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Abstract

In this paper it is shown that every maximum matching in a 3-connected graph,
other than Iy, contains at least one contractible edge. In the case of a perfect
matching, those graphs in which there exists a perfect matching containing precisely

one contractible edge are characterized.

Introduction

The existence of contractible edges in 3-connected graphs, as well as in certain
types of subgraphs, has proven to be a useful inductive tool [see, 3, 9, 10, 11, 12] with
the most notable instances being Tutte’s characterization of 3-connected graphs
and Thomassen’s ingenious proof of Kuratowski’s Theorem. These applications
have motivated, and sometimes required, deeper studies into the number of, and
distribution of contractible edges. In one such study Dean, Hemminger and Toft
[5] showed that every longest cycle in a non-Ky, 3-connected graph contains at

least two contractible edges of the graph. (Dean, Hemminger and Ota [6] later
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showed that, except for Ky x K7, they in fact contain three; subsequently Aldred

and Hemminger [1] characterized the extremal graphs.)

In this context Kaneko and Ota [8] posed the following problem: find other
types of subgraphs such that every one in a non-K,, 3-connected graph G contains
at least one contractible edge of G. They put forward maximum matchings as a
likely, and useful, candidate and showed they were correct if the matching wasn’t a

near-perfect one.

In this paper we will prove that all maximum matchings have the desired
property; namely, except in Uy they always contain at least one contractible edge

of G (Theorem 6 to follow).

In [8] they also show that the ladders (definition to follow) are the only graphs
that have a perfect matching that contains only one contractible edge of G. That
result is an easy corollary (Theorem 4 here) of our proof of Theorem 6. However, we
will only sketch that idea as we can, and do achieve the same end by a simplification
of the proof of Theorem 6.

Finally, in a separate paper [2], the authors give a constructive characterization
of all 3-connected graphs G that admit a maximum matching that contains only
one contractible edge of G. Since all such matchings are either perfect (for ladders,
as noted above) or near-perfect, we immediately get the main result of [8]; namely,
if a maximum matching M of G leaves more than one vertex of G unsaturated, then

M contains at least two contractible edges of G.

Definitions

We consider only finite undirected graphs without loops and multiple edges
and use Bondy and Murty [4] as our reference for undefined terms and notation; in

particular ¥(G) = [V(G)|, (G) = |E(G)| and for A C V(G) or A C E(@), G[4]
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denotes the subgraph of G induced by A and G — A is the subgraph of G obtained
by deleting A. In fact, if the context is clear, we will often use A in place of G[A];
for example, both the edge set and the vertex set of a cycle will be referred to as
the cycle. We also let V(A) denote the vertex set of G[A]. For v € V(G), Ng(v) =
{w e V(@) : vw € E(G)}, dgc(v) = |[Ng(v)| and Eg(v) = {¢ € E(G):v € V(e)}.
Likewise, for e = uv, Ng(e) = Ng(u)UNg(v)~{u,v}. In this and similar notation,
we will commonly suppress the G if no confusion will result. For a connected graph
G, S C V(G) is called a cutset of G if G — § is disconnected. For an edge e in
G, G oc will denote the simple graph that results from contracting ¢, and in a
3-connected graph G, e is called a contractible edge of G if G o¢ is also 3-connected;
otherwise, e is called a noncontractible edge of G.

If F C E(G), then F.(G) = {¢ € F : ¢ is contractible in G}. For us, this
will only be used for E.(G) and M. G) where M is a matching in G. And for
v € V(G) we let E(v) = E(v) N E(G). Similarly F,(G) = E(F) — F.(G) and
En(v) = E(v) — E.(v). Note that in a non-Kjy, 3-connected graph G, an edge
e is noncontractible if and only if there is a 3-cut of G that contains V(e). If
e =zy € Ey(G), S = {x,y,s} is an associated 3-cut of G, and C is a component
of G — S, we let Ct = G[V(C)U {s}].

For n > 1, an n-ladder L, is a graph in which V(L,,) can be labelled with the

set {x;,y;: 0 <i < n} such that

E(Ln) = {2wi, 2i%ig1,yitit1: 1 <i <n —1}

U(zoyo, o1, oY1, TnYn, YoTn, YoYn} UD

where D C D, = {a;yiq1, vivsy1 1 < i <n= 1}. For an example, see Figure 1
with the edge @z contracted. The edges in D are referred to as optional edges and

the edges in R = {z;y;: 0 <i < n} are called the rungs of L,,. It should be obvious
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that R is a perfect matching in L, and, for n > 2, that R, = {zoyo}; moreover, it
Is easily seen that R is the only matching in L, that contains only one contractible
edge of L,. It is this property of the n-ladders (n > 2) that enables us to refer to

the rungs of L,,.

We let £ denote the class of all n-ladders, n > 1. Note that L, o~ K4 and so
R. = since E(K,) = 0.

Our proofs here, and in [2], turn on the concept of a “turncoat edge”. To
facilitate their definition, we introduce the following notational convention. Let H
be a 3-connected graph, let ¢ = uv € E(H) and let f = 2y € E(H ). If we denote
Hoeby H, then we will let fe E(H) denote the “image” of f, that is, f = zy
if 2,y & V(e) and f = ¢y if u = 2 and é denotes the contraction of e. We will
refer to f as the edge of H induced by f and, as long as no confusion can arise,
we will continue to denote it by f. In these terms, an edge f € En(H) is called a
turncoat edge of H via e if f becomes contractible in H, that is, if f€eE,(H) and
feE(H)

Thus an edge subtended by a vertex u of degree three is a turncoat via each
e € E (u).

Our viewpoint is of some interest in that it enables us to prove something about
contractible edges (in matchings in this paper) by using contractible edges as an
inductive tool. And that is why turncoat edges are troublesome; because of them
we can have E.(Go¢) # E(G) — e. Yu [13] introduced the concept (in a different

context) and used the properties given in Lemma 1 as did Hemminger and Yu [7].

The Theorems

Throughout the paper G will be a 3-connected graph other than Ky and M

will be a maximum matching in G. We let U(M, G) = V(G) - V(M).
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Lemma 1: If f is a turncoat edge via e € E¢(G), then e has an endvertex u of
degree three with V(f) C N(u). Moreover, N(u) is the only 3-cut containing V(f)

and G — (N(u) U {u}) is connected.

Proof: Let f = ay and let S = {,y, s} be any 3-cut associated with f. Then
V(e) ¢ S since e € E(G), solet C be the component of G— 5 with V(e)nV(C) # 0.
Then V(e) € V(C) or f € Eo(Goe). For the same reason [V(C)| = 1, that is,
¢ = uv with V(C) = {u} and S = N(u). Thus G — S only has one other component

since f ¢ E.(G o¢). Since {x,y,u} is not a 3-cut, that proves the lemma.

But for matching edges, turncoats do not beget turncoats!

Lemma 2: If f € M, is a turncoat edge of G via ¢ € M (G), then no edge of

M, (G) — {e, f} is contractible in (Goe)o f.

Proof: Suppose that ¢ = uv € M (G) and f = zy € M,(G)NE(Goe). By
Lemma 1 we can further assume that N(u) = {v,z,y}.

If f is the only turncoat in G via e, then the claim is true since neither 2 nor
y can be of degree three in G o e and still subtend an edge of M, for example,
{&,y} C Ngoela) and & € U(M,G).

If f = 2y and h = wz are both in M,,(G)N E,(Goe), then by Lemma 1 we can
assume that N(u) = {v,2,y} and N(v) = {u,w,z}. But then {w,z,f} is a 3-cut

in(Goe)o f,sowz € E,((Goe)o f). Thus the claim holds as before.

Lemma 3: If M. =0,if f =2y € M = M,, and if S = {z,y,s} is any asso-
ciated 3-cut of G, then |U(M,G)| is at least as large as the number of components

of G — S. In particular, [U(M,G)| < 1 implies that M, # 0.
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Proof: Let C' = C; be a component of G — S and set z; = T, Y1 =Y, $1 = 8
and Sy = 5. Now pick zyy; € M with 25 € V(Cy) and let S5 = {z2,y2,52} be an

associated 3-cut where we choose sy = s if possible.

Now since G[V(G) — V(C1) — {s1}] is easily seen to be 2-connected, G — Sy
will have a component C, such that V(Cy) C V(C,) — {22} if y, = s and V(Cs) C
(V(C) U {s}) — {a2,y2} if yo # s. In either case we see that [V(Cy)| < [V(Cy)).
Moreover, it is clear, since we are taking s, = s if possible, that we have V(C;) C
V(C1) unless G — S only has two components (let D be the other) and N(s) =
{t, 29,42} with ¢ € V(D). In this case ts € E,(G); for if not and T = {s,t,w}
Is an associated 3-cut of @, then G — (V(D) U {s}) is 2-connected and so G — T
has a component wholly contained in D — {t} to which s must be adjacent. Thus
ts € E(G) and 23y, € M, s0 s € U(M,G).

So assume that C is not a component of this latter type. Of course there is
at most one of that type and if it exists it will be paired with s € U(M, G). We
will now show that each other component, such as C, contains an M-unsaturated

vertex and hence complete the proof of the lemma.

For suppose not and let z3y; € M with o3 € V(Cy). Then just as we got
[V(C2)| < |[V(C1)| we get |V(C3)l < |[V(Cy)]. And by the restriction on C we also
get V(C3) C V(C,). Continuing in this manner we get a contradiction since G is

finite.

Theorem 4 [8]: Let G be a non-Ity, 3-connected graph and let M be a perfect

matching in G. Then |M(G)| = 1 if and only if G is a ladder.

Proof: As noted, ladders have the requisite property so assume that M is a

perfect matching in G with M. = {e¢ = w}. Then M = M — {e} is a maximum
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matching in G = Goe with {¢} = U(M,G). Thus, by Lemma 3, M, # 0. Of course
M, can only contain turncoat edges of G via e, so let f = zy be one such edge (of

a possible two), say with N(u) = {z,y,v} (by Lemma 1).

Let G = Go f and M = (M — {f}) U {éf}, so that M is a perfect matching
in G. Hence, by Lemma 2, M (G)N M, = 0 and so M, C {éf}. If M, =0, then
G ~ K4. In that case, z,y € N(v), or else |M.(G)| > 2, and so G is a ladder on six

vertices. For the same reason, G is a ladder with M, = {e} if M. = {éf}.

That completes the proof of Theorem 4. The graph in Figure 1 illustrates the
difficulties encountered if we try to use the approach contained therein to character-
ize the 3-connected graphs G that admit a maximum matching M with [M.| = 1.
For, if we let G be that graph and let M be the set of fattened edges, then M is not
a maximum matching (nor can it be extended to one) and M, = 0. To overcome
this type of difficulty, we move to a contractible edge at a vertex in U(M,G), such

as zw or zz in the graph in Figure 1. But this problem requires a much deeper

analysis and is the topic of [2].

u

Figure 1
The above proofs of Lemma 3 and of Theorem 4 were obtained by Hemminger
and Yu in the summer of 1990. Lemma 3 is a special case of Theorem 6 and its

proof is a shortcut version of the following proof of Theorem 6 that was obtained

by Aldred and Hemminger in November 1989.
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For reference within the proof of Theorem 6 we list the following lemma, whose

proof is contained within the proof of Lemma 3.

Lemma 5: Let S = {a,y,s} be a 3-cut of G associated with zy € E,(G), let
C be a component of G — S, and let 2'y’ € E,(G) with 2’ € V(C) and ¢ # z,y.
Then either N(s) = {2',y',t} with t ¢ C* or 2y’ has an associated 3-cut T such

that G — T has a component C' wholly contained in C. In the former case, G — §

has only two components and st € E.(G).

Theorem 6: If G is a non-K, 3-connected graph and if M is a maximum

matching, then A, # §.

Proof: We assume that M, = § and use the notation in the proof of Lemma

3. Only now our goal is to produce an M-alternating path
Pragyn,aoys, 2 yn. 2

in CF = G[V(C) U {s}] that ends with an M-unsaturated vertex z.

So we can assume that N(y;) N V(C') is M-saturated. We now pick zay; € M
as in Lemma 3, but with the added stipulation that yize € E(G). With Sy =
{29,y2. 32} an associated 3-cut we are done (with k= 2 and z = 51) 1 N(s1) = Sq;
for by Lemma 5, sy, € E. and so s; € U(M, G). So we assume that N(s1) # Sy
and hence by Lemma 5, that G¢ — S contains a component C, C Cy. Thus s, €
V(C1) U Sy since s is adjacent to Cs.

If y» has an M-unsaturated neighbour a3 in C, we have the desired path P
with k = 2 and =z = 23. So, as before, we can assume that we have edges yox3 and
T3ys with w3 € V(Cy), with y3 € V(Cy) U {s9}, and with 23y3 € M = M,,. Let

Sy = {23,y5.53) be a 3-cut of G associated with the edge x3ys. If N(s2) = Ss,
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then sy # z; or y; (e.g. sz = x) means that N(s2) 2 {y1,23,ys,w} for some
w € N(xy) — (V(Cy)US})). So we have the desired path P with k =3 and z = sg
since sys3 € E,(G) by Lemma 5. Otherwise, we continue this process as long as
possible. If y; has an M-unsaturated vertex Tj4y in Cy for k > 3, then we have
the desired path with z = z;4;. So as before, we can assume that we have edges
YrTry1 and Trpp1yryr € M = My, Let Sgyp = {@ k41, Yk+1, Sk+1} be a 3-cut of G
associated with the edge xi1ye+1. If N(sx) = Skq1, then 54 5 x; or y; for j < k.
For suppose so, say s = ¢; for 2 < j < k. But then N(s¢) 2 {Zkt1, Ye+ 1Yo Y1}
contradicting that dg(si) = 3. Likewise sx # y; for j # 1. And that sy # z1 or y1
follows as in the case with k = 2.

Reversing the roles of 2; and y; and using a component D # C of G — 5, we

get an M-alternating path

. . [ P
P-yl,ahvaa'Q""7yqv‘l'(pz

that is contained in Dt and that ends at an M-unsaturated vertex z'. Now z # '
for that would require z = z' = sy, that is, dg(s1) = 3 and k, ¢ > 2 so that N(s1)2

{or, i,y 25}, Thus P U P’ gives an M-augmenting path, which contradicts that

M was a maximum matching in G.

That completes the proof of the theorem. And we easily get some extra mileage
out of the iterative procedure in its proof. For suppose that G and M are as in
the theorem and that |[M.| = 1, say M. = {e}. So we have x1y; € M,, S and
C as in the proof of the theorem. The new wrinkle is that the procedure can
now end with @j11yr41 = € € E(Cf) or with sgspyy = €, Tpp1Yps1 € My and
N(sk) = {Tt+1,Vk+1,5k+1} (the two options in Lemma 5).

From this we easily get Theorem 4.
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Alternate proof of Theorem 4: As noted before, ladders have such match-
ings so we turn to the converse. And since G has no M-unsaturated vertices the
iterative procedure can only end at the contractible edge ¢ € M,.. Thus, for S as
above G — S can have only two components, say C' and D, and by relabelling, we
obtain a cycle

Z P U0, UL, V1,0 Uk, Uk, Up, Vo

where {ugvy = ¢} = M., ujv; € M, for 1 < i < k, N(up) = {vo,ur,v} and
N(vo) = {wg,uy,v;}.

Moreover, we conclude that Z i1s a Hamilton cycle in G. For suppose not. Since
M is a perfect matching and M, = {e}, there is an edge uv € M, with u,v & V(Z).
Ifs = {u,‘v,s’} is an associated 3-cut of G, then Z — {s’} is connected and so
G — S' has a component F disjoint from Z. Working into F, as before with C,
we are led to a contradiction via Lemma 5 since we have already accounted for all
neighbors of the only contractible edge.

For 1 <2 <k, let S; = {u;,vs,5;} be a 3-cut of G associated with u;v; where
we take s; = wg if possible, Thus, by the above, 81 = ug, st = vo, and s; # v if
i # k. Since V(G) = V(Z), G — S, has only two components and, traversing Z as
listed, we let C; be the component on the vertices from w;i1 to s; (including ;41
but not s;). So V(Cy) = {ua,va, +,ug, v}

Now apply Lemma 5 with @ = us and y = vy. Since G is a ladder if k = 2, we
can assume that & > 3. Thus, since Sy # N(ug), we conclude that Co C C;. Hence
32 € V(Cy)U {sy}.

Continuing in this way, we get a sequence C'y D -+ D C; with s,4; € V(C;) U
{si}, 1 <4 < j, which only ceases when we get S; = {u;,v;,v;41}: thatis s; = vy
where v;41 = vy if j = k. Hence j = k; otherwise, the hypotheses of Lemma 5 hold,

but not the conclusion. But for the sequence to have gotten to that point we must
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have had s; = so = -++ = sp_1 = ug. Consequently, [{u;, vi}, {uj,vj}] = 0 for
1<i<j—2<k—2; for otherwise S;y; is not a cutset of GG. And because of this,
there must be a 2-matching between {u;, v;} and {u1, vig1}, 1 < i <k—1. Thus

G is a ladder as claimed.
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