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Abstract. In this paper, we show that for a shifted complex ¥ < 2F
with respect to a poset P with minimum element 0 and an intersecting

subfamily % ¢ %, #¢ = #{Fec3J ;0<F}.

We denote the set {1,2,..,n} by [n], the family of all subsets of a
set X by 2%, #F denotes the number of elements of a set F. Let %
be a family of subsets of [n], ie., ¥ = {Fy,..,F, } where F{ ,.., F,
are distinct subsets of [n]. A family F is intersecting if for every F;,
F; € , F;nF; # . For families ¥, § ¢ 2", ¢ and & arc
cross—intersecting if GNF # & for V G € % and V F € F. A
family ¥ < 2! is called a complex if G ¢ F € J implies G € F.
We already know the following results. For an intersecting family ¥ <
2"l 49 < 2" ([1]) and for a complex ¥ ¢ 2" and cross-intersecting
subfamilies %, # ¢ F, #% +#¥ = #F ([4]). |

For F, G & [n], if there exists a one-to-one mapping f:F -->G
with x = f(x) for each x € F, then we write F = G. F ¢ 2ln
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is V-hereditary if G < F< J implies G € %. V.Chvatal introduced

this notion and proved the next result,

Theorem A (1974 [2]). Let F ¢ 2" be a V-hereditary family and
be an intersecting subfamily of ¥. Then #% < #{ Fec % ;1<F}. B

H.Era extended the notion of V.Chvatal and also showed the following
result, Let P be a finite ranked poset with the minimum element 0,
For F, G & P, if there exists a one-to-one mapping f:F --> G with
x = f(x) in P or x and f(x) are incomparable for each x € F, then
we writt ¥ =p G. F < 2" is P-hereditary it G =, Fe 3

implies G € %,

Theorem B ([3]). Let P be a finite ranked poset with the minimum
element 0 and ¥ ¢ 20 be a P-hereditary family. For an intersecting
subfamily % of %, #¢ < #{FcJ ;0cF}. B

Let P be a finite poset with the minimum element 0. For a family

F ¢ 2P and @ £ B in P, we define
(F-{BYv{a} if ad¢F, BeF, (F-{BY)u{a}¢F
Sa,ﬁ(F): .
F , otherwise
for each F € F and Sy g(F) ={Sq g(F); FEF }. Then #Sy g(F)

=#% and if ¥ is complex and intersecting, then Sq, p(F) is also

complex and intersecting.

Proposition 1. For a finite poset P and a = BinpP, it 7 ¢ 2¥ is
complex, then S, g(F) is also complex.

Proof. We suppose that there exist G, F ¢ P such that G € F €
Sa,p(F) and G ¢ S4 g(F).

Case 1. F € F .,
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Since J is complex, G € . So a ¢ G, B € G, (G-{B}Hv{a}
¢ % and B € F. If @ € F, then (G-{B}vy{a} < F, which
contradicts the property that ¥ is complex. If @ ¢ F, then (F-{B})U{a}
€ F and (G-{B)Hv{a} < (F-{B}u{a}, which contradicts the
property that F is complex.

Case 2. F ¢ &

Then @ € F, B ¢ F and (F-{a})U{B} € F. If G € F, then
a ¢ G, B € G and (G-{B})v{a} ¢ F. So G ¢ F, which is a
contradiction. If G ¢ F, then (G-{a})VU{B} < (F-{a})u{B} and
G =(G-{a})u{B} € F. Since G'n{a,B} ={B}, (G-{BPHv{a}
=G € S, p(F), which is a contradiction. H

Proposition 2. For a finite poset P and @ = B in P, if § ¢ 2P s
intersecting, then S, g(¥) is also intersecting.

Proof. We suppose that there exist G , F € S, g(F) such that GNF
= . Since F is intersecting, both of G and F do not belong to .
We assume that F ¢ . Thus there exists H € & such that Sa, p(H)
= Fand H 4 F. By the definition of (a,f8)-shifting, H = (F-{a})V{B}
€ 9, a € Fand B ¢ F. f G ¢ F, then @ € G and FNG 4
&, which is a contradiction. Thus G € %, B € G and a ¢ G.
Since S, 8(G) = G, (G-{Bhu{a} € F by the definition of
(@, B)-shifting. Then ((F-{a}VU{B}) n ((G-{BHv{a}) =
(F-{a)n(G-{B}) U ({BING-{B)) Vv ((F-{aphn{a}) v
Ha}yn{B}) =F-{a}n(G-{B}) =, contradicting the fact that F

is an intersecting family, B
A family F is shifted if Sq g(F) = F for all a, B such that «

< B in P. We obtain the following result which is concerned with

shifted complexes and intersecting families.
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Theorem 3. Let P be a finite poset with the minimum element 0 and
F < 2P be a shifted complex. For an intersecting subfamily % of %,
#E S #{F€F ;0€F}.

Proof. Let $(0) = {F-{0};0€F<% }and F, ={F<J ;0¢F}. By
Proposition 2, we can assume that % is shifted. Then we define the
family $. ={H;HC3G<%}, that is, if G € % and H ¢ G, then
H € %. In the following we show that $. ={H; HC3IG<€%} is a
shifted complex.

Suppose that %. is not a shifted complex. Then there exist a, S
€ P and H € %. such that a = B, Hn{a,B} = {B} and
(H-{BYu{a} ¢ %.. By definition of %., there exists G € % such
that H ¢ G. If Gn{a,B} = {B}, then (G- {B})yv{a} € ¥ because
¢ is shifted. Since (H-{F}u{a} < (G-{B}Hvu{a} € ¥,
(H-{B})v{a} € ¥., which is a contradiction. If Gn{a,B} 4 {B},
then @,8 € G. Since (H-{B})v{a} ¢ (G-{BHv{a} ¢ G € ¥,
(H-{B}u{a} € %., which is a contradiction.

Thus . ={H; Hg 3G<¥%} is a shifted complex and ¢ ¢ %. ¢
F. So for $.(0) ={G-={0};0€G<%.}, #£.(0) = #F(0). Therefore
without loss of generality we can assume that %, =%. For VH €
$.-%, H C 3G € $. Since ¥%. is shifted, 0 ¢ H implies HU {0}
€ %, Let$y ={Ge¥;0¢/G}and 8 ={CeFy; IG€%,,CnG =D}
Since %, and Fy- € are cross-intersecting, #%, + #(Fo- 6) = #F,
and therefore #6 = #%, For 8% ={CU{0};Cec€}, #8* =#%.
For C € 6 and G € %, since 0 ¢ G and CNG = O, ({0}UC)NG
= . By the fact that ¥ is intersecting, {0}UC ¢ %. So €*'ny¥
= . Since every element of (&-¢%pu €* contains 0 and ®* < 7,
#E6  = H#G -#9,+#6 = #(E-%uEh) = #50). H

Proposition 4. Let P be a finite poset with the minimum element 0. If
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F ¢ 2 isa P-hereditary family, then ¥ is a shifted complex.
Proof. We assume that G & 2% and G ¢ 3F € F. Since the mapping
f from G to F such that f(x) =x is a one-to-one mapping, G =p F.
By the property that ¥ is a P-hereditary family, G € . Thus & is
complex.

We assume that ¥ is not shifted. Then there exist @ and B such
that @ ,8 € P and @ £ B and F € ¥ such that Fn{a,B} = {B}
and (F-{B})v{a} ¢ F. We define the mapping f from (F-{B}v{a}

to F as follows:

1) = { ; ifx # a

ifx=a.
Since @ = f in P, x = f(x) for Yx € (F-{B})v{a}. Thus f is

a one-to-one mapping and (F-{f})u{a} =p F. By the property that
F is a P-hereditary family, (F-{8})v{a} € %, which is a contradiction.
[ |

By Proposition 4 and Theorem 3, we also obtain Theorem B. However
the converse of Proposition 4 does not hold. For example, for the poset
of Figure 1, ¥ = {{0,1,2}, {0,1}, {0,2}, {1,2}, {0}, {1}, {2} } is a
shifted complex. Since {3} =, {2} and {3} ¢ F, F is not
P-hereditary. So we do not obtain Theorem 3 from Theorem B.

We can easily see that Z is a V;hereditary family if and only if %
is a shifted family with respect to a linear order set. Let P be a poset
with the minimum element and I/(P) be a liner extension of P. If & is
a shifted family with respect to I(P), then ¥ is a shifted family with
respect to P. So we also obtain Theorem .A by Theorem 3. But the
converse does not hold. For example, ¥ ={{0,1,2}, {0,3,4} } is a
shifted family with respect to the poset of Figure 1 and is not a shifted

family with respect to the liner extension 0 = 1 £ 2 £ 3 = 4,

57




0

Figure 1.

References.

{1] I.,Anderson, Combinatorics of finite sets,Oxford Univ. Press, (1987).
[2] V.,Chva;tal, Intersecting families of edges in hypergraphs having
the hereditary property Hypergraph Seminar, LNM 411,Springer (1974)
61-66,

[3] H.,Era, A comment on a Chvatals conjecture, preprint.

[4] J.,Marica and J.,Sch(;nheim, Differences of sets and a problem of
Graham, Can. Math. Bull. 12 (1969) 635-637.

58



