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Abstract

The open neighborhood NG(e) of an edge e in a graph G is the set
consisting of all edges having a common end-vertex with e and its closed
neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the
edge set of G, into the set {−1, 1}. If

∑

x∈NG[e] f(x) ≥ 1 for at least a half

of the edges e ∈ E(G), then f is called a signed edge majority dominating
function of G. The minimum of the values of

∑

e∈E(G) f(e), taken over
all signed edge majority dominating functions f of G, is called the signed
edge majority domination number of G and is denoted by γ′

sm(G). In
this paper we initiate the study of signed edge majority domination in
graphs. We first use an existing upper bound for the majority domination
numbers of graphs to present an upper bound for signed edge majority
domination numbers of graphs. Then we establish a sharp lower bound
for the signed edge majority domination number of a graph.
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1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). We use [5] for terminology
and notation which are not defined here. The line graph of a graph G, written L(G),
is the graph whose vertices are the edges of G, with ef ∈ E(L(G)) when e = uv and
f = vw in G. It is easy to see that L(Cn) = Cn and L(Pn) = Pn−1.

Two edges e1, e2 of G are called adjacent if they are distinct and have a common
end-vertex. The open neighborhood NG(e) of an edge e ∈ E(G) is the set of all
edges adjacent to e. Its closed neighborhood is NG[e] = NG(e) ∪ {e}. For a function
f : E(G) −→ {−1, 1} and a subset S of E(G) we define f(S) =

∑

e∈S f(e). The
edge-neighborhood EG(v) of a vertex v ∈ V (G) is the set of all edges at vertex
v. For each vertex v ∈ V (G) we also define f(v) =

∑

e∈EG(v) f(e). A function

f : E(G) −→ {−1, 1} is called a signed edge majority dominating function (SEMDF)
of G, if f(NG[e]) ≥ 1 for at least a half of the edges e ∈ E(G). The minimum of the
values of f(E(G)), taken over all signed edge majority dominating functions f of G, is
called the signed edge majority domination number of G and is denoted by γ′

sm(G).
The signed edge majority dominating function f of G with f(E(G)) = γ′

sm(G) is
called γ′

sm(G)-function. The authors also defined [4] the signed edge majority total

domination number of a graph and established a sharp lower bound for the signed
edge majority total domination number of forests.

A function f : E(G) −→ {−1, 1} is called a signed edge dominating function

(SEDF) of G, if f(NG[e]) ≥ 1 for each edge e ∈ E(G). The minimum of the values of
f(E(G)), taken over all signed edge dominating functions f of G, is called the signed

edge domination number of G. The signed edge domination number was introduced
by Xu in [6] and denoted by γ′

s(G). The signed edge domination number has been
studied by several authors [3, 6, 7, 8].

An opinion function on a graph G is a function f : V (G) −→ {−1, 1}. By the
vote of a vertex v we mean

∑

w∈N [v] f(w). A k-subdominating function [2] of a graph
G is an opinion function for which the votes of at least k vertices are positive. The
k-subdominating number of G is the minimum of the values of

∑

v∈V (G) f(v), taken

over all k-subdominating functions f of G. In the special case [1] when k = ⌈ |V |
2
⌉,

we have the majority domination number γmaj(G).

Here are some well-known results on γmaj(G) and γ′
s(G).

Theorem 1. [1] For any connected graph G of order n,

γmaj(G) ≤
{

1 if n is odd
2 if n is even.

The proof of the following theorem is straightforward and therefore omitted.

Theorem 2. For any graph G of order n ≥ 2 which has no isolates,

γ′
sm(G) = γmaj(L(G)).
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Theorems 1 and 2 lead to:

Corollary 3. For any connected graph G of size m ≥ 1 which has no isolates,

γ′
sm(G) ≤

{

1 if m is odd
2 if m is even.

Theorem 4. [7] For any positive integer m, define

Ψ(m) = min{γ′
s(G) | G is a graph of size m}.

Then

Ψ(m) = 2⌈1

3
⌈
√

24m + 25 + 6m + 5

6
⌉⌉ − m.

We make use of the following lemma in the next section. The proof of this lemma is
straightforward.

Lemma 5. Let Ψ be as in Theorem 4.

1. m ≥ Ψ(m) for every positive integer m, and

2. Ψ(a) + Ψ(b) ≥ Ψ(a + b) for each pair of positive integers a and b.

2 A lower bound for SEMDN of graphs

For a graph G, let ω(G) denote the number of components of G and T (G) = {u ∈
V (G) | deg(u) ≤ 2}. Let f be an SEMDF of G. An edge e is said to be a +1 edge if
f(e) = 1 and it is said to be a −1 edge if f(e) = −1. In this section we prove that
for any simple graph G of order n ≥ 3 and size m, γ′

sm(G) ≥ Ψ(t)− (m− t) for some
integer ⌈m

2
⌉ ≤ t ≤ m. Moreover, we show that this bound is sharp for t = ⌈m

2
⌉.

Theorem 6. Let G be a simple graph of order n ≥ 3 and size m. Then

γ′
sm(G) ≥ Ψ(t) − (m − t)

for some integer ⌈m
2
⌉ ≤ t ≤ m. Furthermore, this bound is sharp when t = ⌈m

2
⌉.

Proof. The statement holds for all simple graphs of size m = 1, 2, 3. Now assume
m ≥ 4. Let, to the contrary, G be a simple graph of size m ≥ 4 such that γ′

sm(G) <

Ψ(t) − (m − t) for every integer ⌈m
2
⌉ ≤ t ≤ m. Choose such a graph G with as few

edges as possible for which ω(G) + |T (G)| is maximum. Without loss of generality
we may assume G has no isolated vertices. Let f be a γ′

sm(G)-function. Define
P = {e ∈ E(G) | f(e) = 1}, M = {e ∈ E(G) | f(e) = −1} and X = {e ∈ E(G) |
f(N [e]) ≥ 1}. Let G1, . . . , Gω(G) be the connected components of G. If Gi ≃ K2 for
each 1 ≤ i ≤ ω(G), then obviously

γ′
sm(G) ≥ ⌈m

2
⌉ − ⌊m

2
⌋ ≥ 0 ≥ Ψ(⌈m

2
⌉) − ⌊m

2
⌋.
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Let G have a component H of size at least 2.

Claim 1. E(H) ∩ M ⊆ X.

Let e ∈ E(H) ∩ M . Suppose that, to the contrary, e 6∈ X. Assume G′ is obtained
from G − e by adding a new component u0v0. Define g : E(G′) −→ {−1, 1} by
g(u0v0) = −1 and g(e) = f(e) if e ∈ E(G) \ {e}. Obviously, g is an SEMDF of G′

with g(E(G′)) = f(E(G)) and ω(G′) + |T (G′)| > ω(G) + |T (G)|. This contradicts
the assumptions on G. Thus e ∈ X.

Claim 2. For every non-pendant edge e = uv ∈ E(H) ∩ M we have deg(u) =
deg(v) = 2.

If f(u) ≥ 1 (the case f(v) ≥ 1 is similar) and G′ is obtained from G − e by adding
a pendant edge uv′, then obviously g : E(G′) −→ {−1, 1}, which is defined by
g(uv′) = −1 and g(x) = f(x) if x ∈ E(G)\{e}, is an SEMDF of G′ with g(E(G′)) =
f(E(G)) and ω(G′)+ |T (G′)| > ω(G)+ |T (G)|. This contradicts the assumptions on
G. Hence, f(u) = f(v) = 0. Therefore deg(u) and deg(v) are even. Let deg(u) ≥ 4
(the case deg(v) ≥ 4 is similar). Then there is a +1 edge e′ = uw at u. Assume G′

is obtained from G − {e, e′} by adding a new vertex z and two new edges vz and
wz. Define g : E(G′) −→ {−1, 1} by g(vz) = −1, g(wz) = 1 and g(x) = f(x) if
x ∈ E(G) \ {e, e′}. Obviously, g is an SEMDF of G′ with g(E(G′)) = f(E(G)) and
ω(G′) + |T (G′)| > ω(G) + |T (G)|, a contradiction. Hence, deg(u) = deg(v) = 2.

Claim 3. Let e = uv ∈ E(H) ∩ M be a non-pendant edge and uu′, vv′ ∈ E(G).
Then uu′, vv′ ∈ X.

Let, to the contrary, uu′ 6∈ X (the case vv′ 6∈ X is similar). Since e ∈ X, f(uu′) =
f(vv′) = 1. Suppose that deg(u′) = 1 and G′ is obtained from G−{e, uu′} by adding
a pendant edge vv1 and a new component u0v0. Define g : E(G′) −→ {−1, 1} by
g(vv1) = −1, g(u0v0) = 1 and g(x) = f(x) if x ∈ E(G) \ {e, uu′}. Then g is an
SEMDF of G′ with g(E(G′)) = f(E(G)) and ω(G′) + |T (G′)| > ω(G) + |T (G)|, a
contradictions. Therefore deg(u′) ≥ 2. Similarly, we can see that deg(v′) ≥ 2.

First let u′ = v′. Since uu′ 6∈ X, we have vv′ 6∈ X. Suppose that there exists a
−1 pendant edge u′z at u′. By Claim 1, u′z ∈ X, which implies that f(u′) ≥ 1. Let
G′ be the graph obtained from G − {e} by adding a new component u0v0. Define
g : E(G′) −→ {−1, 1} by g(u0v0) = −1 and g(x) = f(x) if x ∈ E(G)\{e}. Obviously,
g is an SEMDF of G′ with g(E(G′)) = f(E(G)) and ω(G′)+|T (G′)| > ω(G)+|T (G)|,
a contradiction. Therefore, there is no −1 pendant edge at u′ = v′. If there exists a
−1 non-pendant edge at u′, then an argument similar to that described in Claim 2
shows that deg(u′) = 2, a contradiction. Thus every edge at u′ is a +1 edge. This
forces uu′ ∈ X, a contradiction.

Now let u′ 6= v′. Since we have assumed uu′ 6∈ X it follows that f(u′) ≤ 1. If
there is a −1 pendant edge u′w at u′, then by Claim 1 we have u′w ∈ X and hence,
f(u′) = f [u′w] ≥ 1. If there is a −1 non-pendant edge at u′, then deg(u′) = 2 by
Claim 2 and hence, f(u′) = 0. It follows that f(u′) = 0, 1.

When f(u′) = 1, define G′ to be the graph obtained from G − {e} by adding a
new component u0v0. Then g : E(G′) −→ {−1, 1} defined by g(u0v0) = −1 and
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g(x) = f(x) if x ∈ E(G) \ {e} is an SEMDF of G′ with g(E(G′)) = f(E(G)) and
ω(G′) + |T (G′)| > ω(G) + |T (G)|, a contradiction. Therefore f(u′) = 0 and hence,
there exists a −1 edge u′u′′ at u′. If deg(u′′) = 1, define G′ to be the graph obtained
from G − {u′u′′} by adding a new component u0v0. Then g : E(G′) −→ {−1, 1}
defined by g(u0v0) = −1 and g(x) = f(x) if x ∈ E(G)\{u′u′′} is an SEMDF of G′ with
g(E(G′)) = f(E(G)) and ω(G′) + |T (G′)| > ω(G) + |T (G)|, a contradiction. Hence,
deg(u′′) = 2 (see Claim 2). Let G′ be obtained from G − {e, uu′, u′u′′} by adding a
new component u0v0 and two new edges u′′z, zv. Then g : E(G′) −→ {−1, 1} defined
by g(u0v0) = −1, g(u′′z) = −1, g(zv) = 1 and g(x) = f(x) if x ∈ E(G)\{e, uu′, u′u′′}
is an SEMDF of G′ with g(E(G′)) = f(E(G)) and ω(G′)+ |T (G′)| > ω(G)+ |T (G)|,
a contradiction. Therefore uu′ ∈ X, a contradiction.

Claim 4. E(H) ∩ P ⊆ X.

Let e = uv ∈ E(H) ∩ P . If there is a −1 non-pendant edge at u or at v, then by
Claim 3 we have e ∈ X. If there exists a −1 pendant edge e′ at u, then e′ ∈ X

by Claim 1 and hence, f(u) = f [e′] ≥ 1. If all the edges at u are +1 edges, then
f(u) ≥ 1. Similarly, if there is no −1 non-pendant edge at v, we see that f(v) ≥ 1.
Hence, e ∈ X.

Let G1, . . . , Gs be the connected components of G for which E(Gi) ⊆ X. Thus,
f |Gi

is a γ′
s-function on Gi for each 1 ≤ i ≤ s. Now by Claims 1 and 3, X ∩

[∪w(G)
i=s+1E(Gi)] = ∅. Let |E(Gi)| = mi for each 1 ≤ i ≤ w(G). Then |X| =

∑s

i=1 mi ≥
⌈m

2
⌉ and

∑w(G)
i=s+1 mi ≤ ⌊m

2
⌋. Then by Lemma 5,

γ′
sm(G) =

∑s

i=1 γ′
s(Gi) −

∑w(G)
i=s+1 mi

≥ ∑s

i=1 Ψ(mi) −
∑w(G)

i=s+1 mi

≥ Ψ(
∑s

i=1 mi) −
∑w(G)

i=s+1 mi

≥ Ψ(t) − (m − t)

where t =
∑s

i=1 mi ≥ ⌈m
2
⌉.

In order to prove that the lower bound is sharp when t = ⌈m
2
⌉, let H1 be a

graph of size ⌈m
2
⌉ with γ′

s(H) = Ψ(⌈m
2
⌉) (see [7]) and let H2 be a graph of size ⌊m

2
⌋

such that V (H1) ∩ V (H2) = ∅. Suppose G = H1 ∪ H2 and f is a γ′
s(H1)-function.

Then g : E(G′) −→ {−1, 1} defined by g(e) = f(e) if e ∈ E(H1) and g(e) = −1 if
e ∈ E(H2), is an SEMDF of G with g(E(G)) = Ψ(⌈m

2
⌉) − ⌊m

2
⌋. This completes the

proof.
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