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Abstract

A subset in a groupG ≤ Sym(n) is intersecting if for any pair of permuta-
tions π, σ in the subset there is an i ∈ {1, 2, . . . , n} such that π(i) = σ(i).
If the stabilizer of a point is the largest intersecting set in a group, we say
that the group has the Erdős-Ko-Rado (EKR) property. Moreover, the
group has the strict EKR property if every intersecting set of maximum
size in the group is the coset of the stabilizer of a point. In this paper
we look at several families of permutation groups and determine if the
groups have either the EKR property or the strict EKR property. First,
we prove that all cyclic groups have the strict EKR property. Next we
show that all dihedral and Frobenius groups have the EKR property and
we characterize which ones have the strict EKR property. Further, we
show that if all the groups in an external direct sum or an internal direct
sum have the EKR (or strict EKR) property, then the product does as
well. Finally, we show that the wreath product of two groups with EKR
property also has the EKR property.

1 Introduction

The Erdős-Ko-Rado (EKR) theorem [10] describes the largest collection of subsets of
size k from the set {1, 2, . . . , n} such that any two of the subsets contain a common
element. If n ≥ 2k then the largest collection has size

(
n−1
k−1

)
, moreover, if n > 2k,

the only collections of this size are the collections of all subsets that contain a fixed
element from {1, 2, . . . , n}. This result can be generalized to many objects other than
sets, such as integer sequences [12], vector spaces over a finite field [18], matchings
and partitions [23]. In this paper we will consider versions of the EKR theorem for
permutation groups.
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Let Sym(n) denote the symmetric group and G ≤ Sym(n) be a permutation
group with the natural action on the set {1, 2, . . . , n}. Two permutations π, σ ∈ G
are said to intersect if πσ−1 has a fixed point in {1, 2, . . . , n}. If π and σ intersect,
then π(i) = σ(i) for some i ∈ [n] = {1, 2, . . . , n} and we say that π and σ agree at i.
Further, if σ and π do not intersect, then πσ−1 is a derangement. A subset S ⊆ G
is called intersecting if any pair of its elements intersect. Clearly, the stabilizer of a
point is an intersecting set in G, as is any coset of the stabilizer of a point.

We say the group G has the EKR property if the size of any intersecting subset
of G is bounded above by the size of the largest point-stabilizer in G. Further, G
is said to have the strict EKR property if the only intersecting subsets of maximum
size in G are the cosets of the point-stabilizers. It is clear from the definition that if
a group has the strict EKR property then it will have the EKR property.

In 1977 Frankl and Deza [11] proved that Sym(n) has the EKR property and
conjectured that it had the strict EKR property. This conjecture caught the attention
of several researchers, indeed, it was proved using vastly different methods in each
of [7, 15, 22] and [28]. We state this result using our terminology.

Theorem 1.1. For all integers n ≥ 2, the group Sym(n) has the strict EKR property.

Researchers have also worked on finding other subgroups of Sym(n) that have
the strict EKR property. For example in [21] it is shown that Alt(n) has the strict
EKR property, and it was also determined exactly which Young subgroups have the
strict EKR property. In [28] it is shown that some Coxeter groups have the EKR
property. Further, the projective general linear groups PGL(2, q) have the strict
EKR property [24], while the groups PGL(3, q) do not [25].

We point out that the group action is essential for the concepts of the EKR and
the strict EKR properties. A group can have the (strict) EKR property under one
action while it fails to have this property under another action (in Section 7 we
give an example of such a group). This is the reason that in this paper, we always
consider the “permutation groups” (i.e. the subgroups of Sym(n) with their natural
action on {1, 2, . . . , n}) rather than general groups. This is in contrast to [6] where
they define a group to have the EKR property if the group has the EKR property
for every group action.

In this paper we prove that any group with a sharply transitive set has the EKR
property and that all cyclic groups have the strict EKR property. We also show that
all dihedral groups have the strict EKR property, all Frobenius groups have the EKR
property and we characterize which Frobenius groups have the strict EKR property.

Next we consider three group products. Assume that G and H are groups and G
acts on Ω and H on Δ. The group elements (g, h), where g ∈ G and h ∈ H , act on
Ω×Δ by (ω, δ)(g,h) = (ωg, δh). This is the external direct product of G and H . These
same elements also act on the set Ω∪Δ. The value of x(g,h) is xg, if x ∈ Ω, and xh is
x ∈ Δ. This is the internal direct product. We show that if all the groups in either
an external or an internal direct product have the EKR (or strict EKR) property,
then the product does as well. Further, we show that if the external product of a
set of groups has the EKR (or strict EKR) property then each of the group in the
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product does as well. The wreath product of two groups with EKR property also
has the EKR property. We conclude with a section about some groups that do not
have the EKR property.

2 The EKR property for cyclic groups

A common technique in proving EKR theorems is to define a graph that has the
property that the independent sets in the graph are exactly the intersecting sets. This
transforms the problem to determining the size and the structure of the independent
sets in this graph. For the EKR theorem on sets, the graph used is the Kneser graph
(see [16, Section 7.8] for more details). For a group G we define the derangement
graph; this graph has the elements of G as its vertices and two vertices are adjacent
if and only if they do not intersect. We will denote the derangement graph of a
group by ΓG. In particular, σ, π ∈ G are adjacent in ΓG if and only if σπ−1 is a
derangement. The derangement graph is the Cayley graph on G where the set of all
derangements of G is the connection set for the graph. Since the set of derangements
is a union of conjugacy classes, ΓG is a normal Cayley graph. The group G acts on
the vertices of ΓG by left multiplication and this action is transitive, thus ΓG is vertex
transitive.

The group G has the EKR property if and only if the size of a maximum inde-
pendent set in ΓG is equal to the size of the largest stabilizer of a point in G. The
group G has the strict EKR property if and only if the cosets of the largest stabilizer
of a point are all the only independent sets of maximum size.

Following the standard notation, we will denote the size of the largest clique in
a graph X by ω(X), and α(X) will represent the size of the largest independent set
in X. The next result is known as the clique-coclique bound and we refer the reader
to [7] for a proof.

Lemma 2.1. If X is a vertex-transitive graph, then ω(X)α(X) ≤ |V (X)|. Moreover,
if equality holds, then every maximum independent set and every maximum clique
intersect.

For any permutation group G ≤ Sym(n), a clique in ΓG is a set of permutations
in which no two permutations agree on a point. Thus a sharply-transitive subset of
G is a clique of size n in ΓG.

Corollary 2.2. If a group has a sharply-transitive set, then the group has the EKR
property.

Proof. Assume that a group G ≤ Sym(n) has a sharply-transitive set. Then G is a

transitive group and the size of the largest stabilizer of a point is |G|
n
. The sharply

transitive subset of G is a clique of size n in ΓG. So by the clique-coclique bound
α(ΓG) ≤ |G|

n
.

A simple case of a sharply-transitive set is the subgroup generated by an n-cycle.
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Corollary 2.3. Any permutation group of degree n that contains an n-cycle has the
EKR property.

If G is a sharply-transitive group, then ΓG is a complete graph; in this case G
trivially has the strict EKR theorem. For example, any subgroup of Sym(n) that
is generated by an n-cycle has the strict EKR property. Next we show that every
cyclic group has the strict EKR property.

Theorem 2.4. For any permutation σ ∈ Sym(n), the cyclic group G generated by σ
has the strict EKR property.

Proof. Let σ = σ1σ2 · · ·σk, where σi are disjoint cyclic permutations. Assume that
σi has order ri, and that 1 ≤ r1 ≤ · · · ≤ rk. Note that

C = {σ0, σ1, σ2, . . . , σr1−1}
induces a clique of size r1 in the graph ΓG. Then by Lemma 2.1

α(ΓG) ≤ |G|
r1

.

Note, in addition, that if σ1 = (a1, . . . , ar1), then the stabilizer of a1 in G is

Ga1 = {σr1 , σ2r1, . . . , σ|G|};
therefore

α(ΓG) = |Ga1 | =
|G|
r1

.

It is clear that this is the largest size of a point-stabilizer in G. This proves that G
has the EKR property.

To show G has the strict EKR property, note that the clique C and the inde-
pendent set Ga1 together show that the clique-coclique bound (Lemma 2.1) for ΓG

holds with equality. Hence any maximum independent set must intersect with any
maximum clique in ΓG. Let S be any maximum independent set and without loss of
generality assume the identity element, id, is in S. We show that S is the stabilizer
of a point.

For any i ≥ 0, set
Ci = {σi, σi+1, . . . , σi+r1−1}.

Note that Ci are cliques in ΓG of maximum size and that C0 = C. Furthermore, for
any 0 ≤ t ≤ |G|/r1, we have Ctr1\Ctr1+1 = {σtr1} and Ctr1+1\Ctr1 = {σ(t+1)r1}. Since
for any 0 ≤ t ≤ |G|/r1, the independent set S intersects with each of the cliques Ctr1+1

and Ctr1 in exactly one point, and since σ0 ∈ S, we conclude that C1 ∩ S = {σr1}.
Continue like this for all t ∈ {0, . . . , |g|/r1} shows that σ0, σr1 , . . . , σ|G|−r1 ∈ S; that
is, S = Ga1 .

If G is a cyclic group generated by σ ∈ Sym(n), and r1 is the length of the
shortest cycle in σ, then the largest intersecting set is actually an r1-intersecting set;
meaning that any two permutations in the set agree on r1 elements of {1, 2, . . . , n}.
This is quite different from the case for subsets; in fact, it is not hard to show that
any maximal collection of intersecting subsets is not 2-intersecting.
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3 The EKR property for dihedral and Frobenius groups

Recall that for any n ≥ 3, the dihedral group of degree n, denoted byDn ≤ Sym(n), is
the group of symmetries of a regular n-gon, including both rotations and reflections.

Proposition 3.1. All the dihedral groups have the strict EKR property.

Proof. Assume Dn is generated by the permutations σ, the rotation, and π, the
reflection through either antipodal points of the n-gon (if n is even) or through a
point and an edge (if n is odd). Then σ is of order n, and π is of order 2. Since
{id, π} is an intersecting set, we have α(ΓDn) ≥ 2. To prove the proposition, we show
that any maximum independent set in ΓDn is a coset of a point-stabilizer. Assume S
is a maximum independent set in ΓDn and, without loss of generality, assume id ∈ S.
Clearly, σi /∈ S, for any 1 ≤ i < n. If σiπ, σjπ ∈ S, for some 1 ≤ j < i < n, then
their division,

σiπ(σjπ)−1 = σi−j

must have a fixed-point, which is a contradiction. Therefore, α(ΓDn) = 2 and S =
{e, σiπ}, for some 1 ≤ i < n. Note, finally, that since no pair σiπ, σjπ has any
common fixed-point, S is indeed the stabilizer of any of the points fixed by σiπ.

Note that the dihedral group Dn can be written as Dn = ZnZ2, where Zn � Dn

corresponds to the subgroup generated by the rotations and Z2 is the subgroup
generated by the two reflections. More precisely, Dn = Zn � Z2 when the non-
identity element of Z2 acts on Zn by inversion. When n is odd, this is a particular
case of a Frobenius group. A transitive permutation group G ≤ Sym(n) is called
a Frobenius group if no non-trivial element fixes more than one point and some
non-trivial element fixes a point. An alternative definition is as follows: a group
G ≤ Sym(n) is a Frobenius group if it has a non-trivial proper subgroup H with the
condition that H ∩Hg = {id}, for all g ∈ G\H , where Hg = g−1Hg. This subgroup
is called a Frobenius complement. Define the Frobenius kernel K of G to be

K =

(
G\
⋃
g∈G

Hg

)
∪ {id}.

In fact, the non-identity elements of K are all the derangement elements of G. Note
that if G = KH ≤ Sym(n) is a Frobenius group with kernel K, then |K| = n and
|H| must divide n−1; see [9, Section 3.4] for proofs. This implies that the Frobenius
groups are relatively small transitive subgroups of Sym(n). We also observe the
following.

Lemma 3.2. If G = KH ≤ Sym(n) is a Frobenius group with kernel K, then
|Gx| = |H|, for any x ∈ {1, 2, . . . , n}.
Proof. Let x ∈ {1, 2, . . . , n}. By the orbit-stabilizer theorem we have

|xG| = [G : Gx] =
|G|
|Gx| =

|K||H|
|Gx| =

n|H|
|Gx| ,
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where xG is the orbit of x under the action of G on {1, 2, . . . , n}. Since this action
is transitive, |xG| = n.

In order to find the maximum intersecting subsets of a Frobenius group, we first
describe their derangement graphs. The eigenvalues of normal Cayley graphs can
be calculated using the irreducible representations of the group. This follows from
Babai’s formula for the eigenvalues of a Cayley graph [5] (we also refer the reader
to eitherthe proof by Diaconis and Shahshahani [8] or to [2, Chapter 4] for details).
We will simply state the formula for the derangement graphs.

Theorem 3.3. Let G be a group. The eigenvalues of the graph ΓG are given by

ηχ =
1

χ(id)

∑
x∈DG

χ(x),

where χ ranges over all irreducible characters of G. Moreover, the multiplicity of the
eigenvalue λ is

∑
χ χ(id)

2, where the sum is taken over all irreducible representations
χ with ηχ = λ.

We will make use of the following classical result (see [19, Theorem 18.7]).

Theorem 3.4. Let G = KH be a Frobenius group with kernel K. Then the irre-
ducible representations of G are of the following two types:

(a) Any irreducible representation Ψ of H gives an irreducible representation of G
using the quotient map H ∼= G/K. These give the irreducible representation of
G with K in their kernel.

(b) If Ξ is any non-trivial irreducible representation of K, then the corresponding
induced representation of G is also irreducible. These give the irreducible repre-
sentations of G with K not in their kernel.

The following fact will be used in the proof of the next theorem; the reader may
refer to [26, Section 1.10] for a proof.

Proposition 3.5. Let {Ψi} be the set of all irreducible representations of a group
G. Then ∑

i

(dimΨi)
2 = |G|.

Now we can describe the derangement graph of the Frobenius groups.

Theorem 3.6. Let G = KH ≤ Sym(n) be a Frobenius group with the kernel K.
Then ΓG is the disjoint union of |H| copies of the complete graph on n vertices.

Proof. According to Theorem 3.3, the eigenvalues of ΓG are given by

ηχ =
1

χ(id)

∑
σ∈DG

χ(σ),
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where χ runs through the set of all irreducible characters of G. First assume χ is the
character of an irreducible representation of G of type (a) in Theorem 3.4. Then we
have

ηχ =
1

χ(id)

∑
σ∈DG

χ(σ) =
1

χ(id)

∑
σ∈DG

χ(id) = | DG | = |K| − 1 = n− 1.

According to Theorem 3.3 and Proposition 3.5, the multiplicity of ηχ = n− 1 is∑
Ψ∈Irr(H)

(dimΨ)2 = |H|.

Furthermore, assume Ξ is an irreducible representation of G of type (b) in Theo-
rem 3.4, whose character is ξ and let χ be the character of the corresponding induced
representation of G. If σ ∈ G\K, then σ ∈ Hg, for some g ∈ G. Thus x−1σx ∈ Hgx,
for any x ∈ G; hence x−1σx /∈ K. By the definition of an induced representation
(see [13, Section 3.3]), this implies that χ(σ) = 0. On the other hand, let χ1 be the
trivial character of G. Since χ 
= χ1, the inner product of χ and χ1 is zero (see [13,
Section 2.2]). Since

〈χ, χ1〉 = 1

|G|
∑
σ∈G

χ(σ)χ1(σ
−1) =

1

|G|
∑
σ∈G

χ(σ) =
1

|G|

(
χ(id) +

∑
σ∈DG

χ(σ)

)
,

and the characters χ and χ1 are orthogonal, we have that∑
σ∈DG

χ(σ) = −χ(id).

This yields

ηχ =
1

χ(id)

∑
σ∈DG

χ(σ) =
−χ(id)

χ(id)
= −1.

We have, therefore, shown that

Spec(ΓG) =

(
n− 1 −1
|H| |H|(n− 1)

)
.

Now the theorem follows from the fact that any graph with these eigenvalues is the
union of |H| complete graphs.

We point out that this proof is not the easiest method to describe the graph ΓG.
In fact, this result can be seen by considering the derangement graph on kernel of
the Frobenius group and the cosets of the kernel. It is however a nice example of an
application of character theory to graph theory.

Theorem 3.7. Let G = KH be a Frobenius group with kernel K. Then G has the
EKR property. Furthermore, G has the strict EKR property if and only if |H| = 2.
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Proof. Using Theorem 3.6, the independence number of ΓG is |H|. This along with
Lemma 3.2 shows that G has the EKR property. For the second part of the theorem,
first note that if |H| = 2 and S is an intersecting subset of G of size two, then S is,
trivially, a point stabilizer. To show the converse, we note that the cliques of ΓG are
induced by the |H| cosets of K in G. Now suppose |H| > 2 and let S be a maximum
intersecting subset of G which is a coset of a point-stabilizer in G. Without loss of
generality we may assume S = {id = s1, s2, . . . , s|H|} and, hence, S = Gx, for some
x ∈ {1, 2, . . . , n}. Since S is an independent set in ΓG, no two elements of S are in the
same coset of K in G. Note that the only fixed point of any non-identity element of S
is x. Let s3 be in the coset gK. If all the elements of gK fix x, then all the elements
of K will have fixed points, which is a contradiction. Hence there is an s′3 ∈ gK
which does not fix x. Now the maximum intersecting set S ′ = (S\{s3})∪{s′3} is not
a point-stabilizer.

Note that one can show the second part of Theorem 3.7 by a simple counting
argument as follows. There are n2 cosets of point-stabilizers in G. Since ΓG is the
union of |H| copies of the complete graph on n vertices, the total number of maximum
independent sets is n|H|. Therefore, in order for all the maximum independent sets of
ΓG to be cosets of point-stabilizers, the necessary and sufficient condition is |H| = 2.

Theorem 3.7 provides an alternative proof for the fact that the dihedral group
Dn has the strict EKR property, when n ≥ 3 is odd.

4 The EKR property for external direct products

Given a sequence of permutation groups G1 ≤ Sym(n1), . . . , Gk ≤ Sym(nk), their
external direct product is defined to be the group G1 × · · · × Gk, whose elements
are (g1, . . . , gk), where gi ∈ Gi, for 1 ≤ i ≤ k, and the binary operation is, simply,
the component-wise multiplication. This group has a natural action on the set Ω =
[n1] × · · · × [nk] induced by the natural actions of Gi on [ni]; that is, for any tuple
(x1, . . . , xk) ∈ Ω and any element (g1, . . . , gk) ∈ G1 × · · · ×Gk, we have

(x1, . . . , xk)
(g1,...,gk) := (xg1

1 , . . . , xgk
k ).

Let G = G1 × · · · × Gk. Then the derangement graph ΓG of G, is the graph with
vertex set G in which two vertices (g1, . . . , gk) and (h1, . . . , hk) are adjacent if and
only if gih

−1
i is a derangement, for some 1 ≤ i ≤ k.

If a group that is an external direct product, then it is possible to express the
derangement graph for the group as a product of derangement graphs. To do this,
we need two graph operations. The first is the complement. The complement of a
graph X is the graph X on the same vertex set as X, and the edge set is exactly all
the pairs of vertices which are not adjacent in X. The second operation is the direct
product of two graphs. Let X and Y be two graphs. The direct product of X and
Y is the graph X × Y whose vertex set is

V (X × Y ) = V (X)× V (Y ),
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and in which two vertices (x1, y1) and (x2, y2) are adjacent if x1 ∼ x2 in X and
y1 ∼ y2 in Y . We observe the following.

Lemma 4.1. Let the group G = G1 × · · · ×Gk be the external direct product of the
groups G1, . . . , Gk, then

ΓG = ΓG1 × · · · × ΓGk
.

Proof. By the definition of the external direct product, the vertices (g1, . . . , gk) and
(h1, . . . , hk) of ΓG are adjacent if and only if gih

−1
i has a fixed point, for each 1 ≤ i ≤

k. This is equivalent to the case where gi is adjacent to hi in ΓGi
, for each 1 ≤ i ≤ k.

This occurs if and only if (g1, . . . , gk) and (h1, . . . , hk) are adjacent in ΓG1×· · ·×ΓGk
.

This completes the proof.

In the next lemma, we evaluate the independence number of ΓG. If G = G1 ×
· · · ×Gk, define pi to be the projection of G onto the component Gi.

Lemma 4.2. Let the group G = G1 × · · · ×Gk be the external direct product of the
groups G1, . . . , Gk, then

α(ΓG) = α(ΓG1)× · · · × α(ΓGk
).

Proof. Let Si be a maximum independent set in ΓGi
, for any 1 ≤ i ≤ k. Then

the set S = S1 × · · · × Sk is an independent set in ΓG, proving that α(ΓG) ≥
α(ΓG1) × · · · × α(ΓGk

). On the other hand, let S be a maximum independent set
in ΓG, then for any 1 ≤ i ≤ k, the set pi(S) is an independent set in Gi. Thus
|pi(S)| ≤ α(ΓGi

). Since S ⊆ p1(S)× · · · × pk(S) the lemma follows.

Theorem 4.3. With the notation above, all the Gi have the (strict) EKR property
if and only if G has the (strict) EKR property.

Proof. Note that the stabilizer of any point (x1, . . . , xk) ∈ Ω in G is

(G1)x1 × · · · × (Gk)xk
.

We first prove the “only if” part of the theorem. If all the groups Gi have the EKR
property, according to Lemma 4.2, the maximum size of an independent set in ΓG

will be equal to
|(G1)x1| × · · · × |(Gk)xk

|,
for some (x1, . . . , xk) ∈ Ω; this proves that G has the EKR property. Furthermore,
assume all the groups Gi have strict EKR property and let S be a maximum inde-
pendent set in ΓG that contains the identity. This implies that for each 1 ≤ i ≤ k,
the set pi(S) is a maximum independent set in ΓGi

that contains the identity; hence
pi(S) = (Gi)xi

, for some xi ∈ [ni]. Therefore, S = G(x1,...,xk), which shows that G has
the strict EKR property.

To prove the “if” part, first assume G has the EKR property. Then the size
of any independent set is bounded above by |G(x1,...,xk)|, for some (x1, . . . , xk) ∈
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[n1]×· · ·× [nk]. Let S1 be an independent set in G1. Then S1× (G2)x2 ×· · ·× (Gk)xk

is an independent set in G. Hence

|S1 × (G2)x2 × · · · × (Gk)xk
| ≤ |G(x1,...,xk)| = |(G1)x1| × · · · × |(Gk)xk

|,

thus |S1| ≤ |(G1)x1 |. This shows that G1 and, similarly, G2, . . . , Gk have the EKR
property. Finally, assume G has the strict EKR property and let S1 be a maximum
independent set in G1 which contains the identity. This implies that S1 × (G2)x2 ×
· · · × (Gk)xk

is a maximum independent set in G; hence it must stabilize a point,
say (y1, . . . , yk) ∈ [n1] × · · · × [nk]. Therefore, S1 stabilizes y1; that is, S1 ⊆ (G1)y1.
Since S1 has the maximum size, we conclude that S1 = (G1)y1 , which completes that
proof.

We conclude this section by noting this theorem shows how to construct infinite
families of graphs that do not have (strict) EKR property.

5 The EKR property for internal direct products

The next group product that we consider is the internal direct product. Assume
Ω1, . . . ,Ωk are pair-wise disjoint non-empty subsets of {1, 2, . . . , n}, and let Ω =
Ω1∪· · ·∪Ωk. Consider the sequence G1 ≤ Sym(Ω1), . . . , Gk ≤ Sym(Ωk). Then their
internal direct product is defined to be the group G1 ·G2 · · · · ·Gk, whose elements are
g1g2 · · · gk, where gi ∈ Gi, for 1 ≤ i ≤ k and the binary operation is defined as follows:
for the elements g1g2 · · · · · gk and h1h2 · · · · ·hk in G1 ≤ Sym(Ω1), . . . Gk ≤ Sym(Ωk),

g1g2 · · · gk · h1h2 · · ·hk := (g1h1)(g2h2) · · · (gkhk). (1)

Note that since the Ωi do not intersect, any permutation in Gi commutes with any
permutation in Gj , for any 1 ≤ i 
= j ≤ k; hence the multiplication in Equation (1) is
well-defined. This group also has a natural action on the set Ω induced by the natural
actions ofGi on Ωi; that is, for any x ∈ Ω and any element g1g2 · · · gk ∈ G1·G2·· · ··Gk,
we have

xg1g2···gk := xgi , where x ∈ Ωi.

Let G = G1 · G2 · · · · · Gk. Then the derangement graph of G is the graph ΓG with
vertex set G in which two vertices g1g2 · · · · · gk and h1h2 · · · · · hk are adjacent if and
only if gih

−1
i is a derangement, for all 1 ≤ i ≤ k. In other words, ΓG is the direct

product of ΓG1 , . . . ,ΓGk
; that is

ΓG = ΓG1 × · · · × ΓGk
. (2)

It is not difficult to see that

α(X × Y ) ≥ max{α(X)|Y | , α(Y )|X|}.

This inequality can be strict for general graphs (see [20]), but recently Zhang [29]
proved that equality holds if both graphs are vertex transitive.
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Theorem 5.1. If X and Y are vertex-transitive graphs, then

α(X × Y ) = max{α(X)|Y | , α(Y )|X|}.

The following can, then, be easily derived.

Corollary 5.2. If X1, . . . , Xk are vertex-transitive graphs, then

α(X1 × · · · ×Xk) = max
i

{α(Xi)
∏

j=1,...,n
j �=i

|V (Xj)| }.

Theorem 5.3. With the notation above, if all the groups Gi have the EKR property,
then G also has the EKR property.

Proof. For any x ∈ Ω, the stabilizer of x in G is G1 · · · · ·Gj−1 · (Gj)x ·Gj+1 · · · · ·Gk,
where x ∈ Ωj . Hence

|Gx| = |(Gj)x|
∏

i=1,...,n
i �=j

|Gi|.

According to Corollary 5.2

α(ΓG) = max
j

{α(ΓGj
)
∏

i=1,...,n
i �=j

|Gi| }.

Therefore, if all the groups Gi have the EKR property, then G also has the EKR
property.

We point out that the converse of Theorem 5.3 does not hold, examples of this
are given in Section 7. Further, the “strict”version of this result does not hold. In
fact, Theorem 5.6 gives examples of groups, which are the internal direct product
of groups that all have the strict EKR property, but do not satisfy the strict EKR
property.

Using Theorem 2.4 and Theorem 5.3, one can observe the following.

Corollary 5.4. For any sequence r1, . . . , rk of positive integers, the internal direct
product Zr1 · Zr2 · · · · · Zrk has the EKR property.

Let λ = [λ1, . . . , λk] be a partition of n; that is, λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and∑
i λi = n. Define a set partition of {1, 2, . . . , n} by {1, 2, . . . , n} = Ω1 ∪ · · · ∪

Ωk, where Ωi = {λ1 + · · · + λi−1 + 1, . . . , λ1 + · · · + λi}. Then the internal direct
product Sym(Ω1) · Sym(Ω2) · · · · · Sym(Ωk) is called the Young subgroup of Sym(n)
corresponding to λ and is denoted by Sym(λ). An easy consequence of Theorem 5.3
and Theorem 1.1 is the following.

Corollary 5.5. Any Young subgroup has the EKR property.
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It is not difficult to see that ΓSym(n) is connected if and only if n 
= 3, the
graph ΓSym(3) is the disjoint union of two complete graphs K3 and ΓSym([2,2,2]) is
disconnected. From this we can deduce that if λ = [3, 2, . . . , 2], [3, 3] or [2, 2, 2], then
ΓSym(λ) will be disconnected and one can find maximum independent sets which do
not correspond to cosets of point-stabilizers. More generally, if λ is any partition of
n which “ends” with one of these three cases, then Sym(λ) fails to have the strict
EKR property. Ku and Wong [21] prove that these are the only Young subgroups
which don’t have the strict EKR property. In other words, they have proved the
following.

Theorem 5.6. Let λ = [λ1, . . . , λk] be a partition of n with all parts larger than one.
Then Sym(λ) has the strict EKR property unless one of the following hold

(a) λj = 3 and λj+1 = · · · = λk = 2, for some 1 ≤ j < k;

(b) λk = λk−1 = 3;

(c) λk = λk−1 = λk−2 = 2.

6 The EKR property for wreath products

Let G ≤ Sym(m) and H ≤ Sym(n). Then the wreath product of G and H , denoted
by G 
H is the group whose set of elements is

(G× · · · ×G︸ ︷︷ ︸
n times

)×H,

and the binary operation is defined as follows:

(g1, . . . , gn, h) · (g′1, . . . , g′n, h′) := (g1g
′
h(1), . . . , gng

′
h(n) , hh

′).

In particular, note that the identity element of G 
 H is (idG, . . . , idG, idH) and for
any (g1, . . . , gn, h) ∈ G 
H ,

(g1, . . . , gn, h)
−1 = (g−1

h−1(1), . . . , g
−1
h−1(n), h

−1).

Note also that the size of G 
 H is |G|n|H|. We point out that G 
 H is in fact the
“semi-direct product”

(G× · · · ×G︸ ︷︷ ︸
n times

)�H,

and the action of H on G × · · · × G is simply permuting the positions of copies of
G (see [9, Section 2.5] for a more detailed discussion on semi-direct products). It is
not hard to see that this group is the stabilizer in Sym(nm) of a partition of the set
{1, 2, . . . , nm} into n parts each of size m.

Similar to what we have done in the previous sections, we will describe the de-
rangement graph ΓG�H as a subgraph of a graph product of ΓG and ΓH . In this case,
we consider the lexicographic product of graphs. Let X and Y be two graphs. Then
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the lexicographical product X[Y ] is a graph with vertex set V (X)× V (Y ) in which
two vertices (x1, y1), (x2, y2) are adjacent if and only if x1 ∼ x2 in X or x1 = x2

and y1 ∼ y2 in Y . An easy interpretation of X [Y ] is as follows: to construct X[Y ],
replace any vertex of X with a copy of Y , and if two vertices x1 and x2 in X are
adjacent, then in X[Y ] all the vertices which replaced the vertex x1 will be adjacent
to all the vertices which replaced the vertex x2.

Note that if SX and SY are independent sets in X and Y , respectively, then the
SX [SY ] is an independent set of vertices of X[Y ]. It is straight-forward to determine
the size of the maximum independent sets in a lexicographic product, see [14] for
details.

Proposition 6.1. Let X and Y be graphs. Then

α(X [Y ]) = α(X)α(Y ).

For any x ∈ V (X), let Yx = {x}×Y (this is the copy of Y that replaces x in X).
If S is a subset of the vertices of X[Y ], define the projection of S to X as

projX(S) = {x ∈ X | (x, y) ∈ S, for some y ∈ Y }.

Similarly, for any x ∈ V (X) we define the projection of S to Yx as

projYx
(S) = {y ∈ Y | (x, y) ∈ S}.

We can, then, observe the following.

Proposition 6.2. Let X and Y be graphs. If S is an independent set in X [Y ] of
size α(X)α(Y ), then projX(S) is a maximum independent set in X and, for any
x ∈ V (X), the set projYx

(S) is a maximum independent set in Yx.

Assume Ω = {1, . . . , m} × {1, . . . , n}, then the group G 
 H acts on Ω in the
following fashion:

(x, j)(g1,...,gn,h) := (xgj , jh) = (gj(x), h(j)), (3)

for any (x, j) ∈ Ω and (g1, . . . , gn, h) ∈ G 
 H . If (g1, . . . , gn, h) has a fixed point
(x, j), then h(j) = j and gj(x) = x. Thus, it is not difficult to verify the following.

Lemma 6.3. For any pair (x, j) ∈ Ω, the stabilizer of (x, j) in G 
H is(
G× · · · × (G)x

jth position

× · · · ×G

)
×Hj .

Theorem 6.4. If G ≤ Sym(m) and H ≤ Sym(n) have the EKR property, then G 
H
also has the EKR property.
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Proof. For convenience we let W := G 
 H and P = G × · · · × G. Note that by
the definition of the wreath product, P is in fact the internal direct product of
G1, . . . , Gn, where Gi

∼= G and Gi ≤ Sym({1, 2, . . . , m} × {i}), for any 1 ≤ i ≤ n.
Hence according to (2), we have

ΓP = ΓG × · · · × ΓG︸ ︷︷ ︸
n times

.

Consider the lexicographic product Γ = ΓH [ΓP ]. Define the map f : Γ → ΓW by

f(h, (g1, . . . , gn)) = (g1, . . . , gn, h).

We claim that f is a graph homomorphism.To prove this, assume that(h, (g1, . . . , gn))
and (h′, (g′1, . . . , g

′
n)) are adjacent in Γ. We should show that

(g′1, . . . , g
′
n, h

′) · (g1, . . . , gn, h)−1 = (g′1g
−1
h′h−1(1), . . . , g

′
ng

−1
h′h−1(n), h

′h−1) (4)

has no fixed point. By the definition of the lexicographic product, either h ∼ h′ in
ΓH or h = h′ and (g1, . . . , gn) ∼ (g′1, . . . , g

′
n) in P . In the first case, h′h−1 has no

fixed point. Thus (g′1, . . . , g
′
n, h

′) · (g1, . . . , gn, h)−1 cannot have a fixed point. In the
latter case, (g′1, . . . , g

′
n)(g1, . . . , gn)

−1 has no fixed point; thus, according to (4),

(g′1, . . . , g
′
n, h

′) · (g1, . . . , gn, h)−1 = (g′1g
−1
1 , . . . , g′ng

−1
n , idH)

cannot have a fixed point. Thus the claim is proved.
We can, therefore, apply the no-homomorphism lemma to get

|V (Γ)|
α(Γ)

≤ |V (ΓW )|
α(ΓW )

.

Therefore, using Proposition 6.1, we have

α(ΓW ) ≤ α(ΓP )α(ΓH). (5)

But since G has the EKR property, according to Theorem 5.3, P has the EKR
property; this means that there is a point x ∈ {1, 2, . . . , m} such that

α(ΓP ) = |Px|.
Similarly, since H has the EKR property, there exists a j ∈ {1, 2, . . . , n} such that

α(ΓH) = |Hj|.
This, along with Lemma 6.3, implies that the stabilizer of a point is the largest
independent set in ΓW .

The map f : Γ → ΓW is one-to-one, so can be considered as an embedding. It is
not the case that Γ and ΓW are isomorphic, since there are edges in ΓW that are not
in Γ.

In the case of symmetric groups, we can say more.
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Proposition 6.5. The group Sym(m) 
 Sym(n) has the strict EKR property.

Proof. The first part follows from Theorem 6.4. For the second part, as in the proof
of Theorem 6.4, we let W = Sym(m) 
 Sym(n) and define the internal direct sum

P = Sym([m]× {1})× · · · × Sym([m]× {n}).
Let S be an intersecting subset of W of maximum size, i.e. S has the size of

a point-stabilizer in W . Without loss of generality we assume that S contains the
identity element of W . Consider the homomorphism f : ΓSym(n)[ΓP ] → ΓW defined
in the proof of Theorem 6.4. The function f is an injection; hence there is a copy of
ΓSym(n)[ΓP ] in ΓW . This implies that S is an independent set in ΓSym(n)[ΓP ] of size
α(ΓSym(n))α(ΓP ).

For x ∈ Sym(n), let (ΓP )x denote the copy of ΓP that replaces x from ΓSym(n)

in the graph ΓSym(n)[ΓP ]. Then, according to Proposition 6.2 and the fact that P
has the strict EKR property (see Theorem 5.6), we have that the projection of S
to (ΓP )x is a point-stabilizer in P . Denote this point stabilizer by P(yx,jx) where
yx ∈ {1, . . . , m} and jx ∈ {1, . . . , n}. To show that S is the stabilizer of a point, we
need to show that the pair (yx, jx) is the same for all x ∈ Sym(n).

Assume that there are two permutation x1 and x2 in Sym(n) with (yx1, jx1) 
=
(yx2, jx2). Let σx1 be a permutation whose projection to (ΓP )x is the identity if
x = x1, and a derangement otherwise. Let σx2 be the permutation whose projection
to (ΓP )x is a derangement if x = x1 and the identity otherwise. Then σx1 ∈ P(yx1 ,jx1)

,
and σx2 ∈ P(yx2 ,jx2)

and both are in S. But this is a contradiction since these
permutations are not intersecting, thus jx1 = jx2 = jx.

Similarly, if m > 2 we can show that yx1 = yx2 by finding permutations that are
in P(yx1 ,jx)

and P(yx2 ,jx)
, but are not intersecting. If m = 2, then P(1,jx) = P(2,jx), so

again the point stabilizers must be the same.
The projection of S to each (ΓP )x is the stabilizer of the point (yx, jx), thus S is

the stabilizer of (yx, jx) in Sym(m) 
 Sym(n).

7 Groups that do not have the EKR property

Our first example of a group that does not have the EKR property is the Mathieu
group M20 (this group is the stabilizer of two points in the Mathieu group M22). The
stabilizer of a point in M20 has size 48 but there is an independent set in ΓM20 of size
64.

The group M20 acts on the set {1, 2, . . . , 20} and, under this action, there is a
system of imprimitivity that is comprised of 5 blocks, each of size 4. Label these
blocks by Bi. Consider the following four possible ways that the first four blocks
could be moved:

B1 → B1, B2 → B2, B3 → B3, B4 → B5.

Then the set of all permutations that move the blocks in at least three of these four
ways forms an independent set of size 64. There are many other sets of four ways to
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move that blocks that will similarly produce independent sets of size 64. This shows
that M20 does not have the EKR property. We conjecture that these are the largest
independent sets in ΓM20, and we leave it as an open problem whether or not there
are other ways to construct maximum independent sets in this graph.

The original EKR theorem for sets considered collections of sets in which any
two sets have at least t elements in common for some integer t ≥ 1. Similarly, two
permutations π and σ are t-intersecting if πσ−1 has at least t fixed points. We can
then ask what is the size of the largest t-intersecting set of permutations from a
group?

The largest set of t-intersecting permutations of a group G ≤ Sym(n) is also
the largest set of intersecting permutations in G when we consider a different group
action. Namely, if G ≤ Sym(n), then G has a natural action on the ordered t-sets
from {1, . . . , n}; so G can also be considered as a subgroup of Sym(n · (n− 1) · · · · ·
(n − t + 1)) with this action. Two permutations are intersecting under this action
if and only if they are t-intersecting under the usual action on {1, . . . , n}. Following
the construction of t-intersecting sets of maximum size, we can produce groups that
do not have the EKR property.

For example, consider 4-intersecting permutations in the group Sym(8) with the
natural action on {1, 2, . . . , 8}. The stabilizer of 4 points has size 4! = 24. But the set
of all permutations from Sym(8) that fix at least 5 points from the set {1, 2, 3, 4, 5, 6}
is also 4-intersecting. The size of this set 26 (there are 2 permutations that fix all 6
of {1, 2, 3, 4, 5, 6}, and (6

5

)
(4) = 24 that fix exactly 5 of them). If we consider Sym(8)

with its action on the ordered sets of size 4 from [8] then we have a subgroup of
Sym(1680) isomorphic to Sym(8) that does not have the EKR property.

This can be generalized for any t to give more examples of groups that do not
have the EKR property.

Lemma 7.1. For t ≥ 4 the size of a t-intersecting set in Sym(2t) is at least

(t2 + t− 1)(t− 2)!.

Proof. The set of all permutations that fix at least t+1 points from {1, 2, . . . , t+2}
is a t-intersecting set of size(

t+ 2

t+ 2

)
(t− 2)! +

(
t + 2

t + 1

)
(t− 1)(t− 2)!

Note for all t > 0 that (t2 + t − 1)(t − 2)! ≥ t! so these are all examples of groups
that do not have the EKR property.

Finally, we note that it is possible to take the internal direct product of a group
that does not have the EKR property with one that does and have the result be a
group that does have the EKR property. To see this, let G1 = M20 and G2 = Sym(n)
and let G be the internal direct product of G1 and G2. Then for n sufficiently large
we have that

α(ΓG) = max{α(ΓG1)|G2|, α(ΓG2)|G1|} = α(ΓG1)|(G2)n| = (n− 1)!|G1|,
which is the size of a stabilizer of a point in G. This shows that G = G1 ×G2 does
have the EKR property while G1 does not.
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8 Further Work

There is clearly much more work to be done to determine which groups that have
the EKR property. We would like to find more conditions on groups to determine if
they have either the EKR property or the strict EKR property.

We would also like to investigate groups that do not have either the EKR property
or the strict EKR property. In this paper we show that the Frobenius groups do not
have the strict EKR property, but this example is not the most interesting since the
derangement graph is the union of complete of graphs. The Mathieu group M20 is
a more intersecting example since it has non-trivial intersecting sets and these sets
have an interesting structure. The next step is to find more examples of groups that
do not have the EKR property. The hope would be to determine properties of the
group that predicts when this happens and to determine if the maximum independent
sets have an interesting structure. For example, the groups PGL(3, q) never have the
strict EKR property since the stabilizer of a hyperplane forms an intersecting set
that has the same size as the stabilizer of a point (in [25] it is shown that these are
all the intersecting sets of maximum size).

Another direction to consider is based on the EKR theorem for sets. The EKR
theorem for t-intersecting k-subsets from {1, 2, . . . , n} has been completely solved
for all values of n, k and t [1]. Depending on the size of n, relative to k and t, the
largest t-intersecting k-subsets are all the subsets that contain t+ i elements from a
set of t+2i elements (where i is an integer that depends on n, k and t). Similarly, for
permutations, we can define the set of all permutations that fix at least t+ i elements
from a set of t+ 2i elements. These sets are natural candidates for intersecting sets
of maximum size for groups in which the EKR theorem does not hold. We plan to
check these sets for some small groups.
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