which partition the hypercube.
We can view a Latin k-hypercube of order n as an array in a manner similar

to an orthogonal array for Latin squares. Namely, given a Latin k-hypercube of
order n, Lj1,...,jk

, let M be the matrix with nk rows and k + 1 columns where the
columns are labeled x1, x2, . . . , xk, s and j1, j2, . . . , jk, jk+1 is a row in M if and only
if Lj1,...,jk

= jk+1. We shall refer to this matrix as the orthogonal array of L, denoted
by OA(L), and refer to the coordinates throughout the paper as x1, x2, . . . , xk, s,
adding additional columns when discussing orthogonality.

We shall describe a few techniques for constructing Latin k-hypercubes. For other
constructions see [10].

Given a Latin k-hypercube L of order n define E+(L) by

E+(L)a1,...,ak,ak+1
= La1,...,ak

+ (ak+1) (mod n). (1)

Then E+(L) is a Latin k + 1 hypercube. If L = (0, 1, 2, . . . , n − 1) is a Latin line
then (E+)k−1(L) is said to be the circulant Latin k-hypercube of order n.

Given a Latin k-hypercube L of order n define E−(L) by

E−(L)a1,...,ak,ak+1
= La1,...,ak

− (ak+1) (mod n). (2)

Then E−(L) is a Latin k + 1 hypercube. If L = (0, 1, 2, . . . , n − 1) is a Latin line
then (E−)k−1(L) is said to be the reverse circulant Latin k-hypercube of order n.

It is immediate then that Latin k-hypercubes of order n exist for all k and n by
simply applying E+ to the identity permutation (k − 1) times.



LATIN k-HYPERCUBES 147

Any Latin square of order n determines an algebraic structure known as a quasi-
group, where the operation is given by i ∗ j = Lij. We shall say that a Latin square
L represents the operation ∗ in this case. A quasigroup is not necessarily associative
nor does it necessarily have an identity but it does have cancelation.

Theorem 1.4 Let L1, L2, . . . , Ls be Latin squares of order n with Li representing
the operation ∗i. Let M = L1 ∗ L2 ∗ · · · ∗ Ls with Ma1,a2,...,as,as+1

= a1 ∗1 (a2 ∗2 (a3 ∗3

. . . (as ∗s as+1)) . . . ). Then M is a Latin (s + 1)-hypercube of order n.

Proof. Fix any s dimensions. If a1 ∗1 (a2 ∗2 (a3 ∗3 . . . (ai ∗i . . . (as ∗s as+1)) . . . ) =
a1 ∗1 (a2 ∗2 (a3 ∗3 . . . (a′

i ∗i . . . (as ∗s as+1)) . . . ), then applying left cancelation i − 1
times followed by right cancelation gives that ai = a′

i. The result must be a Latin
line. Hence M is a Latin s + 1-hypercube. �

Notice that the Latin squares need not be distinct. Hence we can construct Latin
k-hypercubes for all k and n. In fact, we can construct an abundance of Latin
k-hypercubes using this technique.

More generally a Latin k-hypercube of order n can be viewed as a generalization
of a quasigroup. Namely it is a function f : Z

k
n → Zn with f(a1, . . . , ak) = ak+1,

where Ma1,...,ak
= ak+1. Let M1, M2, . . . , Ms be Latin ki hypercubes of order n where

Mi is associated with the function fi and each ki ≥ 2. Then let M = M1∗M2∗· · ·∗Ms

given by the function g, where g is defined by:

g(a1
1, . . . , a

1
k1

, a2
2, . . . , a

2
k2

, a3
2, . . . , a

3
k3

, . . . , as
2, . . . , a

s
ks

)

= fs(. . . f3(f2(f1(a
1
1, . . . , a

1
k1

), a2
2, . . . , a

2
k2

), a3
2, . . . , a

3
k2

), . . . , as
2, . . . , a

s
k2

).

Then M is a (
∑

ki − (s − 1))-hypercube of order n.

2 Group of isometries

We shall define the group of isometries of Latin k-hypercubes.
Let xi denote the i-th coordinate of a Latin k-hypercube and let s be the symbol.

That is, we have x1, x2, . . . , xn, s as the coordinates of OA(L). We shall refer to the
lines formed by fixing all but xi as i-lines. For example, in a Latin square 1-lines are
columns and 2-lines are rows.

Definition 2.1 Two Latin k-hypercubes are isotopic if one can be obtained from the
other by permuting the i-lines and the symbols of the hypercube.

Let Sn denote the symmetric group on n letters. Each Latin k-hypercube is acted
on by ⊕k+1

i=1 Sn, where Sn permutes the i-lines and the symbols of the hypercube. Then
two Latin k-hypercubes, L and L′, are isotopic if there exists (σ1, σ2, . . . , σk+1) ∈
⊕k+1

i=1 Sn with (σ1, σ2, . . . , σk+1)(L) = L′.
We can also create a new Latin k-hypercube from an existing one by permuting

the roles of the coordinates and symbols. That is, acting on the set {x1, x2, . . . , xk, s}
by Sk+1 creates a new Latin k-hypercube. An operation of this type is said to be
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an adjugate. For Latin squares you can take the row adjugate (switching the roles
of rows and symbols), the column adjugate (switching the roles of columns and
symbols), the transpose (switching the roles of rows and columns), and combinations
of them. In this case there are |S3| = 6 possible adjugates. In general there are
|Sk+1| = (k + 1)! possible adjugates.

Definition 2.2 Two Latin k-hypercubes are equivalent if one can be obtained from
the other by taking adjugates of an isotopic Latin k-hypercube.

For an example of counting the number of equivalence classes see [12]. It is
immediate that if M and M ′ are isotopic then E+(M) and E+(M ′) are isotopic and
E−(M) and E−(M ′) are isotopic.

Define the group Gn,k by

Gn,k = ⊕k+1
i=1 Sn ×s Sk+1, (3)

where ×s denotes a semi-direct product.
The group Gn,k acts on the set of all Latin k-hypercubes of order n denoted by

Tn,k. If (σ1, σ2, . . . , σk+1, τ) is an element of Gn,k then the action is described by the
following: σi permutes the elements of xi for 1 ≤ i ≤ k, σk+1 permutes the symbols,
and τ permutes the xi and s.

Hence we have two Latin k-hypercubes L and L′ are equivalent if there exists

(σ1, σ2, . . . , σk+1, τ) ∈ Gn,k

with (σ1, σ2, . . . , σk+1, τ)(L) = L′. In this case we shall write L ∼ L′.

Proposition 2.3 The relation ∼ is an equivalence relation.

Proof. Let ε denote the identity of Sn. Then (ε, ε, . . . , ε, ε)(L) = L and hence ∼ is
reflexive. If L ∼ L′ then (σ1, σ2, . . . , σk+1, τ)(L) = L′, and then (σ−1

τ−1(1), σ
−1
τ−1(2), . . . ,

σ−1
τ−1(k+1), τ

−1)(L′) = L. Then the relation ∼ is symmetric. If L ∼ L′ and L′ ∼ L′′ then

there exist elements of Gn,k with (σ1, σ2, . . . , σk+1, τ)(L) = L′, and (λ1, λ2, . . . , λk+1,
µ)(L′) = L′′. Then

(λτ(1) ◦ σ1, λτ(2) ◦ σ2, . . . , λτ(k+1) ◦ σk+1, µ ◦ τ)(L) = L′′

and the relation is transitive. �

Definition 2.4 The main class of L is the set of all Latin k-hypercubes of order n
that are equivalent to L, i.e.

ML = {L′ | there exists (σ1, σ2, . . . , σk+1, τ) ∈ Gn,k where

(σ1, σ2, . . . , σk+1, τ)(L) = L′}.

The isotopy class of L is the set of all Latin k-hypercubes of order n that are isotopic
to L, i.e.

IL = {L′ | there exists (σ1, σ2, . . . , σk+1, ε) ∈ Gn,k where

(σ1, σ2, . . . , σk+1, ε)(L) = L′},

and ε is the identity permutation.
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It is clear that for any L, IL ⊆ ML. A main class of maximal cardinality has (k +
1)!(n!)k+1 elements and an isotopy class of maximal cardinality has (n!)k+1 elements.

We say that a Latin k-hypercube is i, j-symmetric if switching the roles of the
i-lines and j-lines results in the same Latin k-hypercube. We also allow i and j
to be equal to k + 1 allowing for the use of symbols as well. More precisely L is
i, j-symmetric if τ is the transposition (ij) and (ε, ε, . . . , ε, τ)(L) = L, where ε is the
identity permutation. As an example, consider the circulant Latin k-hypercube L of
order n. Here La1,a2,...,ak

= a1 + a2 + · · · + ak. Then for any i, j, with 1 ≤ i, j ≤ k
reversing the roles of i and j does not change the entry in La1,a2,...,ak

, hence the
hypercube is i, j-symmetric for all 1 ≤ i, j ≤ k.

We can generalize a result about Latin squares from [8].

Theorem 2.5 If IL has maximal size and it contains an i, j-symmetric Latin k-
hypercube then it contains precisely (n!)k such hypercubes.

Proof. If L is i, j-symmetric then for permutations {σ1, . . . , σk+1} with σi = σj and
the other σ` are arbitrary, we have that (σ1, σ2, . . . , σk, σk+1)(L) is i, j-symmetric.
Hence there are at least (n!)k such hypercubes. We know that each produces a
different Latin hypercube since the isotopy class is of maximal size.

Next assume that (σ1, σ2, . . . , σk, σk+1)(L) is i, j-symmetric then we have

(σ1, σ2, . . . , σk, σk+1, τ)(L) = (σ1, σ2, . . . , σk, σk+1, ε)(L),

which implies that σi = σj so there are at most (n!)k i, j-symmetric Latin k-
hypercubes in the isotopy class. �

The autoparatopism group of a Latin hypercube is

Aut(L) = {(σ1, σ2, . . . , σk+1, τ) ∈ Gn,k | (σ1, σ2, . . . , σk+1, τ)(L) = L}.

We avoid the use of the word automorphism to avoid confusion with its use with
relation to the quasigroup operation. It is clear that Aut(L) is a subgroup of Gn,k.
The following proposition follows from the orbit-stabilizer theorem.

Proposition 2.6 For any Latin square L,

|ML| =
|Gn,k|

|Aut(L)|
=

(n!)k+1(k + 1)!

|Aut(L)|
. (4)

3 Parities of Latin k-hypercubes

In this section we shall introduce the notion of parity of a Latin k-hypercube.
If L is a Latin k-hypercube of order n, an i line consists of

Lα1,α2,...,αi−1,0,αi+1,...,αk
, Lα1,α2,...,αi−1,1,αi+1,...,αk

, . . . , Lα1,α2,...,αi−1,n−1,αi+1,...,αk
.
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That is fix k − 1 dimensions and let the i-th coordinate vary over 0, 1, 2, . . . , n − 1.
Hence for each i there are nk−1 distinct i-lines. Then there are knk−1 different lines
in the k-hypercube.

Each i-line can be viewed as a permutation of 0, 1, 2, . . . , n − 1. An i-line

(σ(0), σ(1), . . . , σ(n − 1))

is odd if the permutation σ is odd and even if the permutation σ is even. This is
equivalent to saying that the i-line is odd if the number of inversions is odd and
the i-line is even if the number of inversions is even, where an inversion is a pair
(σ(i), σ(j)) such that σ(i) < σ(j) and i > j.

Define Ψ : Sn → {−1, 1} by

Ψ(σ) =

{

1 if σ is even,
−1 if σ is odd.

(5)

Let Ai(L) be the set of i lines of a Latin k-hypercube of order n. Then we define
the i-parity of L to be

Pari(L) =
∏

σ∈Ai(L)

Ψ(σ), (6)

and the parity of L to be

Par(L) =
k

∏

i=1

(Pari(L)). (7)

A Latin k-hypercube is said to be i-odd if Pari(L) = −1 and i-even if Pari(L) = 1.
Similarly, it is said to be odd if Par(L) = −1 and even if Par(L) = 1.

Let L be a Latin k-hypercube of order n. If τ is an i-line of L, then τ, στ, σ2τ, . . . ,
σn−1τ are now i-lines of E+(L) and τ, (σ−1)τ, (σ−1)2τ, . . . , (σ−1)n−1τ are now i-lines
of E−(L), where σ = (0, 1, 2, . . . , n − 1). Note that σ and σ−1 are even when n is
odd and odd when n is even. This gives that for n odd each sign of a permutation
of L appears oddly many times as a sign of a permutation in E+(L) and E−(L)
and hence the parity does not change. If n is even then each sign of a permutation
appears evenly many times and hence the i-parity becomes 1. Hence, we have if n
is even then Pari(E

+(L)) = Pari(E
−(L)) = 1 and if n is odd then Pari(E

+(L)) =
Pari(E

−(L)) = Pari(L).
Let Tn,k be the set of all Latin k-hypercubes of order n. For each i we partition

Tn,k into Oi
n,k and Ei

n,k, where Oi
n,k is the set of all i-odd Latin k-hypercubes of order

n and Ei
n,k is the set of all i-even Latin k-hypercubes of order n. Likewise, On,k is

the set of all odd Latin k-hypercubes of order n and En,k is the set of all even Latin
k-hypercubes of order n.

Theorem 3.1 If n is odd, then |E i
n,k| = |Oi

n,k| and |En,k| = |On,k|.

Proof. Let Φi : Tn,k → Tn,k where Φi(L) = L′ such that if (a1, a2, a3 . . . , an) is an i-
line of L then the corresponding i-line of L′ is (a2, a1, a3, . . . , an). It is clear that L′ is
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a Latin k-hypercube of order n and that Ψ(a2, a1, a3, . . . , an) = (−1)Ψ(a1, a2, a3, . . . ,
an). This gives

Pari(L
′) = (−1)nk−1

Pari(L) = −(Pari(L)).

Thus Φ is an injection from E i
n,k to Oi

n,k and from Oi
n,k to Ei

n,k. This yields |Ei
n,k| =

|Oi
n,k|.

Notice that Parj(Φi(L)) = Parj(L) when j 6= i. Then the map Φ is a bijection
between En,k and On,k as well, which implies that |En,k| = |On,k|. �

Corollary 3.2 If n is odd, then for all Latin k-hypercubes L we have |En,k ∩ IL| =
|On,k ∩ IL|.

Proof. We note that L′ = Φ(L) ∈ IL so the proof of Theorem 3.1 applies here as
well. �

These results imply that when n is odd, then each isotopy and main class splits
into pieces of equal size of even and odd Latin hypercubes for each i and that the
entire space splits into pieces of equal size of even and odd Latin hypercubes as well.
When n is even the map Φi preserves parity.

Proposition 3.3 Let Ω = (ε, ε, . . . , ε, τ) ∈ Gn,k, where ε is the identity of Sn and
τ(k + 1) = k + 1. Then Pari(L) = Parτ(i)(Ω(L)) and Par(L) = Par(Ω(L)).

Proof. We know that the (nk−1) i-lines of L are exactly the (nk−1) τ(i)-lines of
Ω(L). Thus Pari(L) = Parτ(i)(Ω(L)).

Then we have Par(L) =
∏

(Pari(L)) =
∏

(Parτ(i)(Ω(L))) = Par(Ω(L)). �

In [1], Alon and Tarsi conjectured that for Latin squares of even order the num-
ber of even Latin squares does not equal the number of odd Latin squares. This
conjecture is shown to be equivalent to a variety of conjectures, see [7] for a complete
description. Proofs of this conjecture when the order is p + 1 and n = 2rp where p
is a prime can be found in [3] and [4] respectively. We generalize this conjecture to
the following.

Conjecture 3.4 If n is even then

|Ei
n,k| 6= |Oi

n,k| and |En,k| 6= |On,k|.

When n = 2, |L2,k| = 2 for all k, since any coordinate determines the rest. The
two hypercubes are even and so the conjecture is true when n = 2.

Define Li to be the Latin k-hypercube formed when the symbols are switched
with the i-lines of L.

Theorem 3.5 If L is a Latin k-hypercube then Pari(L) = Pari(L
i).
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Proof. If L(α1,...,0,...,αk), L(α1,...,1,...,αk), . . . L(α1,...,n−1,...,αk) = (s0, s1, . . . , sn−1) is an
i-line in L then L(α1,...,s0,...,αk), L(α1,...,s1,...,αk), . . . L(α1,...,sn−1,...,αk) = (0, 1, . . . , n − 1) is
the corresponding i-line in Li. In the first the permutation is given by i → si and
the second the permutation is given by si → i. Then the result follows from the fact
that Ψ(σ) = Ψ(σ−1). �

The previous result for Latin squares can be found in ([9],page 34). In their
terminology, as an example, the row adjugate has the same column parity as the
original square, which is slightly different terminology than ours.

Theorem 3.6 Let L be the circulant Latin k-hypercube of order n. For all k > 2
and for all n we have Pari(L) = 1.

Proof. When n is even and k > 2 each of {(0, 1, 2, . . . , n − 1), (1, 2, . . . , n −
1, 0), (2, 3, . . . , n − 1, 0, 1), . . . , (n − 1, 0, 1, . . . , n − 2)} appears evenly many times in
the i-th direction. If n is odd then each i-line has even parity and so the parity is
even. �

For odd n, the i-parity of the reverse circulant hypercube depends on the direc-
tion. For example, if n = 3 and k = 2 the reverse circulant Latin square is





0 1 2
2 0 1
1 2 0



 .

The row parity is 1 and the column parity is −1. Hence for the reverse circulant
hypercube we can obtain either 1 or −1 depending on i.

4 Permutation hypercubes

Let L = (La1,a2,...,ak
) be a Latin k-hypercube of order n then define a (k + 1) dimen-

sional permutation hypercube with entries from {0, 1} by

Pa1,a2,...,ak,ak+1
= 1 if and only if La1,a2,...,ak

= ak+1. (8)

This connection was first noticed by Gupta in [6].
There are nk entries in L, so in P there are nk+1 entries, nk of which are 1.

Theorem 4.1 In the permutation hypercube P , on any i-line there is exactly one
coordinate with a 1 in it.

Proof. Assume there exists an i-line with 2 coordinates with a 1 in them, that is,

Pa1,a2,...,α,...,ak,ak+1
= Pa1,a2,...,β,...,ak,ak+1

= 1.

Then we have La1,a2,...,α,...,ak
= ak+1 and La1,a2,...,β,...,ak

= ak+1, which means ak+1

appears twice in an i-line of L which is a contradiction. Also ak+1 must appear once
for some α in La1,a2,...,α,...,ak

since it is a Latin k-hypercube. �
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Let L be a Latin k-hypercube of order n and P the corresponding permutation
hypercube. Let La1,a2,...,x,...,ak

with x = 0, 1, 2, . . . , n − 1 be an i-line. This line
viewed as a permutation has corresponding permutation matrix Pa1,a2,...,x,...,ak,y where
x, y = 0, 1, . . . , n−1. If ` is a line of L let P` be its corresponding permutation matrix.
We make the following definition:

Deti(P ) =
∏

` an i−line

Det(P`) (9)

where Det(P`) is the usual determinant, and

Det(P ) =
∏

`

Det(P`). (10)

Theorem 4.2 Let L be a Latin k-hypercube and P its corresponding permutation
hypercube; then Deti(P ) = Pari(L) and Det(P ) = Par(L).

Proof. If {`j} are the i-lines then Ψ(`) = Det(P`) so

Pari(L) =
∏

Ψ(`j) =
∏

Det(P`j
) = Deti(P ).

Also

Par(L) =
k

∏

i=1

Pari(L) =
k

∏

i=1

Deti(P ) = Det(P ).

�

The following theorem is immediate from the construction.

Theorem 4.3 Let (σ1, . . . , σk+1, τ) ∈ Gn,k. If L is a Latin k-hypercube of order
n with corresponding permutation hypercube P , then the Latin k-hypercube (σ1, . . . ,
σk+1, τ)L has permutation hypercube P ′ formed by letting σi act on the i-th coordinate
of P and τ on the set of coordinates.

Let L be a Latin k-hypercube of order n and P its corresponding permutation
hypercube. There are 2(k +1) directions in which P can project, namely each of the
coordinate directions in either the positive or negative direction. That is

Π+
i (P ) = Ma1,a2,...,ai−1,ai+1,...,ak+1

, (11)

where
Ma1,a2,...,ai−1,ai+1,...,ak+1

= ai ⇐⇒ Pa1,a2,...,ak+1
= 1,

and
Π−

i (P ) = Ma1,a2,...,ai−1,ai+1,...,ak+1
, (12)

where
Ma1,a2,...,ai−1,ai+1,...,ak+1

= (n − 1) − ai ⇐⇒ Pa1,a2,...,ak+1
= 1.

The following is immediate.

Theorem 4.4 Let L be a Latin k-hypercube of order n and P its corresponding
hypercube. Then Π+

i (P ) and Π−

i (P ) are Latin k-hypercubes in the main class of L.
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5 Orthogonality Relations

Two Latin squares, L and M are said to be orthogonal if the set {(Li,j, Mi,j)} has n2

distinct elements. We shall investigate an extension of this definition to hypercubes.
Numerous different definitions have been made as an extension to this definition of
orthogonal Latin squares introduced by Euler [5]. For a description of various notions
of orthogonality see [17] or [15] and the references therein. Our interest will be in
one of the most restrictive, namely the following.

Definition 5.1 Two Latin k-hypercubes are said to be orthogonal if each correspond-
ing pair of Latin subsquares of order n are orthogonal. A set of s Latin k-hypercubes
of order n are said to be mutually orthogonal if each pair are orthogonal. In this case
we say we have a set of s mutually orthogonal Latin k-hypercubes (MOLkC).

We shall relate these to an important class of codes, which will require a few
additional definitions.

A code of length ` over Zn is simply a subset of Z
`
n. The distance between two

vectors is the number of coordinates where they differ. The minimum distance of a
code is the smallest distance between any two vectors. Let d be the minimum distance
of a code of length ` over Zn then the Singleton bound gives d ≤ ` − logn(M) + 1
where there are M vectors in the code. Any code meeting this bound is said to be
a maximum distance separable code (MDS). MDS codes are extremely important in
coding theory and their existence relates to numerous combinatorial and geometric
questions. A code with length `, M vectors and minimum distance d is said to be
an [`, M, d] code. A linear code is a code that is also a submodule of Z

`
n. Of course,

Zn is only a field when n is a prime, but a substantial literature exists for codes over
rings. We refer to [18] for example.

We shall now prove some results relating codes and Latin hypercubes. The first
few, namely Theorem 5.2, Lemma 5.3 and Theorem 5.4 are certainly known but we
shall include proofs for completeness. For a proof of equivalent results see Chapter
11 of [13]. For an argument using this relationship to count MDS codes see [16].

Theorem 5.2 There exists a set of s mutually orthogonal Latin k hypercubes of
order n if and only if there exists a [k + s, nk, s + 1] MDS code over Zn.

Proof. Assume L1, L2, . . . , Ls are mutually orthogonal Latin k-hypercubes of or-
der n. Construct the orthogonal array OA(L1, L2, . . . , Ls) where there are nk rows
indexed by Z

k
n where for (a1, a2, . . . , ak) ∈ Z

k
n we have

OA(L1, L2, . . . , Ls)(a1,a2,...,ak) = (a1, a2, . . . , ak, L
1
a1,a2,...,ak

, L2
a1,a2,...,ak

, . . . , Ls
a1,a2,...,ak

).
(13)

This array has nk rows and k+s columns, hence we can view this as a code of length
k + s with nk elements.

If two vectors v and w agree in k− 1 of the first k coordinates then two elements
in the column corresponding to Li in v and w differ since they are in the same Latin
line. Hence the distance is s + 1.
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We can view any k columns as the coordinates. Specifically, if we fix k − 2 of
the first coordinates then any pair of columns for Li and Lj, i 6= j, have every pair
appearing once since Li and Lj are orthogonal. Hence Li and Lj can be used with
these coordinates to make k coordinates using the other two coordinates as Latin
k-hypercubes. This extends to fixing k − r coordinates of the first k since each pair
are orthogonal. So the above proof where v and w agree in the first k − 1 places
applies to any k − 1 coordinates in which they agree.

Given a [k + s, nk, s + 1] MDS code over Zn, the first k coordinates must have all
possible distinct k-tuples since they cannot agree in k places otherwise their distance
would be s which is less than s + 1. Then for column k + i let

Li
a1,a2,...,ak

= α

where the first k coordinates in the vectors are a1, a2, . . . , ak and the vector has α in
the (k + i)-th coordinate.

Assume k − 2 of the first coordinates are the same then if Li
α = Lj

α and Li
β = Lj

β

for α 6= β, i 6= j then the distance between those vectors is less than or equal to s.
This implies that Li is orthogonal to Lj. �

Lemma 5.3 There do not exist n mutually orthogonal Latin k-hypercubes of order n.

Proof. Assume there are n MOLkCs of order n. Fix any k− 2 dimensions in every
hypercube. The corresponding Latin squares are n MOLS of order n which are well
known not to exist. �

The well known Singleton bound gives that an [`, nk, d] MDS code over Zn satisfies
` ≤ n + k − 1. In our case this means that k + s ≤ n + k − 1 = k + (n− 1). We know
s ≤ n − 1 since there cannot be n-MOLkCs of order n by Lemma 5.3. This means
that any MDS code has parameters consistent with Theorem 5.2 which shows that
any MDS code corresponds to a set of MOLkCs of order n.

Let q be a prime power, ai ∈ Fq, ai 6= 0, ai 6= aj for i 6= j, 1 < k < q and consider
the matrix:

M =

















1 1 1 . . . 1 1 0
a1 a2 a3 . . . aq−1 0 0
a2

1 a2
2 a2

3 . . . a2
q−1 0 0

.

.

aq−k
1 aq−k

2 aq−k
3 . . . aq−k

q−1 0 1

















. (14)

The code that has M as a parity check matrix, that is the set of vectors that are
orthogonal to each row of the matrix is a [q + 1, k, q − k + 2] MDS code, see section
11 of [13] for details. This code is known as a RS (Reed-Solomon) code. This gives
the following theorem.

Theorem 5.4 Let q be a prime power. For 1 < k ≤ q + 1 there exists q − k + 1
MOLkCs of order q.
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Proof. A [q + 1, k, q − k + 2] MDS code is guaranteed by the above discussion.
Then write ai as i and by Theorem 5.2 we have k MOLkCs of order q. Notice that
k must be greater than 1 since orthogonality requires that we have at least Latin
squares. �

We shall now show that the relation of orthogonality can be expressed in terms
of permutation hypercubes satisfying a specific property.

Theorem 5.5 Let L1, L2, . . . , Ls be Latin k-hypercubes of order n and P1, P2, . . . , Ps

be their corresponding k + 1 dimensional permutation hypercubes. Then {Li} are
mutually orthogonal if and only if given Pi, Pj, i 6= j and letting A1, A2, . . . , An and
B1, B2, . . . , Bn be the permutation matrices formed when intersecting both permuta-
tion hypercubes with n parallel planes we have that Ai and Bj have at most one line
in common.

Proof. We can assume that Ai corresponds to the i-th symbol and Bj corresponds
to the j-th symbol in the corresponding Latin lines in Li and Lj respectively. Assume
that Ai and Bj have 2 lines in common, then the ordered pair (i, j) appears twice
in the corresponding Latin squares formed from these Latin lines, that is in the two
Latin squares corresponding to the permutation hypercube made up of these n per-
mutation matrices. This is a contradiction because the squares must be orthogonal
if Li and Lj are orthogonal.

Next assume that the any two of these matrices share at most one line. This
implies that every pair (i, j) appears at least once (and then by counting exactly once)
in the overlap of the corresponding Latin squares. Hence the corresponding Latin
squares are orthogonal, which shows that the Latin k-hypercubes are orthogonal. �

The results can be collected into the following.

Theorem 5.6 There is a one to one correspondence between MDS codes over Zn,
mutually orthogonal Latin k-hypercubes of order n, and sets of s permutation hyper-
cubes of dimension (k + 1) satisfying the property in Theorem 5.5.

A Latin k-hypercube L of order n is said to be linear if

La1,a2,...,ak
+ Lb1,b2,...,bk

= La1+b1,a2+b2,...,ak+bk
(mod n).

If M and M ′ are linear k and k′ hypercubes with functions f and g then M ′′ =
M ∗ M ′ is linear. We have

M ′′

a1,...,as,b2,...,bt
+ M ′′

a′

1
,...,a′

s,b′
2
,...,b′t

= g(f(a1, . . . , as), b2, . . . , bt) + g(f(a′

1, . . . , a
′

s), b
′

2, . . . , b
′

t)

= g(f(a1, . . . , as) + f(a′

1, . . . , a
′

s), b2 + b′2, . . . , bt + b′t)

= M ′′

a1+a′

1
,...,as+a′

s,b2+b′
2
,...,bt+b′t

.

It follows by induction that if M1, . . . Mh are linear hypercubes of order n then

M1 ∗ M2 ∗ · · · ∗ Mh
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is a linear hypercube of order n.
It is clear that a linear k-hypercube corresponds to a linear [k+1, k, 2] MDS code.

Theorem 5.7 There is exactly one isotopy class containing linear Latin k-hyper-
cubes.

Proof. A linear Latin k-hypercube is determined by the coordinates

L1,0,0,...,0, L0,1,0,...,0, . . . , L0,0,...,0,1.

Then La1,a2,...,ak
= a1L1,0,0,...,0 + · · · + akL0,0,...,0,1. Each of L1,0,0,...,0, L0,1,0,...,0, . . . ,

L0,0,...,0,1 must be non-zero since L0,0,0,...,0 = 0 and the symbol in these coordinates
must be different from the symbol in L0,0,0,...,0 since each of these symbols is in a
different i-line with L0,0,0,...,0. The symbols in these coordinates must also be a unit
of Zn otherwise the elements of the i-line would not be distinct. If L0,0,...,1,...,0 = αi

where 1 is in the i-th coordinate, then the hypercube L′ with L0,0,...,1,...,0 = α′
i is

formed by permuting the i-th coordinate of L by multiplying the coordinates by a
unit. Hence any two linear Latin k-hypercubes are isotopic. �

Corollary 5.8 If C is a linear [`, k, `−k+1] MDS code then the corresponding `−k
MOLkCs are isotopic.

Proof. Let L be one of the Latin k-hypercubes corresponding to a coordinate of
the code, then if La1,a2,...,ak

= α and Lb1,b2,...,bk
= β then the coordinate beginning

with (a1 + b1, . . . , ak + bk) must have α + β in the coordinate corresponding to L so
the hypercube is linear. Then by the previous theorem all of the k-hypercubes are
isotopic. �

Corollary 5.9 If C is a linear [n + 1, 2, n − 1] MDS code, with n prime, the corre-
sponding n − 1 MOLS complete to a desarguesian plane.

Proof. The Latin squares must all be linear since the code is linear and a linear
Latin square corresponds to the standard construction of desarguesian planes. �

If L is linear then not every Latin k-hypercube in ML is linear. For a linear
hypercube L we have L0,0,...,0 = 0 then simply permuting the symbols 0 and 1 results
in a k-hypercube in ML that is not linear.

Theorem 5.10 Let P be the permutation hypercube corresponding to a k-hypercube
L. The k-hypercube L is linear if and only if Pa1,...,ak,ak+1

= 1 and Pb1,...,bk,bk+1
= 1

then
Pa1+b1,...,ak+bk,ak+1+bk+1

= 1.

Proof. We have Pa1,...,ak,ak+1
= 1 if and only if La1,...,ak

= ak+1 and Pb1,...,bk,bk+1
= 1

if and only if Lb1,...,bk
= bk+1. This gives that Pa1+b1,...,ak+1+bk+1

= 1 if and only if
La1+b1,...,ak+bk

= ak+1 + bk+1 if and only if L is linear. �
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A well known conjecture about MDS codes is that a [`, k, `−k+1] MDS code over
Zn must satisfy ` ≤ n + 1. For linear codes this bound follows from the maximum
size of an arc in projective space. This leads us to conjecture that the maximum
number of Mutually Orthogonal Latin k-hypercubes of order n is bounded above by
n + 1 − k. We have already shown that this number is naturally bounded by n − 1
which corresponds to the value when k = 2. More concretely, we make the following
conjecture.

Conjecture 5.11 Let r be the maximum number of k-MOLkCs of order n then the
max number of (k + 1)-MOLkCs of order n is bounded above by r − 1.

Theorem 5.12 There exist k-MOLkCs of order n if and only if there exists a k-
hypercube of order n such that the numbers 0, 1, 2, . . . , nk − 1 can be placed in the
hypercube so that in each i-line the digits in any place of each k-digit number written
in base n are a permutation of 0, 1, . . . , n − 1.

Proof. Let L1, . . . , Lk be a set of k-MOLkCs of order n. Define a k dimensional
hypercube of order n as follows:

Mi1,i2,...,ik = (L1)i1,i2,...,ik + (L2)i1,i2,...,ikn + · · · + (Lk)i1,i2,...,ikn
k−1

=
k

∑

j=1

(Lj)i1,i2,...,ikn
j−1.

It is clear that in any i-line each of the symbols occurs in each place since it is
an i-line of a Latin k-hypercube.

Consider the MDS [2k, k, k + 1] code constructed from L1, L2, . . . , Lk via Theo-
rem 5.2. Then if Mi1,i2,...,ik = Mi′

1
,i′

2
,...,i′

k
, with at least one ij 6= i′j then the corre-

sponding vectors in C would have distance less than k + 1 which is a contradiction.
Hence each element from 0 to nk − 1 appears exactly once.

The other direction is similar; simply let (Ls)i1,i2,...,ik be the s-th place of the
element in Mi1,i2,...,ik when the elements are written in base n. �

Theorem 5.13 Let M be a k-hypercube of order n formed in Theorem 5.12; then

the sum of every i-line is (n(nk−1)
2

).

Proof. We know that each number in {0, 1, 2, . . . , n − 1} occurs once in each
digit place. Thus, if you sum the numbers in each digit’s place in an i-line we have

(0 + 1 + 2 + · · · + n − 1)(1 + n + n2 + · · · + nk−1) = ( (n−1)n
2

)(nk−1
n−1

) = (n(nk−1)
2

). �

Hence, the matrix M is a magic hypercube in the sense that each i-line gives the
same sum, namely n(nk − 1)/2. Of course, any k-hypercube with the property that
all i-lines sum to a constant and each element appearing once from 0 to nk − 1 must
have this sum. Notice that we have relaxed the usual conditions given for magic
squares that the diagonals have the same sums as the lines.

Corollary 5.14 The following are equivalent:
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• A [2k, k, k + 1] MDS code.

• A set of k MOLkCs of order n.

• A magic k-hypercube of order n where the digits place in each element in an
i-line is a permutation of 0, 1, . . . , n − 1.

• A set of k permutation hypercubes of size k+1 of order n satisfying the condition
in Theorem 5.5.

Moreover, if we have a [2k, k, k + 1] linear MDS code then the corresponding
magic hypercube is constructed from MOLkCs all of which are equivalent.

Given the standard construction of MDS codes given above we have the following.

Corollary 5.15 Let q be odd and then the [q + 1, q+1
2

, q+3
2

] RS code gives a magic
hypercube.

Proof. This follows from Theorem 5.4. �

For example, the [4, 2, 3] ternary code gives the magic square:





0 5 7
4 6 2
8 1 3



 . (15)

The [6, 3, 4] MDS code over F5 gives the following Magic hypercube of order 5,
formed by stacking the following squares:













0 83 36 119 72
64 17 95 28 106
123 51 9 87 40
32 110 68 21 79
91 49 102 55 13













,













43 121 54 7 85
77 30 113 66 24
11 94 47 100 58
70 3 81 39 117
109 62 15 98 26

























56 14 92 45 103
115 73 1 84 37
29 107 60 18 96
88 41 124 52 5
22 75 33 111 69













,













99 27 105 63 16
8 86 44 122 50
67 20 78 31 114
101 59 12 90 48
35 118 71 4 82

























112 65 23 76 34
46 104 57 10 93
80 38 116 74 2
19 97 25 108 61
53 6 89 42 120












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