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Abstract. A graph X with at least two independent edges is 2-extendable if any two
independent edges of X are contained in a perfect matching of X. In this paper, we
prove that a connected Cayley graph of even order on a dihedral group is 2-extendable
if and only if it is not isomorphic to any one of the following circulant graphs:

1) Zow(l,2n-1),n 2> 3;

(I1) Z2n(1,2,2n-1,2n=2), n 2 3;
(II1) Z4n(l,4n—1,2n), n 2 2;

(IV) Zin42(2,4n,2n+1), n > 1; and
V) Zan42(1,4n+1,2n,2n+ 2),n> 1.

1. Introduction.

For a simple graph X, we use V(X) and E(X) to denote the vertex-set and the
edge-set of X respectively. For any set S C V(X), we denote by X[S] the subgraph
of X induced by S. The edge incident with vertices z and y is denoted by zy.

Let G be a group and S a subset of G such that the identity element 1 ¢ S
and 27! € S for each z € S. The Cayley graph X(G; S) on the group G has the
elements of G as its vertices and edges joining g and gs for all ¢ € G and s € 5.
We call S the symbol set, and say that the edge g(gs) has the symbol s. It is well-
known that every Cayley graph is vertex-transitive. For S € G, we denote by (5)
the subgroup of G induced by S. When the group is cyclic, or G = Z,, the Cayley
graph X(G; S) is called a circulant and is denoted by Zm(.S).

The dihedral group D, is a group which is generated by two elements p and
7, where p* = 72 = 1 and 7p7 = p~!. We denote {z7 | z € (p)} by (p)7. From
the relations p" = 1% = 1 and 7pr = p~!, we can easily obtain (pr)?* = 1 and
pirp~i = 7p~ () = pitir, which are useful later. It is easy to see that D, has a
cyclic subgroup (p) of index 2 which is isomorphic to Z,. Moreover, D,, = (p)U(p)7.

A perfect matching of a graph X is a set of independent edges which together
cover all the vertices of X. For a positive integer k, if M is a set of k independent
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edges of X and M* is a perfect matching of X such that M C M*, we call M* a
perfect matching extension of M, or M can be eztended'to‘ M*. A graph X is said
to be k-eztendable if it contains k ;ndependent edges and any k independent edges
of X can be extended to a perfect matching of X.

The concept of k-extendability was introduced by Plummer [5] in 1980 and he
(see (5], [6], [7]) studied the relationship between k-extendability and other graph
parameters, e.g., degree, connectivity, genus, etc.. The motivation for studying k-
extendable graph is to determine a greatest lower bound on the number of different
perfect matchings in a graph (which has a perfect matching). See, for instance,
5] for more details. Little, Grant and Holton [3] gave a characterization of 1-
extendable graphs and Yu [11] further obtained a characterization for k-extendable
graphs. Schrag and Cammack [8] and Yu [10] classified the 2-extendable generalized
Petersen graphs. Recently, Chan, Chen and Yu (2] classified the 2-extendable Cayley
graphs on abelian groups. Their classification, as stated below, will be used in the

proof later.

Theorem 1.1. (Chan, Chen and Yu [2]) Let X = X(G; S) be a Cayley graph
on the abelian group G of even order. Then X is 2-extendable if and only if it s
not isomorphic to any of the following graphs:

(1) Zy,(1,2n 1), n > 3;
(I) Z3n(1,2,2n—1,2n—2),n > 3;
(III) Zyn(1,4n --vl,2n), n > 2;
(IV) Z4n42(2,4n,2n+1),n > 1; and
(V) Zgng2(l,4n+ 1,2n,2n +2), n > 1.
Stong [9] has proved that any Cayley graph on a dihedral group is 1-factorizable.
His result implies that X(D,;$) is l-extendable. In this paper, we shall give a
classification for 2-extendable Cayley graphs on dihedral groups by showing that,
except for the five classes of graphs in Theorem 1.1, X(D,;S) is 2-extendable.
From now on, we shall assume that X = X(D,; S) is connected, that is, S is
a generating set of D,, or (S) = D,. For convenience, we let $' = SN (p) and
5" = SN ((p)7). Then clearly, S" # 0 as X(D,; S) is connected. Also, without loss
of generality, we may always assume 7 € S, Let E, be a set of edges which has the
symbol s for any s € §. Then, for s € S”, E, is a perfect matching of X (D,;S).
We introduce a class of graphs, denoted by C[2q, s, t] (where s+t = 0 (mod 2)),
which are defined as follows. The vertex-set is {(1,7) |0 < i < 2¢-1,0< ;5 <51},
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which is the cartesian product of Zo, and Z,. The edge-set consists of three types

of pairs as given below:

(1) (4,7)(3+1,7) and (2¢ —1,7)(0,7), where1 =0,1,2,...,2¢—-2and j = 0,1,2, ...,
s —1;

(2) (4,7)(¢,5 + 1), where i+ 35 = 0 (mod 2), : = 0,1,2,...,2¢ ~ 1 and j =
0,1,2,...,5 —1; and

(3) (204 1,0)(2¢+1+¢t,5—1), wherei =0,1,...,¢ — 1 and the first coordinates
are computed modulo 2¢.

Clearly, C[2g, s, t] is a 3-regular graph. Alspach and Zhang [1] introduced the brick-

product of Co, with Py which is a C[2¢, s,t] without edges of type (3). It was proven

in [1] that C[2q,s,t] is a Cayley graph on a dihedral group. As an example, The

graph C[6,5,1] is given in Figure 1.1.

(0.0) (0,1)  (0,2) (0,3) (0,4)
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(5,0)¢

Figure 1.1. The graph CJ[6,5, 1]

To conclude this section, we make the following observation which sketches the
structure of Cayley graphs on dihedral groups.

Observation 1.2. A Cayley graph X = X(D,;S) on a dihedral group D,
can be decomposed into two subgraphs on (p) and (p)7 together with a class of
perfect matchings joining them. The two subgraphs on (p) and (p)r are isomorphic
and both are isomorphic to a circulant H on Z,,. Furthermore, if |S"| = 1, then X
is isomorphic to H x Kj.

Proof. Let X[{p)] and X[{p)7] be the induced subgraphs on (p) and (p)7,
respectively. Then X[(p)] = X((p); S") = Z,(S*), where S* = {i | p* € S}, which
is a circulant and ¢ : X[(p)] — X[(p)7] defined by ¢(p') = p'r is an isomorphism
(note that X'[(p)] may be edgeless). _

The class of perfect matchings is {E; | s € S”}. Moreover, if S" = {7}, then,
since the isomorphism ¢ carries each p' to p'r which is adjacent to p*, we have:

X=2HxK, ¥
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We set Ey = E(X[(p)]), E» = E(X[{p)r]) and E; = E(X(D,;5")). Then
E(X)=E, UE, UE,.

2. Basic.Lemmas.

We need the following lemmas in the proof of the main theorem.
Lemma 2.1. Ifn is odd, then Z,(S) x K, = Z2,(25U {n}).
Proof. Define a mapping f from Z,(S) x K to Zyn (25 U {n}) by

_ [ (mod 2n) ify=0,
f(fay)*{2x+n (mod 2n) ify=1.

Then, it is easy to see that f is the required isomorphism. g

Lemma 2.2. Let X = X(D,;{p'r,p'r, p%*}) be connected.
(1) ¥ X(Dn;{p'r,p7}) is connected, then X is a 3- or 4-regular circulant.

(2) I X(Da;{p'r,p'7}) is disconnected, then X has Com X Py as a spanning sub-
graph for some m > 2 and h > 2.

Proof. (1) Let X; = X(Dn;{p'r,p’7}). Since pir and pi1 are of or-
der 2, X; is a 2-regular graph. If it is connected, then it is a 2n-cycle
Wpim)(p =) (I )(p2 ) (D= (pri=(n=Dir)1 . We use {0,1,2, ...,
2n — 1} to relabel this cycle so that p""~(!=Uir « 9t — 1 and p*i=7) « 2¢. Then
the cycle becomes 012 - - (2n — 1)0 after the relabelling.

Let pfF = phi=7) Then edges of X with symbol p* (resp., p~F) be-
come edges with symbol 2h (resp., —2h) after relabelling.  Therefore, X =
X(Dps; {pir, pP7, p*F}) = Zon({1,2n — 1,£2h}). If h = %, then X is 3-regular.
Otherwise, it is 4-regular.

(2) If Xy = X(Dy; {p'r, p’7}) is disconnected, then it is a union of k disjoint
even cycles Cam, for some m > 1,h > 1. We can arrange the vertices of each cycle
in a column such that the first column begins with 1, the second column begins
with p* (note that p* does not belong to the first column, for otherwise X will
be disconnected), the third column begins with p**, and so on. We thus obtain
a 2m x h array in which each row forms an h-path whose edges have the same
symbol p* or p~* (an example with X = X(D1g; {7, p*7, 0%, p~%}) is illustrated in
Figure 2.1). Therefore, X has a spanning subgraph Com X Pj. ¥

We quote the following result from [1}, which is implied in the proof of Theo-
rem 3.1 of [1].
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Figure 2.1.

Lemma 2.3. (Alspach and Zhang (1]) Let X = X(Dy; {p'r, pl, pF7}) be con-
nected. If X(Dn;{p'r,p’7}) is disconnected, then X is isomorphic to Cl2g,s,t] for
someqg>2,s>2andt>1.

We also need the following result in 2.

Lemma 2.4. (Chan, Chen and Yu [2]) Com X Pn (m 2 2,h 2 2) is 2-
extendable.

3. The Main Theorem.

In this section, we shall prove the following result which is a characterization of
2-extendable Cayley graphs on dihedral groups.

Theorem 3.1. Let X = X(Dn; S) be connected, n > 2. Then X 1s 2-
extendable if and only if X is not isomorphic to any of the following graphs.
(1) Zyn(1,2n—1),n 2 3;
() Z3.(1,2,2n —1,2n = 2), n > 3;
(III) Z4n(1l,4n —1,2n),n > 2
(IV) Zgp42(2,4n,20+1),n>1; and
(V) Zgni2(l,4n+1,2n,2n +2),n > 1.

Proof. It is not hard to see that each class of graphs in (I) - (V) can be
realized by Cayley graphs on dihedral groups. If X is isomorphic to any graph in
these classes, then X is not 2-extendable, by Theorem 1.1.

Let X = X(VD,I;S)‘ We shall show that if X is not isomorphic to any of the
graphs in the five classes, then X is 2-extendable.
Ifn =2, then X = X(D»; S) iseither C4 or Ky. In any case, X is 2-extendable.

So we may assume that n > 3. Choose arbitrarily two independent edges e; and
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ez of X. Recall that E; = E(X((p)]), E2» = E(X[{p)7]), E3 = E(X(Dy;S")) and
TES.

Case 1. M = {e;,e3} C E; or E,.

Since X[(p)] = X[(p)7], we may assume that M C E;. Suppose e; = (p*)(p?)
and e; = (p*)(p*). Then i,j,k and h are all distinct. Let M* = (E: U

{en,e2, (P 7)(P?7), (05 7Y (P T)1) = {(0')(P'T), (7 )(P77), (¥ )(p5T), (p")(p"7)}. Then
M* is a perfect matching containing M.

Case 2. MNE; #0 and M N (E,UEy) # 0.

Without loss of generality, assume e; = (p')(p?) € E; and e, =
(p*)(p**hr) € E;, where k,i and j are all distinct and phr € S”. Then
(Bprr U {en, (0 A7)0/ 1)}) = {(p)(p™+"7), (p7)(p7**7)} is a perfect matching
of X which contains M.

Case 8. ey € Ey, ey € Es.

Let G1,Ga,...,G, be the components of X[(p)]. Then G; = Gijfor1<4,j<r.
Let G} be the subgraph of X[({p)7] induced by {z7 | z € V(G;)}. Then G! = G;
(1<i<n).

Then, we have the following subcases to consider.

Case 3.1. e; and e, lie in G; and G, respectively, and 7 # j.

Let e; = (p*)(p’) and ey = (p*7)(p"7). Then

Er U{e, e2,(p'7)(p77), (0)(0")}) = {()(p'7), (7 )0 7), (0%)(0F ), (0" ) (7))}
is a perfect matching containing e; and e,.
Case 3.2. e; and e, lie in G; and G, respectively, and |V(G;)| = [V(G?)] is
even.

It is easy to see that every connected circulant of even order is 1-extendable
and each component of X|[(p)] is a circulant. Hence e; can be extended to a perfect .
matching M; in X [{p)] and e; can be extended to a perfect matching M, in X [(p)7].
Then M; U M; is a perfect matching of X as required.

Case 3.3. e1 € E(G,), e2 € E(G)) for some 7 and |V(G;)| = |V(G")] is odd.

Let e1 = (p')(p?) and e, = (pk'r)(phr).

(a) If X[(p)] is disconnected, then so is X(D,;S'U{r}). Since X is connected,
there exists p™7 € S so that p' - p™r = p'*™r £ V(G}). Therefore, {z - (p™7) |
z € V(G)}NV(G)) = §. In this case,

(Epmr U {er, e2, (0 )(p7*™r), (65 7) (07 ™)})
={(P NP ), (PP, (BTN ), (0" (pP )
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is a perfect matching which contains ¢; and e,.

(b) If X[(p)] is connected, then n is odd. Let n = 2k + 1.

If |S'| > 4, then, by Observation 1.2 and Lemma 2.1, X' = X(Dp; §'U{r}) =
Zn(5*) X Ky = Zg,({n}U25*) where S* = {i | p' € §'} (by Lemma 2.1). Hence X'
is a circulant of degree at least 5 and is 2-extendable by Theorem 1.1. But X' is a
spanning subgraph of X which contains e; and e;. Hence {e;,e;} can be extended
to a perfect matching of X.

Suppose now S’ = {p*'}. Then e; and e, have the same symbol. If §" = {7},
then X is 3-regular and X = Zy;1»(2k+1, 2,4k), which is a graph belonging to class
(IV). Hence we must have [S”| > 2. When |5"| = 2 and X(D,; ") is disconnected,
X(D,;; 5"US") has Cam X Py as a spanning subgraph by Lemma 2.2, where h > 2.
Since h is odd, so we have h > 3. Therefore, we can rearrange the column in the
proof of Lemma 2.2, such that e;, e € E(Com X Pp). But Comy X Py is 2-extendable
(by Lemma 2.4). Hence e; and e; can be extended to a perfect matching of X.

When §" = 2 and X(Dn;S") is connected, X(Dn; 5" U S') is a 4-regular
circulant by Lemma 2.2 again. f X = X(Dp;S) = X(Dar41;5) = Zars2(1, 4k +
1,2k, 2k+2), then X is a graph of class (V), which is not 2-extendable. (For instance,
X(Ds; {7, p7, p%,0°}) = Z10(1,4,6,9) is such a graph.) In any other cases, X(Dy; S)
is 2-extendable by Theorem 1.1.

Now assume |S”| > 2, we shall show that e; and e, can be extended to a perfect
matching of X. Note again that e; and e, have the same symbol (as S’ = {p**}).
Without loss of generality, we assume that e; = 1(ph), ea = (p'T)(p*7). I p'r € S",
then (E,i, U{e1,e2}) — {1(p'7), (p')(p? 7)} is a perfect matching containing e; and
eq. If pit ¢ S, then there is a p/r € S” such that j # 0, j # 2i as [S”| > 3. Let

M (B U fensen (9070, (6N = 2677, ()67
(PP ), (PP ) (¥ 7))

Then M* is a perfect matching of X which extends e; and es.

Case 4. {e1,e2} C Ej.

If ¢; and e, have the same symbol p'r. Then E,i, is a perfect matching of X
which contains e; and e,. So we assume that e; has symbol p'r and e; has symbol
P>,

Case 4.1. If X| = X(Dp;{p'r,p’7)}) is disconnected. Then X, is a disjoint
union of some even cycles. If e), e» belong to different cycles, then we can easily

extend e; and ey to a perfect matching of X. So suppose that e; and e; belong
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to the same cycle and no perfect matching of this cycle contains both e; and e,.
Let Gi1,Ga,...,G be disjoint cycles of X, where G; = Cim (1 £47 < h) and
e1,e2 € E(G1). Since X is vertex-transitive, we may assume e; = 1(p'r). Thus Gy
is a 2m-cycle l(pir)(pi“j)(pQ"“jT)(pQ(""j))'--(p(m°])(iuj))(ﬂmi—(mwl)jﬂl (where
m(z—~j)=0 (mod n)).

(a) Suppose §' — {p'=7, p?(i=9) _ p(m=1G=1)} is not empty, say containing p*.
Since p* ¢ V(G1), we may assume that p* € V(G2). Then, by Lemma 2.2, the sub-
graph of X (Dn; {p'r, p'7, p*, p~*}) induced by V(G1)UV(G,) contains a spanning
subgraph which is isomorphic to Cy,, X Iy and contains e;, e,. By Lemma 2.4,
Com x Ky is 2-extendable. Thus there is a perfect matching M’ of Cy, x K, con-
taining e; and ez. For other G, ¢ > 3, simply choose a perfect matching M; of G;.
Then M'U ( U M;) is a perfect matching of X containing e; and ej.

(b) If 5 = {p79,p?0=9)  plm=DG=DY = ¢, then X(Dp; S U {pir,pi7}) is
disconnected. Since X is connected, there is a p"r € S” such that the edges with
symbol p"7 join G, and another G;. Let X' = X(D,; {p‘r,p’7,p"r}). Then each
component of X' is also a Cayley graph on a dihedral group D, for some b. So,
without loss of generality, we assume that X’ is connected. By Lemma 2.3, X' is
isomorphic to C[2¢, s,t] for some ¢ > 2,5 > 2 and ¢ > 1.

In this case, we may assume that e; = (0,0)(1,0) and e; = (2p+1,0)(2p+2,0).

If 5 is even, let

M ={(0,7)(1,3) 17 =0,1,2,..,5=2} U {(2,§)(2,i+1) | i = 0,2,4,..., s —2}U
{(6,))(E+1,7) | i=3,5,...,2¢—3;5 = 0,1,2, ey $—21U
{(QQ“]'»O)(zq—.1+t7$”1)?(2q_171)(2(1—1527)):(2‘1"115_3)(2(1“1)3—2)}
UB

where B is a perfect matching of (Cyy x {s — 1}) = {(2,5 = 1), (29— 1 +1,5 — 1)}
which is a union of paths of odd length (since 2¢ — 1+t — 2 = 2¢ — 3+t is odd).
Then M is a perfect matching of X which contains e, and €y.

If s is odd, let

M ={(0,7)(1,5) 17 =0,1,2,..,5=2} U {(2,4)(2,i+1) | i = 0,2,4,...,s~3}U
{(z, )(z+1 JNi=13,3,..,2¢-3;j =0,1,2,...,5s=2}U
{(2¢-1,0)(2¢=1+,5-1),(2¢=1,1)(29-1,2,), ..., (2¢— 1, s—2)(2g— 1,5 1)}
JB
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Figure 3.2.

where B is a perfect matching of (Coq x {s —1}) = {(2¢—1,5—1),(2¢ = 1+1%,5 - 1}
which is a union of paths of odd length (since 2 — 1+t —(2¢— 1) = t is odd). Then
M is a perfect matching of X which contains e; and es. (We illustrated the above
patterns with C[6,6,2] and C[6,5,3] in Figures 3.1 and 3.2, respectively.)

Case {.2. X1 = X(Dyn; {p'r, p’7}) is connected. Then X; = Can.

(a) If S = {p'r, p/7}, then X & Copn = Z2n(1,2n—1), (n 2 3), which is in class
(0.

() If § = {pir, pir, p™/?}, then n is even, say n = 2m. By the proof of
Lemma 2.2, X(D,;5S) is a 3-regular circulant and X(Dx; S) & Zon(1,2n—1,n) =
Zam(1,4m — 1,2m). This is a graph of class (11I).

()If S = {pir, pir, pF, p7FY, (k # %), then X(Dyn;5) is a 4-regular circulant
by the proof of Lemma 2.2. Since a circulant is a Cayley graph on abelian group, by
Theorem 1.1, X(D,,; S) is 2-extendable if it is either not isomorphic to Zgk42(1,4k+
1,2k, 2k 4 2), (which belongs to class (V)), or to Z2n(1,2,2n — 1,2n — 2), (which is
a graph in class (II)).

(d) If |S'| = 3, then X(Dn; S'U {pir,p7}) is a circulant of degree at least 5, by
the proof of Lemma 2.2. By Theorem 1.1, X(Dy; S U {p'r, pir}) is 2-extendable.

Hence {e1,¢e2} can be extended to a perfect matching of X.



(e) If |S'| = 0, then |S"| > 3. We have p*r € S" for some k distinct from i and
j. We shall show that, for some p*7 € 5", X' = X(D,; S*) has a perfect matching
containing {eq, e, }, where S* = {pir, pi7 pFr}. ‘

If X(Dn;{p'r,pir}) is disconnected, then we can choose p*r € § (because
X is connected) such that the edges with symbol p*r join two cycles produced by
p'T and p’7. This case was dealt in Case 4.1(b) and we know the e; and e; can be
extended to a perfect matching of X(D,;S5*) and then a perfect matching of X.

1 ey T

/_mjr

p—(m-:m’m ““'”‘,.~>'p...(m+1)i

p(m 2 pm(mt by,
Figure 3.3.

Assume now that X(Dn;{p'7,p’r}) is connected. Then it is isomorphic
to Can. For convenience, we can assume that pit = 7. Then Ch, =
W) eI ™) (p™ ) (p~7)---(pir)l. Also assume that e, = 17), e2 =
(p~tr)(p~(91)7). Let p* = p~™I. We can assume that m > g+ 1, (or else consider
p~*). Let ez = (p~7)(p~(m*+Vir). Then Cyn — {1, 7, p~%r, p~ @I 5= p=(mt1)iy
is a union of paths of even order and so contains a perfect matching M. Then
M U {e1,e2,e3} is a perfect matching of X’ which contains e; and e, (see the
illustration in Figure 3.3, for the case ¢ = 1). g
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